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Abstract

We present a model for the evolution of supermassive protostars from their formation at   M M0.1 until their
growth to   M M105 . To calculate the initial properties of the object in the optically thick regime, we follow
two approaches: one based on idealized thermodynamic considerations, and another based on a more detailed one-
zone model. Both methods derive a similar value of ´ -n 2 10 cmF

17 3 for the density of the object when opacity
becomes important, i.e., the opacity limit. The subsequent evolution of the growing protostar is determined by the
accretion of gas onto the object and can be described by a mass–radius relation of the form  µR M1 3 during the
early stages, and of the form  µR M1 2 when internal luminosity becomes important. For the case of a
supermassive protostar, this implies that the radius of the star grows from  R 0.65 au to  R 250 au during its
evolution. Finally, we use this model to construct a subgrid recipe for accreting sink particles in numerical
simulations. A prime ingredient thereof is a physically motivated prescription for the accretion radius and the
effective temperature of the growing protostar embedded inside it. From the latter, we can conclude that
photoionization feedback can be neglected until very late in the assembly process of the supermassive object.

Key words: cosmology: theory – early universe – galaxies: formation – galaxies: high-redshift – hydrodynamics –
stars: formation

1. Introduction

Recent observations at redshifts z 6 suggest that quasars
were already powered by supermassive black holes (SMBHs)
with masses  M109 when the universe was less than one
billion years old (Fan et al. 2003, 2006; Mortlock et al. 2011;
Wu et al. 2015). These SMBHs most likely grew from smaller
seed BHs that formed earlier, but the origin of these seeds
remains unclear (Haiman 2006, 2009; Bromm & Yoshida 2011;
Greene 2012; Volonteri 2012; Volonteri & Bellovary 2012).
Furthermore, feedback and self-regulation of the seeds make
the study of their formation and growth even more complex
(Milosavljević et al. 2009). The two most promising theories
concerning the formation of seed BHs at high redshift are the
remnants of massive PopulationIII stars (Madau & Rees 2001;
Li et al. 2007; Johnson et al. 2012), and the direct collapse of
primordial gas in halos with virial temperatures T 10vir

4 K,
the so-called atomic-cooling halos (Bromm & Loeb 2003;
Begelman et al. 2006; Spaans & Silk 2006).

In the direct collapse scenario, high temperatures are reached
in halos where cooling by molecular hydrogen and metal lines
to below 10 K4 has been suppressed, which implies that the
only coolant acting on the gas is atomic hydrogen (Omukai
2001; Oh & Haiman 2002). In the case of molecular hydrogen,
which naturally forms at the center of the halo, its
photodissociation can be achieved by an external soft
ultraviolet (UV) background in the Lyman–Werner (LW)
bands. Previous studies have found that this leads to a nearly
isothermal collapse at T 10 Kvir

4 due to initially Lyα
cooling, and subsequently -H bound–free and free–free (ff)
emission, when higher densities are reached (Regan &
Haehnelt 2009; Latif et al. 2013a; Inayoshi et al. 2014; Becerra
et al. 2015; Chon et al. 2016). High-resolution simulations have
shown that, as the gas collapses and reaches densities of

-10 cm17 3, it becomes optically thick to -H radiation, and a

massive protostar with an accretion rate of - M1 yr 1 forms
at the center of the halo (Inayoshi et al. 2014; Van Borm
et al. 2014; Becerra et al. 2015; Latif et al. 2016). Due to this
high accretion rate, the central object can easily become a
supermassive star of  – M10 105 6 within a million years
(Regan & Haehnelt 2009; Latif et al. 2013a), which later might
collapse into an SMBH due to relativistic instabilities
(Baumgarte & Shapiro 1999; Umeda et al. 2016; Woods
et al. 2017, see also Figure 1).
In this work, we study the physics of the central object when

it approaches the optically thick regime. In particular, we
investigate the properties of the emerging protostar when the
optical depth due to -H emission becomes unity, thus
extending the classical theory of opacity-limited fragmentation
developed for present-day star formation (Low & Lynden-Bell
1976; Rees 1976). Previous studies have explored this scenario
using detailed one-zone models (e.g., Omukai 2001). Here, we
present an alternative approach based on both simplified
dimensional arguments and a fitting formula for the cooling
and heating processes within the nonequilibrium chemistry of
H and -H ions. In addition, we develop an idealized model for
the subsequent evolution of the accreting protostar, until the
formation of a supermassive object. Based on this modeling of
the growing protostar, we deduce parameters for a physically
motivated sink particle algorithm, to be used as a subgrid recipe
in large-scale, hydrodynamic simulations of the formation of
SMBH seeds in a fully cosmological context. Such simulations
are needed to derive detailed diagnostics for the SMBH
assembly process at high redshifts, to be probed with next-
generation observational facilities (Pacucci et al. 2015), such as
the James Webb Space Telescope (JWST), the ATHENA X-ray
mission, and the Laser Interferometer Space Antenna (LISA)
gravitational-wave observatory.
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2. Physics of the Opacity Limit

2.1. Classical Picture

In the theory of star formation, it has been a long-standing
quest to understand the limits to fragmentation in a given cloud
setting. An influential idea was that fragmentation proceeds
hierarchically in a collapsing cloud, as the Jeans mass decreases
with increasing density as long as the cloud can collapse almost
isothermally (Hoyle 1953). The minimum fragment mass is
then set by the scale when opacity prevents the release of the
gravitational energy via radiation, such that the Jeans mass
would increase again upon further compression (Low &
Lynden-Bell 1976; Rees 1976). Fragmentation can be seeded
in a number of ways, including from nonspherical perturbations
of the Larson–Penston solution (Hanawa & Matsumoto 2000;
Lai 2000). We here follow a similar reasoning, applied to the
peculiar conditions of isothermally collapsing primordial gas in
atomic-cooling halos. Our goal is to robustly derive the
characteristic density nF, mass MF, and radius RF of the
emerging protostar, when the gas first becomes optically thick
(see third panel of Figure 1). These values will mark the initial
stage in the build-up process of the supermassive object.

