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Abstract φ meson measurements provide insight into
strangeness production, which is one of the key observables
for the hot medium formed in high-energy heavy-ion colli-
sions. ALICE measured φ production through its decay in
muon pairs in Pb–Pb collisions at

√
sNN = 2.76 TeV in

the intermediate transverse momentum range 2 < pT <

5 GeV/c and in the rapidity interval 2.5 < y < 4. The φ

yield was measured as a function of the transverse momen-
tum and collision centrality. The nuclear modification factor
was obtained as a function of the average number of par-
ticipating nucleons. Results were compared with the ones
obtained via the kaon decay channel in the same pT range at
midrapidity. The values of the nuclear modification factor in
the two rapidity regions are in agreement within uncertain-
ties.

1 Introduction

At small values of the baryochemical potential and at extreme
high temperatures, Quantum Chromodynamics (QCD) pre-
dicts chiral and deconfinement crossover transitions from
hadronic matter to a state of strongly interacting medium,
where dominant degrees of freedom are gluons and light
quarks (Quark-Gluon Plasma, QGP). Ultrarelativistic heavy-
ion collisions provide the tools to study this phase of mat-
ter in the laboratory. Strangeness production is a key tool to
understand the properties of the medium formed in these col-
lisions. Indeed, an enhanced production of strange particles
with respect to elementary hadronic collisions was early pro-
posed as one of the signatures of the QGP [1]. This enhance-
ment is currently interpreted as resulting from the restoration
of the chemical equilibrium between u, d and s quarks in suf-
ficiently central heavy-ion collisions, with respect to ee and
pp interactions, where strangeness production is expected to
be canonically suppressed [2].

The φ meson, due to its ss̄ valence quark content, provides
insight into strangeness production. Since its cross section for
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interactions with non-strange hadrons can be assumed to be
small, the φ meson should be less affected by hadronic rescat-
tering during the expanding hadronic phase, which follows
the QGP phase. For this reason, the φ meson better reflects
the early evolution of the system [3]. Because of the long
lifetime of the φ meson, the rescattering effects that should
affect the hadronic decay channels are negligible [4–7], mak-
ing thus possible a direct comparison between the hadronic
and dileptonic decay channels.

Moreover, the φ meson may be sensitive to chiral symme-
try restoration [8–10], that could be observed by measuring
a mass shift of a few MeV/c2 or a broadening of the spectral
function of the hadronic resonances up to several times their
PDG value [11–14]. However, no experimental evidence of
such a broadening or mass shift has been observed so far for
the φ meson in high-energy heavy-ion collisions neither in
the hadronic nor in the dilepton decay channel [6,15–19].

The measurement of hadrons in different pT ranges pro-
vides important information on the relative contribution
of different possible hadronization mechanisms. Soft pro-
cesses dominate the low transverse momentum region (pT �
2 GeV/c), where the system evolution can be described on the
basis of hydrodynamical models and particle yields follow
the expectations of thermal models [20–28]. On the other
side, for high transverse momenta (pT � 5 GeV/c), hard
parton-parton scattering processes and subsequent fragmen-
tation become the dominant production mechanisms. In the
presence of a deconfined medium, additionally, parton energy
loss via elastic collisions and gluon bremsstrahlung [29]
modifies the spectral distributions, leading to a suppression
of hadron production in central heavy-ion collisions with
respect to the one measured in peripheral heavy-ion or in pp
collisions, scaled by the number of binary collisions.

At intermediate transverse momenta (2 < pT < 5 GeV/c),
measurements at RHIC showed an enhancement above unity
of the ratio between the baryon and meson yields, the so-
called “baryon anomaly”. This has been attributed to the
recombination of quarks [30–35]. However, measurements
at the LHC [36] showed that the proton-to-pion ratio from
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low to intermediate pT could be described by hydrodynami-
cal models [25,26]. The φ, being a meson and having a mass
close to that of the proton, is an ideal probe to disentangle
whether this effect is more related to the particle mass or to
its valence quark content, since recombination scales with
the number of quarks, while hydrodynamical models depend
on the particle mass.

Recent measurements at the LHC [6] showed that the p/φ
ratio at midrapidity does not show a significant dependence
on pT, while the p/π and φ/π ratios show similar increases
as a function of the transverse momentum, indicating that
particle radial flow and therefore the particle masses mainly
determine the pT distributions of these particles. Hence, it
is interesting to test whether there is a dependence of radial
flow on rapidity and to compare the results at forward and
midrapidity within the same experiment. A comparison with
hydrodynamical models at forward rapidity would comple-
ment the results already obtained at midrapidity, where they
have shown to describe the data even in the intermediate pT

region.
This article presents a measurement ofφ production in Pb–

Pb collisions at
√
sNN = 2.76 TeV at forward rapidity with

the ALICE muon spectrometer at the LHC. The φ meson
was reconstructed in the rapidity range 2.5 < y < 4 for
intermediate transverse momenta in the range 2 < pT <

5 GeV/c via its decay in muon pairs.
The evolution of the φ yield with centrality and transverse

momentum is discussed and compared with the measurement
at midrapidity in the kaon decay channel [6]. Finally, the
nuclear modification factors are determined.