We start by considering the simple relation between these
three quantities:

p
= ( )M

m

X
n R

4

3
, 1F

H
F F

3

where we have used r = m n XH , with X=0.76 being the
primordial hydrogen mass fraction, to translate total mass
density to hydrogen number density.

We furthermore assume that the optically thick cloud is
gravitationally bound, such that the characteristic mass is of the
order of the Jeans mass MJ,

p
m

= -
⎛
⎝⎜

⎞
⎠⎟ ( )M M

k
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B

H

3 2
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where m  1.22 is the mean molecular weight for a fully
neutral primordial mixture of atomic hydrogen and helium.

Finally, we need to account for energy equilibrium. The
energy that is to be radiated away originates in the gravitational
collapse of the cloud. In this case, the gravitational energy is
emitted in a collapse timescale tcol, as long as the gas remains
optically thin to its cooling radiation. Right before the gas
cloud becomes opaque, the energy is radiated from the surface
as a fraction fBB of the blackbody radiation. Hence, we can

equate the gravitational compressional heating rate with the
radiation cooling rate

p
p s=· ( )R

n k T

t
f R T

4

3
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where sSB is the Stefan–Boltzmann constant. In a one-zone
model, where the thermal evolution of the central core of a
collapsing cloud is calculated, the collapse timescale is
commonly assumed to be p r=t G3 32col , which is the
time for the density of an initially static cloud to reach infinity.
On the other hand, the dynamical timescale in the free-fall
collapse is r=t G1 24col , which is shorter by a factor of
p 3 2 4.7. In reality, the collapse timescale can be between
these values. Here, we set the collapse timescale to

p r=t f G3 32col col in order to consider this uncertainty,
where  f0.2 1col .
We then proceed to solve the system of Equations (1)–(3),

and obtain analytic expressions of the characteristic density,
radius, and mass
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where we have normalized T to the typical value of
isothermally collapsing gas in the high density regime in an
atomic-cooling halo, and we have used =f f f 1col BB . We
note that this argument for the universal line in the density–
temperature plane (Equation (4)), on which the gas cloud
becomes optically thick to any continuum opacities (gas and
dust grains) has already been discussed by Omukai et al.
(2005), and we here reproduce the key result in a simplified
way to highlight the basic physics involved.
Figure 2 shows the density–temperature diagram of a

collapsing cloud in an atomic-cooling halo when a protostar,
composed of a hydrostatic and adiabatic core, forms at the
center of the cloud (red dashed curve). The data is taken from a
three-dimensional (3D) hydrodynamical simulation by
Inayoshi et al. (2014), including all relevant cooling and
chemical reaction networks. In this case, the gas becomes
opaque at ´ -n 5 10 cm15 3 (open circle), which agrees with

Figure 1. Overview of the formation of a supermassive black hole seed. An atomic-cooling halo of virial (total) mass  M M108 and exposed to strong Lyman–
Werner background radiation collapses. The gas reaches the optically thick regime first on small scales, such that a central protostar of initial mass  M M0.1 and
accretion rate - Ṁ M1 yr 1 is formed, surrounded by a disk-like structure. Photons coming from the protostar due to accretion are radiated away, until the gas
becomes optically thick to -H radiation at intermediate scales. Eventually, the central object eats up the entire disk and tends toward sphericity, although the mass of
the object at each of these later stages still remains to be determined. The massive protostar keeps accreting the surrounding gas and becomes a supermassive star of
 –M M10 105 6 after  –10 10 year5 6 . Finally, it collapses into a massive black hole seed due to relativistic instabilities.
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= ´ -n 9.2 10 cmF
15 3 for f=0.2 within a factor of two (see

Equation (4)). Moreover, the radius and mass of the opaque
core estimated from Equations (5) and (6) are =R 1.7 auF and

= M M0.1F for f=0.2, respectively. Both values also
reasonably agree with the 3D simulation results, where
R 1 auF and   M M0.2 right after protostellar formation.

2.2. Detailed Modeling: One-zone Model

Next, we gain further insight by considering the detailed
physics of -H opacity, based on the actual microphysical cross
section for this process. To this extent, we rederive the opacity
limit by using a one-zone model for the collapse of gas into an
atomic-cooling halo.

Following previous works (Omukai 2001; Inayoshi
et al. 2014), we implement the cooling function due to H−

free–bound (fb) and ff emission

g+  +- - ( )eH H , 7

g+  + +- - ( )e eH H , 8

and consider three opacity sources associated with H− bound–
free, ff transition and H Rayleigh scattering

g+  +- - ( )eH H , 9

g+ +  +- - ( )e eH H , 10

g g+  + ¢ ( )H H . 11

These processes are treated in a self-consistent way with
chemical reaction networks. An updated set of chemical
reaction rate coefficients and cross sections is summarized in
Inayoshi et al. (2014, 2016).

In what follows, we briefly describe the method introduced
by Inayoshi et al. (2014) to calculate the cooling function both
in the optically thin and thick regimes. We summarize specific

functional forms for the cooling rates and opacities in the
Appendix. In the optically thin limit, the -H cooling rate is
estimated by integrating emissivities over frequency as

òp h h nL º +n n( ) ( )d4 . 12thin
fb ff

We here divide the frequency range into two: = [ ]D 0, 0.75l eV
and = [ ]D 0.75, 13.6h eV, called “low” and “high” frequency,
respectively. That is,

ò ò p h h nL = + +

º L + L

n n( )

( )( ) ( )

d4 ,

. 13

D D

l h

thin
fb ff

thin thin

l h

This distinction between the two ranges is required to calculate
the cooling rate in the optically thick case. Figure 3 shows the
optical depth at the core of the collapsing cloud due to the H−

bound–free/ff transition and H Rayleigh scattering for three
different densities. For the lowest density ( = -n 10 cm12 3, top
panel), the gas is optically thin (t s l= <n nn 1J ) to all the
continuum opacities at frequencies 2 eV. As the density
increases to = -n 10 cm15 3 (middle panel), the optical depth at

Figure 2. Density–temperature diagram of a collapsing cloud in an atomic-
cooling halo. Solid curve (black) presents the thermal history obtained from a
one-zone calculation including H− continuum cooling and opacity effects (see
Section 2.2). Dashed curves (red and blue, respectively) show the snapshots of
a three-dimensional (3D) simulation by Inayoshi et al. (2014) when (1) a
hydrostatic protostar forms due to the opacity limit (long, red), and
(2) 1.2 years after protostellar formation (short, blue). The open circle marks
the density above which the gas becomes opaque in the 3D simulation. Filled
circles mark the three epochs at which we show the optical depth due to
absorption and scattering in Figure 3. The density at the opacity limit in the 3D
simulation is lower than that in the one-zone calculation because the collapse
timescale in the 3D simulation is shorter than what is assumed in the one-zone
model.

Figure 3. Frequency-dependent optical depth due to H− bound–free (red), H−

ff (green), and H Rayleigh scattering (blue) for three different densities with
= -n 10 cm12 3 (top), -10 cm15 3 (middle), and -10 cm16 3 (bottom). The

horizontal dashed line shows the line on which t s l= =n n( )n 1J .
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higher frequencies (1 eV) exceeds unity, but the H− ff
emission still works as radiation cooling. For the highest
density ( = -n 10 cm16 3, bottom panel), the gas core becomes
completely opaque to all the continuum, and hence enters the
opacity limit.

In the optically thick limit, the cooling function is
approximated as

ò ò
p

k k
nL +

-
+

¶
¶n n

n
( )

( ) ( )B T

z
d

4

3
, 14

D D
thick a s

2

2
l h

where kn
( )a s is the absorption (scattering) coefficients, n ( )B T is

the Planck function, and z is the coordinate along the
temperature gradient. Here, we approximate Equation (14) as
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where the partial derivative ¶ ¶z is replaced with a
characteristic length ℓ, and k ( )

R
l h and k ( )

P
l h are Rosseland and

Planck mean opacities in the low- and high-frequency regimes,
respectively. Note that, in this limit, the emissivity is expressed
as h k=n n n ( )B Ta because the source function is given
by n ( )B T .

Finally, in order to connect both the optically thin and thick
regimes, we adopt the following functional form
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where the first (second) term in the right-hand side in
Equation (16) mainly corresponds to H− fb (ff) emission.
Figure 4 shows the evolution of the cooling rates for a
collapsing cloud in our one-zone calculation (see solid curve in
Figure 2). Each solid curve presents the total cooling rate (red),
the rate of L( )h (green) and L( )l (blue). The H− fb cooling

saturates and decreases at > ´ -n 6 10 cm15 3 because of H
Rayleigh scattering and H− bound–free absorption. At

 ´ ´- -n9 10 cm 2 10 cm15 3 16 3, the H− ff emission acts
as the main cooling process instead of H− fb. Since the
compressional heating, given by G = nk T tcomp B ff (dashed
curve in Figure 4), dominates the total cooling rate during this
transition, the temperature begins to increase gradually.
Eventually, the gas becomes completely opaque at > ´n 2

-10 cm16 3, where µT n2 3. Note that this density, here derived
by considering the detailed microphysics involved, is very
similar to the estimate in Section 2.1. We can thus robustly
characterize the conditions at the onset of supermassive
protostar formation.

2.3. Protostellar Evolution

After the collapse and formation of the optically thick object,
its mass grows through accretion of the surrounding gas and
new sources of energy start becoming important (see fourth
panel of Figure 1). In that case, its evolution will not be
determined by the energy radiated away from the collapse, but
by the interplay between internal and accretion radiation from
the protostar. During the first stage of protostellar evolution, the
energy powering the object will dominantly come from
accretion rather than self-gravitating collapse. At some point
toward the later evolution of the system, the accretion
timescale,  = ˙t M Macc , becomes larger than the Kelvin–
Helmholtz (KH) timescale,   =t GM R LKH

2 , and hence the
protostellar model needs to be augmented by internal
contributions (e.g., Omukai & Palla 2003).
Right after a protostar forms, the accretion timescale is

shorter than the KH timescale. In this accretion phase
( t tacc KH), we modify the left-hand side of Equation (3) and
consider the accretion luminosity released at the stellar surface:

 


p s

˙
( )GM M

R
R T4 , 17ph

2
SB

4

where Rph is the photospheric radius. In the early stages of the
accretion phase, we assume R R1.4ph (Stahler et al. 1986),
which is derived for a spherically symmetric, quasi-steady
model of an accreting protostar. Specifically, a freely falling
envelope is depositing material onto a growing hydrostatic core
in an accretion shock. The latter is surrounded by a radiative
precursor, transitioning into the optically thin envelope at the
photosphere. Here, the factor of 1.4 is determined by -H
opacity, but during later evolutionary stages, other opacity
effects like electron scattering will play a role. In accretion
problems, other radii like the trapping radius, defined as the
point where the radiative diffusion and dynamical timescales
are of the same order, might be important. During the evolution
of the system, the effective opacity can be written as a function
of the opacity due to absorption (tabs) and to electron scattering
(tes) as t t t t= +( )eff abs abs es . Inside the photosphere, the
gas is ionized and hence electron scattering dominates
over absorption (t tes abs). We can then estimate the trapping
radius due to electron scattering as s p= ˙R M 4tr

es
T


-

( )˙
m c 4.45 au M

MH yr 1 (Begelman 1978). For our assumed

accretion rate of 
- Ṁ M1 yr 1, the trapping radius due

to electron scattering is of the order of a few astronomical units,

Figure 4. Radiative cooling rates (solid) and heating rate due to gravitational
compression (dashed) in a collapsing cloud. Cooling rates represented are the
total cooling rate (Ltot, red solid), the rate due to higher-frequency photons with
n >h 0.75 eV (L( )h , green solid) and with n <h 0.75 eV (L( )l , blue solid).
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which is consistent with the approximation  ~R R Rtr
es

ph . On
the other hand, we can also estimate the trapping radius due to -H
absorption, given by equating the diffusion timescale and the free-
fall time as t p r- R c G3 32H . To evaluate this expression,
we take the results from the one-zone model and solve for the
radius. This gives us a value of ´ --

R 4 10 autr
H 2 , which lies

inside the photospheric radius at all times. As a result, we can
adequately assume that the trapping radius might not influence the
evolution of the object throughout the protostellar assembly.
Future, self-consistent radiation-hydrodynamical simulations will
provide a more complete understanding. With these assumptions,
we then evaluate the stellar radius as a function of stellar mass M ,
accretion rate Ṁ , and surface temperature T :


  

-

-


 
⎜ ⎟

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

˙
( )R

M

M

M

M

T
1.1

yr 6000 K
au. 18

1 3

1

1 3 4 3

Later in the evolution of the object, the internal luminosity
from the star begins to dominate because the opacity decreases
as the temperature increases inside the star (k µ -T 7 2),
resulting in >t tacc KH. In a typical case for Population III
star formation with a moderate accretion rate of  Ṁ

- -
M10 yr3 1, the star contracts losing the thermal energy via

radiative diffusion and forms a main-sequence star. However,
when the accretion rate is sufficiently high, the total luminosity
(i.e., the accretion luminosity and the internal luminosity) tends
to exceed the Eddington luminosity during the KH contraction.
Then, the stellar surface expands in order to regulate the
increase of the total luminosity, and the protostar evolves into a
red-giant-like structure with a contracting core and an
expanding envelope. The critical accretion rate to bifurcate
the protostellar evolution is estimated as   ´Ṁ 4

- -
M10 yr3 1 (Omukai & Palla 2003). According to stellar

evolution calculations, even if >t tacc KH, the stellar surface
continues to expand without contraction phases when the
accretion rate is higher than   - -

Ṁ M10 yr2 1 (Hosokawa
et al. 2012). In this case, the stellar luminosity approaches the
Eddington value for the corresponding mass. Hence, the energy
equilibrium equation can be written as




 
p

s
p s=  ( )L

GM m c
R T

4
4 , 19Edd,

H

T

2
SB

4

from where we can derive an expression for the stellar radius
during the expansion phase, as a function of the mass of the star
and the surface temperature (Hosokawa et al. 2012, 2013):


 

-



⎜ ⎟

⎛
⎝⎜

⎞
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⎛
⎝

⎞
⎠ ( )R

M

M

T
0.78

6000 K
au. 20

1 2 2

In Figure 5, we compare the stellar radius (blue solid) for
 T 6000 K to other important length scales in our problem.
Among them, we consider the Schwarzschild radius,

=R GM c2Sch
2 (red solid), the innermost stable circular

orbit (ISCO) radius, =R GM c6ISCO
2 (green solid), and the

Bondi radius, =R GM cB s
2 (purple solid). The protostar’s

radius grows from  R 0.65 au at   M M0.1 to
 R 250 au at   M M105 , well below the Bondi radius,

but above both the Schwarzschild and ISCO radii for the whole
range of masses. Additionally, the massive protostar does not
enter the region where it becomes GR unstable (pink shaded
region) during its evolution. This might indicate that the whole

star does not collapse due to GR instability, but only its core, in
agreement with Hosokawa et al. (2013).
For the Bondi radius, we here assume for simplicity a nearly

constant sound speed, corresponding to  ( )T r T 6000 K
(black dashed line in Figure 6). This argument is based on the
Larson–Penston collapse (Larson 1969; Penston 1969), which
approximately describes the evolution of atomic-cooling halos.
In such a case, the density follows a profile r µ -r 2 and hence

Figure 5. Characteristic scales related to the evolution of an accreting
protostar: stellar radius for a typical temperature of T 6000 K (blue),
Schwarzschild radius (red), radius of the innermost stable circular orbit (ISCO,
green), and Bondi radius (purple). In addition, we have included the accretion
radius as defined in Equation (27) for a density threshold of = -n 10 cmth

8 3

(black dashed) and = -n 10 cmth
10 3 (black dotted). The pink shaded area

indicates the region of the parameter space where the star becomes GR unstable
for n=3 polytropic stars (Fricke 1973).