2 Experimental apparatus

The ALICE detector is described in detail in [37]. The detec-
tors relevant for this analysis are the forward muon spectrom-
eter, the V0 detector, the silicon pixel detector (SPD) of the
inner tracking system (ITS) and the zero degree calorimeters
(ZDC).

The muon spectrometer covers the pseudorapidity region
−4 < η < −2.5;1 its elements are a front hadron absorber,
followed by a set of tracking stations, a dipole magnet, an
iron wall acting as muon filter and a trigger system. The
front hadron absorber is made of carbon, concrete and steel
and is placed at a distance of 0.9 m from the nominal inter-
action point (IP). Its total length of material corresponds to
ten hadronic interaction lengths. The 5 m long dipole mag-
net provides a magnetic field of up to 0.7 T in the vertical
direction, which results in a field integral of 3 T m. A set
of five tracking stations, each one composed of two cathode

1 In the ALICE reference frame the muon spectrometer covers negative
η. However, we use positive values when referring to y.

pad chambers, provides the muon tracking. The stations are
located between 5.2 and 14.4 m from the IP, the first two
upstream of the dipole magnet, the third in the middle of the
dipole magnet gap and the last two downstream of it. A 1.2 m
thick iron wall, corresponding to 7.2 hadronic interaction
lengths, is placed between the tracking and trigger systems
and absorbs the residual secondary hadrons emerging from
the front absorber. The front absorber together with the muon
filter stops muons with momenta lower than ∼ 4 GeV/c. The
tracking apparatus is completed by a muon triggering system
(MTR) consisting of two detector stations, placed at 16.1 and
17.1 m from the IP. Each station is composed of two planes
of resistive plate chambers.

The V0 detector is composed of two arrays of 32 scintil-
lator sectors placed at 3.4 m and −0.9 m from the IP and
covering the pseudorapidity regions 2.8 < η < 5.1 (V0A)
and −3.7 < η < −1.7 (V0C), respectively. It is used to reject
the background from beam-gas interactions and estimate the
collision centrality and event plane. The SPD, used for the
determination of the primary vertex position, consists of two
cylindrical layers of silicon pixel detectors, positioned at a
radius of 3.9 and 7.6 cm from the beam axis. The pseudo-
rapidity range covered by the inner and the outer layers is
|η| < 2.0 and |η| < 1.4, respectively. The ZDC are located
at ∼ 114 m from the IP and cover the pseudorapidity region
|η| > 8.7. In this analysis they are used to reject electromag-
netic interactions of lead ion beams.

3 Data analysis

The analysis presented in this paper is based on the data
sample collected by ALICE in 2011 during the Pb–Pb run at√
sNN = 2.76 TeV.
The minimum bias (MB) trigger is defined as the coin-

cidence of a signal in V0A and V0C, synchronized with
the passage of two colliding lead bunches. Data were col-
lected with a dimuon unlike-sign trigger (μμMB), which is
defined as the coincidence of a MB trigger and at least a
pair of opposite-sign (OS) tracks selected by the MTR sys-
tem, each with a transverse momentum above the threshold,2

pT,μ � 1 GeV/c.
The background events coming from beam interactions

with the residual gas were reduced offline using the timing
information on signals from the V0 and from the ZDC [38].

The number of OS dimuon triggers collected is 1.7 × 107,
corresponding to an integrated luminosity of L int = 68.8 ±
0.9(stat)+6.0

−5.1(syst) μb−1 [39].
The centrality determination is performed by fitting a dis-

tribution obtained with the Glauber model approach to the

2 The trigger threshold is not at a sharp value, but defined here as the
pT value for which the trigger probability is 50%.
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Table 1 Average number of participating nucleons
〈
Npart

〉
and nuclear

overlap function 〈TAA〉 for each centrality class [40]

Centrality bin (%)
〈
Npart

〉 〈TAA〉 (mb−1)

0–20 308.10 ± 3.70 18.91 ± 0.61

20–40 157.20 ± 3.10 6.85 ± 0.23

40–60 68.56 ± 2.00 2.00 ± 0.10

60–90 17.55 ± 0.72 0.31 ± 0.03

0–90 124.40 ± 2.20 6.27 ± 0.21

V0 amplitude distribution [40]. In the centrality range 0–90%
the efficiency of the MB trigger is 100% and the contami-
nation from electromagnetic processes is negligible. Events
corresponding to the 90% most central collisions were thus
selected. The centrality classes considered in this analysis
were 0–20, 20–40, 40–60 and 60–90%.