Figure 6. Radial profiles of the temperature for our assumption  T 6000 K
(black dashed), our simulations (red solid, see Section 3.2), and the adiabatic
evolution of an optically thick object of mass   M M104 (black dotted line).
The assumption of a constant temperature is a good approximation up to scales
100 pc, which encloses the characteristic scales of the problem (see Figure 5).
For reference, we have also included the value of the Bondi radius for masses
 =M 103 (triangles), 104 (circles), and M105 (squares).
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the evolution of the temperature is nearly isothermal, up to radii
of a few parsecs. Furthermore, we have verified that our
simulations of the initial stages of collapse (see Section 3.2)
exhibit such near-isothermality out to 100 pc, as shown by
the red solid line in Figure 6. It is clear that we oversimplify the
situation here. In reality, the infalling matter will heat up when
transitioning to optically thick conditions inside the Bondi
radius, and eventually follow an adiabatic evolution. In such a
case, g = 5 3 and the temperature has a radial dependency

µ -( )T r r 1 (Shapiro & Teukolsky 1983), as represented for a
stellar mass   M M104 by the black dotted line in the same
figure. In general, the transonic radius for Bondi accretion is
given by = g-

¥
( )R GM

cs
5 3

4 s,
2 (Shapiro & Teukolsky 1983). If the

gas evolution is characterized by a different γ value (e.g.,
g = 1.1 for classical PopulationIII star formation, Omukai &
Nishi 1998), the Bondi radius might change by a factor of a
few. Additionally, the transition to the adiabatic stage depends
on how the diffusion and free-fall timescales compare to each
other. Since the values for the trapping and photospheric radii
are similar, this implies that gas outside the photospheric radius
is not affected by this increase in temperature, further
validating our assumption.

2.4. Onset of Radiative Feedback

One factor that might dramatically influence the evolution
described in this section is the radiation emitted from the
central accreting protostar. Here, we have assumed a constant
surface temperature because of strong temperature dependence
of H− opacity. Throughout the evolution of the central object,
however, its temperature will vary and eventually reach a point
where radiative feedback becomes important. Previous studies
have analyzed the formation of primordial supermassive stars
in the rapid mass accretion regime and have found that the
effective temperature of the object remains well below 10 K4 ,
for protostellar masses up to M104 , or so (Hosokawa
et al. 2012, 2013), suggesting that radiative feedback might
not become important up to those mass scales.

It is useful to explore the likely temperature evolution of the
growing supermassive protostar, in response to a realistic mass
accretion history provided by a cosmological simulation. To
this extent, we consider the photospheric temperature, given by
the general stellar evolution calculations of Stahler et al.
(1986):


 

-

-


 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

˙
( )T

M

M

M

M
4000 K

yr
. 21

0.044

1

0.055

We have plotted this relation in Figure 7 for accretion rates of
10−2 (red), 10−1 (blue), and -

M1 yr 1 (green). Because this
relation is only valid when t tacc KH, we have used solid lines
up to the mass where this inequality inverts. For higher masses,
we make a rough extrapolation based on the same expression
(dotted lines), although the evolution of the temperature for this
stage is unclear. As can be seen, the temperature at which the
photosphere begins to emit H-ionizing radiation, Tion

10,000 K (black dotted), is not reached in the range of
accretion rates explored here. For lower values of Ṁ the
stellar radius is smaller than the photospheric one, and follows
the zero-age main-sequence evolution. In such a case, the
ionizing temperature can be reached well before   M M104 .

In addition to our constant accretion rate assumption, we
have included a time-dependent toy model of the form
 = - -

˙ ( )M t M e1 yr t t1 ff,0 (purple dashed–dotted line), with
=t 10 yearff,0

5 being the free-fall time in the core of the
atomic-cooling halo before the collapse (e.g., Safranek-Shrader
et al. 2012) and  = =  ( )M t M M0 0.1F . We also compare
with the Hosokawa et al. (2013) results for the effective
temperature Teff at 

- Ṁ M1 yr 1 (orange dashed line). Both
models agree well, but in the former case the increase in the
effective temperature is due to a drop in the accretion rate,
while in the latter case this is a result of the decrease in the
opacity because of the expansion of the stellar radius. Similar
to the case of constant Ṁ , none of these models reach Tion
during the evolution of the protostar up to masses of M105 .
Since the photospheric temperature at the characteristic
accretion rate 

- Ṁ M1 yr 1 never surpasses 104 K, we can
safely neglect photoionization feedback from the central
protostar during most of its evolution. This radiation only
becomes important for accretion rates a few orders of
magnitude lower than -

M1 yr 1, or for masses   M M105

in the case of our time-dependent model.
Lastly, the final mass of the protostar can be affected by

continuum radiation-driven mass loss once its total luminosity
exceeds the Eddington luminosity (e.g., Fiacconi &
Rossi 2016), or by mass loss due to pulsations (Inayoshi
et al. 2013). As previously discussed, in the early stages of the
evolution, the total luminosity remains below the Eddington
value and hence it is not affected by radiation-driven mass loss.
However, as the mass of the protostar grows its luminosity
increases and this scenario changes. In such a case, the final

Figure 7. Photospheric temperature as a function of stellar mass and accretion
rate. Colors show the temperature evolution for  = -Ṁ 10 2 (red solid), 10−1

(blue solid), and -
M1 yr 1 (green solid) based on Equation (23b) from Stahler

et al. (1986). Solid lines represent the stage when t tacc KH, while dotted lines
are a rough extrapolation for higher masses. Additionally, we plot a time-
dependent accretion rate of the form  = - -

˙ ( )M t M e1 yr t t1 ff,0 (purple
dashed–dotted), as an illustrative case, and the results from Hosokawa et al.
(2013; orange dashed). Note that, although both curves seem to agree well, the
physical reasons for the rise in temperature are different (see the text for
more details). Black dotted line represents the ionizing temperature,

T 10, 000 Kion , at which the photosphere starts to emit non-negligible
amounts of H ionizing radiation. The surface temperature of the protostar does
not become high enough to start emitting hard UV radiation until quite late in
the mass build-up. Hence, we can safely neglect its effect on the evolution of
the central object early on.
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mass of the protostar can vary significantly, as studied by
Fiacconi & Rossi (2016). Furthermore, the accreting super-
massive protostar might become pulsationally unstable, but the
estimated mass-loss rates are too low to effectively prevent
protostellar growth (Inayoshi et al. 2013). In summary, mass
loss, either due to continuum radiation or pulsations, should not
affect the early evolutionary stages, but continuum opacity
might become important later on, when the protostellar mass
approaches - M10 105 6 (see the fifth panel of Figure 1).

3. Lessons for the Sink Algorithm

3.1. Accretion Radius

In the case of numerical simulations, the evolution of the
central protostar requires either the implementation of sink
particles (e.g., Latif et al. 2013b) or an artificially stiffened
equation of state (e.g., Hirano & Bromm 2016). For the former,
we can use the treatment in the previous section of the
protostellar evolution to construct a physically motivated
subgrid model.

The formation of the central object in the optically thick
regime is characterized by a central fragment of density nF and
radius RF, and a isothermal profile of the form µ -n r 2 outside
that scale, as represented by the dashed line in the density–
radius diagram in Figure 8. The Bondi radius of the object is
given by


-




⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )R

M

M

T
17

6000 K
au. 22B

1

As seen from Figure 8, RB is larger than RF, and hence the
relation between both quantities follow the isothermal profile,
from which we can derive:



=

´ -
-

-


⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

n n
R

R

f
T M

M
4.66 10

6000 K
cm , 23

B F
F

B

2

13 2
3 2

3

where = =( )n n r RB B is defined as the density at the Bondi
radius.
The solid line in Figure 8 corresponds to the subsequent

evolution, which is characterized by the growth of the stellar
radius following Equation (20) for the stage where t tacc KH

and accretion rates   - -
Ṁ M10 yr2 1. Outside the Bondi

radius the evolution is still described by the isothermal profile
µ -n r 2, but inside RB material falls within a free-fall time, and

hence it is represented by the relation µ -n r 3 2 in the density–
radius space. This allows us to relate the stellar and the Bondi
radius as




=
⎛
⎝⎜

⎞
⎠⎟ ( )n n

R

R
24B

B
3 2

´ - -


⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )f

T M

M
5.13 10

6000 K
cm , 2515 1

9 2 5 4
3

where  = =( )n n r R is defined as the density at the stellar
radius.
Furthermore, inside the Bondi radius, we can estimate the

accretion rate of infalling gas as p=Ṁ n m c R4B B H s B
2. Using

Equation (23) for nB and Equation (22) for RB, we derive

- - ⎜ ⎟⎛
⎝

⎞
⎠˙ ( )M f

T
M0.78

6000 K
yr , 26B

2
3 2

1

The framework depicted here can be used to derive a
prescription for the accretion radius of the sink particle, Racc. In
the ideal case of a simulation with high enough resolution, we
would set the accretion radius to RF or R . Unfortunately, this
case is not always achievable and hence we need to choose

R Racc B if the simulations resolve densities n nB, with an
accretion rate estimated by Equation (26). On the other hand,
the scenario becomes more complex when the simulation is
only able to resolve a certain threshold density <n nth B. In
such a case, the choice of accretion radius should enclose the
Bondi radius and, as suggested in Figure 8, follow the
isothermal profile. Hence, the value of the accretion rate for a
given threshold density can be expressed as =Racc

( )R n nF F th
1 2.

In summary, we can write a formula for the accretion radius
based on the threshold density as

 

<

-

´ --


⎧

⎨
⎪⎪

⎩
⎪⎪

( )
( )

( )
( ) ( )R

n n

f

n n

17 au, if

au,

if .

27

M

M

T

n

Tacc

6000 K

1
th B

1.49 10 cm 1 2
1 2

6000 K

1 2

th B

17 3

th

For threshold densities of = -n 10 cmth
8 3 and =nth

-10 cm10 3, the initial values of the accretion radius in the
low-mass regime (where the Bondi radius is not resolved) are
given by ´R 3.8 10 auacc

4 and ´R 3.8 10 auacc
3 ,

respectively. These values are kept until =n nB th, which
occurs when the mass of the protostar is  M103 for the
former and M102 for the latter. From then on, the accretion
radius is given by the Bondi radius and the final mass is
determined by the Bondi accretion rate, which is independent
of the initial resolution of the simulation. Hence, the final mass
does not depend on the choice for the threshold density.
The two initial accretion radii for = -n 10 cmth

8 3 and
= -n 10 cmth

10 3 are shown in Figure 5 as a black dashed line

Figure 8. Density–radius diagram for the protostar at the moment of formation
(dashed) and its subsequent evolution (solid). When the fragment forms, its
radius (RF) is related to the Bondi radius (RB) by an isothermal profile of the
form µ -n r 2. Once protostellar evolution starts, RB increases with mass (and
hence with time) but the isothermal profile is kept outside of it, while inside the
relation changes to µ -n r 3 2 down to the stellar radius R .
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and a black dotted line respectively. In both cases, the accretion
radius is larger than the stellar radius (calculated at =T
6000 K) in the mass range – M0.1 105 once the sink is formed.
As the star evolves, the Bondi radius increases with the mass of
the star, eventually reaching the point when it is resolved, in
which case, the accretion radius should transition to =R Racc B.
This method ensures that the central star, modeled as a sink
particle, will always be enclosed by the accretion radius during
its evolution, from its formation until it becomes a super-
massive star.