The Glauber model fit to the V0 signal distribution also
allows to extract variables related to the collision geometry,
such as the average number of participating nucleons

〈
Npart

〉

and the nuclear overlap function 〈TAA〉, as reported in Table 1.
Muon tracks were selected requiring a single muon

pT,μ > 0.85 GeV/c, to reject muons with a transverse
momentum much below the hardware pT,μ threshold imposed
by the trigger system. The selection of the muon pseudora-
pidity −4 < ημ < −2.5 was applied in order to remove
the tracks close to the acceptance borders. Tracks crossing
the part of the front absorber with the highest material den-
sity were rejected by restricting the transverse radial coor-
dinate of the track at the end of the absorber to the range
17.6 < Rabs < 89.5 cm. Each track reconstructed in the
tracking chambers was required to match a track recon-
structed in the trigger chambers.

Dimuons were selected requiring that their rapidity was
in the range 2.5 < y < 4. The trigger threshold on the single
muon transverse momentum strongly reduces the detection
efficiency for low mass, low pT dimuons. Therefore, the anal-
ysis was limited to dimuon transverse momenta in the range
2 < pT < 5 GeV/c, where the upper limit is only set by the
currently available statistics.

The opposite-sign dimuon invariant mass spectrum con-
sists of correlated and uncorrelated pairs. The latter come
mostly from the decay of pions and kaons and constitute
the combinatorial background, which was evaluated via an
event mixing technique, described in detail in [41]. Events
were assigned to classes of similar vertex position, event
plane orientation and centrality. Pairs were then formed with
muons coming from different events belonging to the same
classes. In this way, the resulting invariant mass spectrum
consists of muon pairs which are uncorrelated by construc-
tion. The mixed events mass spectra were normalized to
2R

√
N++N−−, where N++ (N−−) is the number of like-

sign positive (negative) pairs integrated in the full mass range.

The R factor takes into account the differences between the
acceptances for like-sign and opposite-sign muon pairs and

was estimated as R = Nmixed+− /(2
√
Nmixed++ Nmixed−− ), where

Nmixed±± is the number of mixed pairs for a given charge com-
bination.

The quality of the combinatorial background determi-
nation was checked through a Monte Carlo (MC) simula-
tion in which uncorrelated muon pairs were generated. The
muon transverse momentum and rapidity distributions were
parametrized to reproduce those from the experimental data.
The detector response for these pairs was obtained with a
simulation that uses GEANT3 [42]. The simulation results
were then subjected to the same reconstruction and selection
chain as the real data. In this way, all the possible corre-
lations introduced by the detector were properly taken into
account. The event mixing technique was then applied to
the simulated pairs. The resulting opposite-sign mass spec-
trum was compared to the corresponding one obtained from
the muon pairs in the same event. Differences within 2% in
the two distributions were observed. The limited precision
in the combinatorial background subtraction was taken into
account in the evaluation of the systematic uncertainty, as
described below.

Figure 1 shows the invariant mass spectra for opposite-
sign muon pairs in different centrality classes, before the
combinatorial background subtraction, in the range 2 <

pT < 5 GeV/c. The combinatorial background, evaluated
from opposite-sign pairs in mixed events, is also shown.

The ratio between the invariant mass spectra of correlated
and uncorrelated pairs for the different centralities is shown
in Fig. 2: for 0.95 < Mμμ < 1.1 GeV/c2 this ratio increases
from ∼ 0.07 in central collisions to ∼ 2 in peripheral colli-
sions.

The raw invariant mass spectrum after combinatorial
background subtraction is shown in Fig. 3 in the four central-
ity classes considered in this analysis. The φ peak is clearly
visible in all the centrality bins, superimposed to a correlated
background due to the dimuon two-body and Dalitz decays
of the light resonances (η, η′, ρ, ω) and the semi-muonic
decays of open charm and open beauty. To reproduce the dif-
ferent processes contributing to the dimuon mass spectrum,
a Monte Carlo simulation was performed using the hadronic
cocktail generator first developed for the analysis of pp col-
lisions at

√
s = 7 TeV [41]. An exponential function

1

pT

dN

dpT
∝ e−mT/T (1)

was used as input pT distribution of the φ meson in the gen-
erator. In this formulamT is the transverse mass. The value of
the parameter T was tuned iteratively to the results from the
present analysis, as shown below, with T = (437±28) MeV,
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Fig. 1 Invariant mass spectra for opposite-sign muon pairs in different centrality classes, in the range 2 < pT < 5 GeV/c. The combinatorial
background, evaluated from opposite-sign pairs in mixed events, is also shown

obtained from a fit to the pT distribution integrated over cen-
trality.