Previous works have used different strategies to implement sink
particles. For example, Latif et al. (2013b) and Shlosman et al.
(2016) assumed = + ¥( )R GM c vacc s

2 2 and then estimated the

accretion rate as  pr= +¥ ¥Ṁ R c v4 1.2544acc s
2 2 , while Regan

& Downes (2017) used a fixed accretion radius of four cells in the
maximum refinement level. We expect all of these recipes to give
a similar accretion rate of - M1 yr 1, which corresponds to our
estimation from Equation (26).

3.2. Cosmological Boundary Conditions

We perform a low-resolution simulation of the collapse of an
atomic-cooling halo following a similar approach to the one
described in Becerra et al. (2015). We start from cosmological
initial conditions at redshift z=99 and box size of 2 Mpc
(comoving) in a Λ cold dark matter (ΛCDM) cosmology. We
then follow the evolution of the halo until the highest density
cell reaches the threshold density = -n 10 cmth

8 3. For that, we
have used a primordial chemistry network that includes five
species (H, H2, -H , +H , and -e ) and cooling processes such as
-H cooling, H2 line cooling, H2 collision-induced emission,

Ly-α cooling, and inverse Compton cooling. The refinement
criteria ensures that the Jeans length is resolved by at least 64
cells at every stage of the evolution.

We show the number density (top) and temperature (bottom)
projections of the central object at scales of 200 (left) and 5 pc
(right) at that instant in time in Figure 9. At large scales, the
cloud shows an irregular morphology, but it becomes nearly
spherical at scales of 10 pc. This implies that the object
reaches spherical symmetry at scales larger than the accretion
radius at that point ( R 0.2 pcacc , as calculated in Section 3.1),
which is plotted in black dashed lines.

Finally, we analyze the accretion rate onto the object at the
moment when the simulation reaches the threshold density in
Figure 10. The radial profile of the accretion rate is shown as a
red solid line, which is calculated as p r= -Ṁ r v4 2

rad, where r
is the distance to the highest density cell, ρ is the mass density
of hydrogen, and vrad is the radial component of the velocity.
For reference, we have also included the Shu accretion rate for
spherical collapse, Ṁ c G0.975Shu s

3 (Shu 1977), and the
Larson–Penston accretion rate for dynamical collapse,

Ṁ c G46.9LP s
3 (Larson 1969; Penston 1969), as blue and

green dotted lines, respectively. The mass accretion reaches a
maximum of - Ṁ M1.4 yr 1 at r 0.5 pc and then it
decreases to values - Ṁ M0.1 yr 1 at larger scales,
consistent with our estimation from Equation (26). Up to
scales of 15 pc, its value lies in between the Shu and the
Larson–Penston accretion rates, which remain roughly constant
at - Ṁ M0.18 yrShu

1 and - Ṁ M8.5 yrLP
1 for the whole

radial range. At the accretion radius (shown as a vertical black
dashed line), the value of the mass infall rate is

- Ṁ M0.6 yr 1, which is consistent with the values assumed
throughout this study.

3.3. Disk Accretion

Throughout the paper, we discuss a subgrid model within a
sink assuming spherical symmetric accretion flows. However,
gas material with angular momentum forms an accretion disk,
through which the central protostar is fed. In supermassive star
formation, the disk would be unstable against its self-gravity
because of high accretion rates from the parent cloud
(  ~ -

Ṁ M1 yr 1). In such an unstable disk, the disk is likely
to fragment into multiple clumps, which could migrate inward
losing their orbital angular momentum due to gravitational
interaction with the disk and other clumps. Angular momentum
redistribution induced by the clumps can drive the evolution of
the disk and predict the formation of SMBHs in its nuclei as
described by Lodato & Natarajan (2006). Eventually, most of
the clumps can feed the gas into the central protostar
episodically before the clumps evolve to main-sequence stars,
which could suppress the gas accretion through the disk due to
ionizing radiation (Inayoshi & Haiman 2014; Latif &
Schleicher 2015). Moreover, the radius of the central protostar
monotonically increases at  > –M M10 102 3 with an almost
constant effective temperature of T 5000 Keff , resulting in
weak radiation feedback. Since the average accretion rate
through the disk is as high as~ -

M0.1 yr 1 and the duration of
clump accretion episodes is shorter than the KH timescale at
the stellar surface (Sakurai et al. 2016), the evolution of the
stellar structure is not affected by details of episodic accretion
(Sakurai et al. 2015).

4. Summary and Conclusions

In this paper, we have developed a model for the early
evolution of supermassive protostars. After the formation of the
initial protostar the surrounding gas becomes optically thick to
-H radiation, at which point we can robustly calculate the

properties of the object using the equations of hydrostatic and
thermal equilibrium. From that, we obtain a characteristic
density, radius, and mass of ´ -n 4.6 10 cmF

16 3, RF
0.33 au, and  M M0.045F , respectively, for a temperature
=T 3000 K. An alternative approach to model the same

situation is to use one-zone models. For that, we describe in
detail the methods introduced in Inayoshi et al. (2014) and
provide explicit numerical fits for the -H cooling rate and
opacity. Combined with the adiabatic heating rate, we can then
calculate the critical density at which the gas becomes optically
thick, which results in ´ -n 2 10 cmcrit