The φ rapidity distribution was based on a parametrization
of PYTHIA 6.4 [43]. We assume that the rapidity and pT

distributions factorize.
The fit to the mass spectra obtained after the combinatorial

background subtraction is also shown in Fig. 3. In this fit, the
shape of each contribution was taken from the MC. The fit
parameters allowed to vary freely were the normalizations
of the η → μ+μ−γ , ω → μ+μ−, φ → μ+μ− and open
charm contributions. The other processes (η → μ+μ−,η′ →
μ+μ−γ , ω → μ+μ−π0, ρ → μ+μ− and open beauty)
were fixed to the ones mentioned above, according to the
relative branching ratios or cross sections, as done in [41]. In
particular, the normalization of the ρ relative to the ω meson
was fixed requiring that σρ = σω, as suggested both from
models and pp data [41,44–46], while the η′ contribution
was derived from the η cross section by applying the ratio of
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Fig. 3 Invariant mass spectra in
different centrality classes for
2 < pT < 5 GeV/c in Pb–Pb
collisions at

√
sNN = 2.76 TeV.

The solid red line represents the
result of the fit to the hadronic
cocktail; the green dashed line
represents the correlated
background, given by the sum of
all the MC sources other than φ,
ρ and ω mesons
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the corresponding cross sections ση′/ση = 0.3 taken from the
PYTHIA tunes ATLAS-CSC [47] and D6T [48]. The ratio
between the open beauty and open charm was fixed according
to the results from the LHCb Collaboration in pp collisions
at 7 TeV [49,50].

Other contributions may be present in Pb–Pb collisions,
such as the in-medium modification of the ρ meson or a ther-
mal dilepton continuum. According to theoretical predictions
based on [51–53], the magnitude of these contributions is
expected to be below the sensitivity of our measurement [54].
However, in order to take their possible effect into account
and to allow the φ signal extraction to be studied under var-
ious hypotheses on the shape of the correlated background,
two alternative empirical descriptions of the correlated back-
ground were used: the superposition of an exponential and
a constant and of an exponential and a Landau distribution.
In both cases, the peaks of the φ and ρ + ω were described
with a Crystal Ball function [55] tuned on the MC. The dif-
ferences among these two different background descriptions
and the one obtained with the hadronic cocktail constitute
one of the main sources of the systematic uncertainty in the
signal extraction. The width of the reconstructed φ peak is
dominated by the detector resolution. From the MC simu-

lation it was determined to be σφ ≈ 50 MeV/c2 (Gaussian
width). This width was used as a fixed parameter in the fits to
the invariant mass spectra at all centralities, in order to reduce
the sensitivity to statistical fluctuations. Performing the fits
with the peak width as free parameter results in values com-
patible within uncertainties of about 10 MeV/c2 with the MC
result. Likewise, if the φ peak position is left free, the result
is compatible with its PDG value within an uncertainty of
about 10 MeV/c2. The present measurement does not allow
to determine a broadening effect or a mass shift smaller than
these uncertainties. More stringent limits are set in [6].

The fits of the mass spectra integrated over centrality and
for 0–40 and 40–90% centrality classes, in different pT bins
were performed as well. Two examples of these fits in two
different pT bins (2.5 < pT < 3 GeV/c and 3.6 < pT <

4.2 GeV/c), for 0–90% centrality, are shown in Fig. 4.
The raw number of φ mesons decaying into muon pairs

N raw
φ and the φ yield dN /dy in the range 2 < pT < 5 GeV/c

are reported in Table 2 for the centrality classes considered
in this analysis. Table 3 reports the φ yield d2N /(dydpT)
as a function of pT for 0–40 and 40–90% most central
collisions. The systematic uncertainties will be discussed
below.
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Fig. 4 Invariant mass spectra
for 2.5 < pT < 3 GeV/c and
3.6 < pT < 4.2 GeV/c in
0–90% Pb–Pb collisions at√
sNN = 2.76 TeV. The solid red

line represents the result of the
fit to the hadronic cocktail; the
green dashed line represents the
correlated background, given by
the sum of all the MC sources
other than φ, ρ and ω mesons
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Table 2 N raw
φ and dNφ /dy in different centrality bins for 2 < pT <

5 GeV/c

Centrality (%) N raw
φ dNφ /dy

0–20 2337 ± 292 ± 278 0.880 ± 0.110 ± 0.156

20–40 1058 ± 130 ± 86 0.387 ± 0.048 ± 0.060

40–60 411 ± 51 ± 29 0.148 ± 0.018 ± 0.022

60–90 105 ± 18 ± 6 0.025 ± 0.004 ± 0.004

The φ yield for each centrality class has been calculated
as

Yφ = N raw
φ

BRφ→e+e− · A × ε · NMB
, (2)

where A is the geometrical acceptance, ε the reconstruction
efficiency, NMB the number of minimum bias events in a
given centrality class and BRφ→e+e− = (2.954 ± 0.030) ×
10−4 the branching ratio of the φ meson decay into dielec-
trons [56]. Lepton universality allows to use this value instead
of the one of the dimuon decay, which is known with a much
larger uncertainty.

To estimate A× ε as a function of centrality, Monte Carlo
simulations were performed using the embedding technique,
which consists in simulating a signal decay and adding the

corresponding simulated detector response to the raw data
of a real event. The resulting embedded event is then recon-
structed as if it were a normal real event. This technique
has the advantage of providing the most realistic background
conditions, which is necessary if the high particle multiplic-
ity environment alters the track reconstruction efficiency, as
in central Pb–Pb collisions. The A × ε is roughly indepen-
dent from centrality, changing from 5.49 ± 0.31% (syst) in
peripheral (60–90%) to 5.15 ± 0.30% (syst) in central (0–
20%) collisions. The embedded simulations were used also
to evaluate the A×ε as a function of pT. The A×ε increases
as a function of pT from ∼ 2.5% for 2 < pT < 2.5 GeV/c
to ∼ 21.4% for 4.2 < pT < 5 GeV/c.

The number of minimum bias events has been obtained
from the number of opposite-sign dimuon triggers, scaled by
the normalization factor fnorm [39], defined as the inverse of
the probability of having a dimuon trigger in a MB event.
Its value, averaged over the entire data sample, is fnorm =
30.56 ± 0.01(stat.) ± 1.10(syst.).

The systematic uncertainty on the φ yield was evaluated
taking into account several contributions:

– Combinatorial background subtraction: this uncertainty
was evaluated through a Monte Carlo simulation. The
correlated muon pairs coming from the hadronic cock-
tail were added to the uncorrelated pairs, generated as

Table 3 φ yield d2N /(dydpT)
in different pT bins for 0–40%
and 40–90% centrality classes

pT (GeV/c) d2Nφ /(dydpT) (GeV/c)−1

0–40% 40–90%

2–2.5 0.841 ± 0.185 ± 0.105 0.094 ± 0.021 ± 0.012

2.5–3 0.332 ± 0.059 ± 0.043 0.036 ± 0.007 ± 0.005

3–3.6 0.093 ± 0.016 ± 0.014 0.013 ± 0.002 ± 0.002

3.6–4.2 0.037 ± 0.007 ± 0.005 0.0039 ± 0.0011 ± 0.0005

4.2–5 0.010 ± 0.003 ± 0.002 0.0018 ± 0.0005 ± 0.0002
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described above. The relative abundance of correlated
and uncorrelated muon pairs was chosen such that it
reproduced the one in the data. The resulting mass spec-
trum was then subjected to the same analysis chain
applied to the data, including background subtraction
with the event mixing and fit with the hadronic cock-
tail. The number of raw φ mesons obtained from the fit
differs from the one actually injected in the spectrum,
which is known a priori. This difference was taken as an
estimate of the uncertainty related to the combinatorial
background subtraction. It decreases from 9% in central
collisions to less than 1% in peripheral collisions, while
as a function of pT, it amounts to 4.8% for 0–40% cen-
trality and to 1.8% for 40–90% centrality.

– Shape of the correlated background: this was evaluated
using two alternative empirical descriptions of the corre-
lated background, as previously described. The variations
of N raw

φ decrease from 6.7% in central collisions to 2.2%
in peripheral collisions. As a function of pT, it varies
from 1.9 to 8.2% for 0–40% centrality and from 1 to 4%
for 40–90% centrality.

– Range of the fit to the mass spectrum: three different fit
ranges were tested: 0.2 < Mμμ < 1.8 GeV/c2, 0.2 <

Mμμ < 2.0 GeV/c2 and 0.2 < Mμμ < 2.2 GeV/c2. The
effect on N raw

φ is below 1% for all centralities, except
for the most peripheral bin, where it amounts to 2.1%.
As a function of pT, it varies between 1.2 and 2.9% in
central and semi-central collisions and from 1 to 2% in
semi-peripheral and peripheral collisions.

– Cut on single muon transverse momentum: this was eval-
uated by applying three different cuts, pT,μ > 0.7 GeV/c,
pT,μ > 0.85 GeV/c and pT,μ > 1 GeV/c, which lead to
variations of the corresponding A × ε corrected N raw

φ

ranging from 4 to 6.3% as a function of centrality, from
1.1 to 10.4% as a function of pT for 0–40% centrality, and
from 1 to 5.7% as a function of pT for 40–90% centrality.

– Systematic uncertainty of A × ε: to evaluate this contri-
bution, the measured pT distribution, shown in the next
section, was fitted with an exponential (Eq. 1). The value
of the T parameter was used as an input to the simulation,
that was then repeated varying T by one standard devi-
ation σT . The half of the difference between the A × ε

values obtained using T ± σT as input parameter was
taken as an estimation of its systematic uncertainty. As
a function of centrality, it amounts to about 5.7% with
no significant dependence on the collision centrality; it
is < 1% as a function of pT.

– Tracking and trigger efficiencies: the corresponding sys-
tematic uncertainties were determined from data and MC
simulations as detailed in [39]. They are correlated as a
function of centrality, amounting respectively to 11 and
2%, and uncorrelated as a function of pT, varying in this
case of 8–14 and 2–4% respectively.