16 3, consistent with
the previous estimate. Hence we can robustly characterize the
properties of the protostar in the initial optically thick regime.
The early stages of protostellar evolution, where t tacc KH,

are described by the accretion of material onto the central
object. For this case, we derive an expression for the
protostellar radius as a function of the mass and accretion rate.
Using a characteristic value of 

- Ṁ M1 yr 1 for the
accretion rate, we find that the protostellar radius grows as
 µR M1 4 during this phase. Once internal sources of

radiation start dominating, t tKH acc and hence the radius–
mass relation changes to  µR M1 2. For the case of a
supermassive protostar, the radius varies from  R 0.65 au at
  M M0.1 to  R 250 au at   M M105 . For the surface

temperature of the object, we base our analysis on the
prescription of Stahler et al. (1986), deducing that it remains
well below the ionizing temperature of T 10 Kion

4 during

8

The Astrophysical Journal, 857:138 (11pp), 2018 April 20 Becerra et al.



most of its evolution. We can thus safely neglect UV ionizing
radiation until the late stages of the assembly process.

In numerical simulations, supermassive protostars are
commonly represented by sink particles. Our model allows us
to derive the properties of such particles and implement a
physically motivated subgrid model for their evolution in
hydrodynamical codes. In particular, we derive an expression
for the accretion radius (Racc) as a function of the threshold
density at which the sink particle is inserted (nth), relating it to
the physical conditions on the surface of the protostar. For high
threshold densities, our model proposes a numerical value
based on the isothermal profile of the atomic-cooling halo, but
this value will eventually transition to =R Racc B once the
Bondi radius is resolved further in the evolution of the
protostar. We can thus verify throughout the simulation that
the accretion radius is well adjusted, in the sense that it is larger
than the stellar radius at every moment during its evolution.
Our new prescription for sink particles implies changes in the
early stages of the evolution up to a protostar mass of

 
– M102 3 . After that, it follows the Bondi accretion scenario,

and hence it has an accretion rate of - M1 yr 1. The final
mass of the object corresponds to  

– M105 6 , similar to
previous estimates in the literature. We will track the accretion
and KH timescales during the actual simulation to determine
when the accretion rate becomes low enough and the star enters
the KH phase. At that point, the radiation hydrodynamic effects
from an ionizing central source would have to be taken into
account.
The ultimate goal of this line of work is to simulate

the assembly process of the first supermassive objects in the
universe in an ab-initio fashion. One key question then is the
following: When will this build-up enter a radiation-hydro-
dynamical phase, where the strong radiative feedback from the
growing protostar will eventually turn the object into hyper-
luminous beacons from the end of the cosmic dark ages? Those
will be probed with next-generation observational facilities,
such as the JWST, to be launched in 2018. An ideally
complementary window into the formation of the first

Figure 9. Density (top) and temperature (bottom) projections of the central 200 (left) and 10 pc (right) for a low-resolution simulation of an atomic-cooling halo when
the highest density cell first reaches -10 cm8 3. From Equation (27), the accretion radius at this point is R 0.2 pcacc , which is plotted in dashed black lines in both
panels of the right column. At scales of 200 pc the cloud has an irregular morphology but it becomes nearly spherical on the smallest scales. The presence of
turbulence can be deduced from the filamentary structure in the large-scale temperature map.
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supermassive objects is provided by the gravitational-wave
signal accompanying the possible merger of binary black holes,
which is a prime target for the planned LISA. In light of this
suite of next-generation facilities, simulations will have a key
role to play in providing physically robust predictions, based
on well-motivated subgrid prescriptions.

We thank Kazuyuki Omukai for kindly providing permission
to use the numerical models for -H cooling described in
Section 2.2. K.I. acknowledges support by the Simons
Foundation through the Simons Society of Fellows. V.B. was
supported by NSF grant AST-1413501. We also thank the
anonymous referee for the constructive comments that helped
to improve our paper.

Appendix

Following our discussion in Section 2.2, we can derive
numerical fits to the -H cooling rate based on the description of
Equations (12)–(16) as introduced by Inayoshi et al. (2014).
The terms in the right-hand side of Equation (13) can be
approximated as L =( ) ( )k n nh h

thin H eI and L =( ) ( )k n nl l
thin H eI ,

respectively. The cooling rate coefficients are given by

= ´
+

´ - -

( )
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10 erg cm s
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l 3
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where =T T 10 K.3
3

Additionally, we estimate the Planck mean opacity for the
-H ff emission in both the low (k( )l

ff,P) and high (k( )h
ff,P) frequency

regime, and for the -H bound–free emission for the high (k( )h
bf,P)

frequency regime as
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Another opacity source is the Rosseland mean opacity for -H ff
emission in the low frequency regime, which can be modeled as

k = ´

´
+ +

+

- -
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Finally, we also estimate the opacity due to Rayleigh
scattering for the high-frequency regime as

k = ´ ´
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The total opacities for both regimes can then be written as
k k=( ) ( )h h

R Ray, k k=( ) ( )l l
R ff,R, k k k= +( ) ( ) ( )h h h

P ff,P bf,P, and k k=( ) ( )l l
P ff,P.

With these approximations and Equation (16), we can rewrite
the total -H cooling rate as a function of the optically thin
cooling rates and the opacities:

k k l l k k l l
L =

L

+
+

L

+
- ( )

( )

( ) ( )

( )

( ) ( )1 3 1 3
. 35

h

h h

l

l lH
thin

R P J J

thin

R P J J

Here the characteristic length ℓ has been set to the Jeans length
l= ℓ c tJ s ff , with g m=c k T ms B H being the sound speed.
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comparison, we have also plotted Ṁ c G0.975Shu s
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