)c (GeV/
T

p
0 1 2 3 4 5 6

-1 ) c
 (

G
eV

/
T

pd
y

/d φ
N2 d

3−10

2−10

1−10

1

10 ALICE
 < 4y2.5 < 

 = 2.76 TeV, 0-40%
NN

sPb-Pb 

 = 2.76 TeV, 40-90% x 3
NN

sPb-Pb 

 = 2.76 TeV x 30spp 

Pb-Pb corr. syst. uncert. 3.7%

pp corr. syst. uncert. 3.9%

Fig. 5 φ yield as a function of pT at forward rapidity in pp [57] and
Pb–Pb collisions for different centralities. The distributions have been
scaled differently for better visibility

– Matching efficiency: the uncertainty on the matching effi-
ciency between the tracks reconstructed in the tracking
chambers and the ones reconstructed in the trigger cham-
bers amounts to 1%. It is correlated as a function of cen-
trality and uncorrelated as a function of pT [39].

– Centrality limits: the effects of the uncertainty on the
value of the V0 signal amplitude corresponding to 90%
of the hadronic Pb–Pb cross section were estimated by
varying such a value by ±0.5% [40] and redefining corre-
spondingly the centrality intervals. The systematic effect
of N raw

φ is negligible in all centrality bins, except for the
most peripheral one, where it amounts to 3%. It is corre-
lated as a function of pT, amounting to less than 1%.

– Uncertainty of the φ branching ratio into dielectrons
(∼ 1%) [56], correlated as a function of pT and centrality.

– Uncertainty on fnorm (∼ 3.6%), correlated as a function
of pT and centrality [39].

These values are summarized in Table 4.

4 Results

Figure 5 shows the pT spectra in Pb–Pb collisions in the
centrality ranges 0–40 and 40–90%. The pp spectrum [57]
is also reported for comparison. The pT distribution in Pb–
Pb collisions is softer than in pp in the measured transverse
momentum range.

In Fig. 6 the pT spectra are compared with the EPOS 3.1013

event generator [26,58,59], which utilizes a core–corona

3 We used a version of the EPOS 3.101 generator, customized by the
authors, in which the spectra for the φ decaying into dimuons were
determined by the kinematics of the φ at the moment of its decay,
assuming that the decay muons do not interact with the surrounding
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Table 4 Systematic
uncertainties on φ yield, for
2.5 < y < 4; the correlated
uncertainties are marked
with an ∗

Source vs centrality vs pT vs pT

(2 < pT < 5 GeV/c) (0–40%) (40–90%)

Combinatorial background subtraction 0.6–9.0% 4.8% 1.8%

Correlated background shape 2.2–6.7% 1.9–8.2% 1.0–4.0%

Fit range 0.4–2.1% 1.2–2.9% 1.0–2.0%

Cut on pT,μ 4.0–6.7% 1.1–10.4% 1.0–5.7%

A × ε (φ) 5.5–5.9% < 1% < 1%

Tracking efficiency 11%∗ 8–14% 8–14%

Trigger efficiency 2%∗ 2–4% 2–4%

Matching efficiency 1%∗ 1% 1%

Centrality limits 0-3% < 1%∗ < 1%∗

BRφ→e+e− 1%∗ 1%∗ 1%∗

fnorm 3.6%∗ 3.6%∗ 3.6%∗

Fig. 6 Top panel: comparison
between the φ yield as a
function of pT with the
EPOS 3.101 [26,58,59] and
HIJING 2.0 [60] event
generators, at forward and
midrapidity [6], for 0–40% (left)
and 40–90% centrality (right).
The same scale factors applied
to data were also used for the
models. The transparent boxes
represent the uncorrelated
systematic uncertainties at
forward rapidity and the total
systematic uncertainties
(including correlated and
uncorrelated components) at
midrapidity. Lower panels:
ratios between the measured
yields and the calculations by
EPOS and HIJING
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approach in which the core component undergoes a hydro-
dynamic expansion, and the HIJING 2.0 model [60], which
does not include hydrodynamic effects in the calculation.

Footnote 3 continued
medium. On the other side, kaons originating from the φ decay are
allowed to rescatter inside the hadronic medium and thus emerge with
an altered momentum distribution.

The results obtained at midrapidity [6] are also shown. EPOS
fairly reproduces the data at midrapidity for all centralities,
although the pT spectra are slightly harder than the measured
ones. At forward rapidity, the calculation underestimates the
pT spectra at all centralities, approaching the data only at
pT ∼4 GeV/c. It has to be noted that this disagreement is
significantly worsened if the core component in EPOS were
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Fig. 7 Top panel: comparison between (dNφ/dy)/
〈
Npart

〉
as a func-

tion of
〈
Npart

〉
measured in the muon decay channel at forward rapidity

and in the kaon decay channel at midrapidity, in Pb–Pb collisions at√
sNN = 2.76 TeV, for 2 < pT < 5 GeV/c. The corresponding points

in pp collisions at
〈
Npart

〉 = 2 are also shown. Transparent boxes rep-
resent the uncorrelated systematic uncertainties at forward rapidity and
the total systematic uncertainties (including correlated and uncorrelated
components) at midrapidity. The shaded red box represents the corre-
lated systematic uncertainties at forward rapidity, the shaded blue box
represents the normalization uncertainty at midrapidity. Results from
the EPOS 3.101 and HIJING 2.0 event generators are shown for com-
parison. The rapidity density per participant for pions at midrapidity
is also reported, scaled to 0.1. Bottom panel: ratio between φ rapidity
densities per participant at mid- and forward rapidity, in pp (open circle)
and Pb–Pb collisions (full circles)

to be switched off. Qualitatively, this suggests that the steep-
ness of the forward φ spectra in Pb–Pb is a consequence of
the interplay between radial flow at low- to mid-pT, which
increases the φ yield in the lowest measured pT range, and
a relatively unchanged contribution from hard processes at
higher transverse momenta. HIJING underestimates the data
and shows a harder pT shape at both mid- and forward rapid-
ity. In particular, at forward rapidity, the disagreement with
the data on the shape of the pT distribution is stronger than
for EPOS.

Figure 7 shows the φ rapidity density per participant as
a function of

〈
Npart

〉
. The result in pp collisions at the same

energy [57] is also shown: the φ yield per participant already
grows by a factor of about 1.8 when going from pp to periph-

〉
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sPHENIX 

c > 2.2 GeV/
T
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 < 4yPb-Pb, 2.5 < | < 0.35yAu-Au, |

| < 0.5yPb-Pb, | | < 0.35yCu-Cu, |

Fig. 8 RAA of the φ meson as a function of 〈Npart〉 for 2.5 < y < 4,
compared with the ALICE measurement for |y| < 0.5. All the midra-
pidity points have been displaced by

〈
Npart

〉 = 10 for better visibility.
Transparent boxes represent the uncorrelated systematic uncertainties
at forward rapidity and the total systematic uncertainties (including
correlated and uncorrelated components) at midrapidity. The shaded
red box represents the correlated systematic uncertainties at forward
rapidity, the shaded blue box represents the normalization uncertainty
at midrapidity. Results from PHENIX in Au-Au and Cu-Cu collisions
at

√
sNN = 200 GeV are also shown for comparison

eral Pb–Pb collisions. This factor increases to about 4 when
going from pp to central Pb–Pb collisions. No sizeable depen-
dence on rapidity is observed. The ratio between the rapidity
densities at mid- and forward rapidity is ∼ 2, both in pp and
Pb–Pb collisions, where it is roughly constant as a function
of centrality, as shown in the lower panel of the same figure.

The rapidity density per participant is also plotted in Fig. 7
for pions at midrapidity [61]. The rapidity density increases
from pp to Pb–Pb collisions faster for the φ than for pions.
The increase of the φ/π ratio in the intermediate pT region
is interpreted in terms of radial flow, whose magnitude grows
as a function of the collision centrality. The similar increase
of the φ at mid- and forward rapidity suggests that the mag-
nitude of radial flow is similar in the two rapidity regions
considered.

The comparison with HIJING and EPOS at forward rapid-
ity shows that both calculations predict a similar evolution of
the yield with the collision centrality. In this rapidity region,
both models underestimate the yield by about a factor of two,
independently of centrality. Different results are obtained at
midrapidity, where HIJING largely underestimates the yield,
while EPOS qualitatively reproduces the trend as a function
of

〈
Npart

〉
, even though it overestimates the data by about 30%

in peripheral collisions and 13% in central collisions.
The nuclear modification factor is defined as the yield

ratio of nucleus–nucleus collisions to inelastic pp collisions,
scaled with the average nuclear overlap function 〈TAA〉. For
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Table 5 Systematic uncertainties for RAA as a function of
〈
Npart

〉
, for

2 < pT < 5 GeV/c; the correlated uncertainties are marked with an ∗

Source Systematic uncertainty

Nraw
φ 5.9–11.9%

A × ε (φ) 5.5–5.9%

TAA 3.2–9.7%

Centrality limits 0–3%

Tracking efficiency 11%∗

Trigger efficiency 2%∗

Matching efficiency 1%∗

fnorm 3.6%∗

σpp 7.2%∗

a given centrality and integrated over the considered pT and
y ranges, it is obtained as

RAA = dN/dy

dσpp/dy 〈TAA〉 , (3)

where dN/dy is the φ rapidity density and dσpp/dy =
113 ± 10(stat) ± 7(syst) μb [57] is the φ production cross
section in pp collisions at the same energy, integrated over
the corresponding pT and rapidity range.

Figure 8 shows the RAA measured as a function of the
average number of participants. The systematic uncertain-
ties at forward rapidity are summarized in Table 5. In periph-
eral collisions, the nuclear modification factor is compat-
ible with unity within uncertainties, indicating that these
collisions behave as a superposition of incoherent pp col-
lisions. In most central collisions, RAA at forward rapidity
is reduced to about 0.65, showing a clear suppression of the
φ multiplicity with respect to the pp reference in the inter-
mediate pT region. A qualitatively similar behaviour was
observed also by the PHENIX experiment in Au-Au colli-
sions at

√
sNN = 200 GeV for pT > 2.2 GeV/c at midrapid-

ity [62].
The comparison with the ALICE results obtained at midra-

pidity shows that the two data sets agree within the present
uncertainties.

5 Conclusions

φ meson production was measured via its dimuon decay
channel in Pb–Pb collisions at

√
sNN = 2.76 TeV at forward

rapidity. For intermediate transverse momenta (2 < pT <

5 GeV/c) the pT spectra in Pb–Pb collisions are softer than
in pp.

The yield per participant increases with the collision cen-
trality, similarly to the yield measured in the kaon decay
channel at midrapidity. The ratio between the yields in the

two rapidity regions is constant as a function of centrality.
The rapidity density increases from pp to Pb–Pb collisions
faster for the φ than for pions, suggesting the presence of
radial flow, whose effect increases with the collision central-
ity with similar magnitudes at forward and midrapidity.

The measured yields as a function of pT or centrality were
compared with results from the EPOS event generator and
the HIJING Monte Carlo model. The two calculations predict
similar centrality dependencies at forward rapidity, underes-
timating the measured yield by a factor of ∼ 2 for all centrali-
ties. At midrapidity, EPOS qualitatively reproduces the trend
as a function of the collision centrality, while HIJING largely
underestimates the yield. Regarding the shape of the pT spec-
tra, EPOS correctly reproduces the data at midrapidity, while
it predicts harder transverse momentum distributions at for-
ward rapidity. HIJING predicts harder pT distributions at
both mid- and forward rapidity.

The integrated nuclear modification factor, measured as a
function of

〈
Npart

〉
, is compatible with unity for peripheral and

semi-peripheral collisions, while in most central collisions
it is reduced to about 0.65. The results at forward rapidity
are in agreement within the uncertainties with the ones at
midrapidity. The similarity of the two results hints for similar
mechanisms driving the interaction of the φ meson with the
bulk and its hydrodynamical evolution, in the two rapidity
ranges at intermediate pT.
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105 Rudjer Bošković Institute, Zagreb, Croatia
106 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
107 Saha Institute of Nuclear Physics, Kolkata, India
108 School of Physics and Astronomy, University of Birmingham, Birmingham, UK
109 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
110 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
111 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
112 Suranaree University of Technology, Nakhon Ratchasima, Thailand
113 Technical University of Košice, Kosice, Slovakia
114 Technische Universität München, Excellence Cluster ‘Universe’, Munich, Germany
115 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
116 The University of Texas at Austin, Austin, TX, USA
117 Universidad Autónoma de Sinaloa, Culiacán, Mexico
118 Universidade de São Paulo (USP), São Paulo, Brazil
119 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
120 Universidade Federal do ABC, Santo Andre, Brazil
121 University College of Southeast Norway, Tonsberg, Norway
122 University of Cape Town, Cape Town, South Africa
123 University of Houston, Houston, TX, USA

123



559 Page 18 of 18 Eur. Phys. J. C (2018) 78 :559

124 University of Jyväskylä, Jyväskylä, Finland
125 University of Liverpool, Liverpool, UK
126 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
127 University of Tennessee, Knoxville, TN, USA
128 University of the Witwatersrand, Johannesburg, South Africa
129 University of Tokyo, Tokyo, Japan
130 University of Tsukuba, Tsukuba, Japan
131 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
132 Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
133 Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
134 Department de Physique Nucléaire (DPhN), Université Paris-Saclay Centre dÉtudes de Saclay (CEA), IRFU, Saclay,

France
135 Università degli Studi di Pavia, Pavia, Italy
136 Università di Brescia, Brescia, Italy
137 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
138 Variable Energy Cyclotron Centre, Kolkata, India
139 Warsaw University of Technology, Warsaw, Poland
140 Wayne State University, Detroit, MI, USA
141 Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
142 Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
143 Yale University, New Haven, CT, USA
144 Yonsei University, Seoul, Republic of Korea

a Deceased
b Dipartimento DET del Politecnico di Torino, Turin, Italy
c M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
d Department of Applied Physics, Aligarh Muslim University, Aligarh, India
e Institute of Theoretical Physics, University of Wroclaw, Poland

123


	φ meson production at forward rapidity in Pb–Pb collisions at sqrtsNN=2.76 TeV
	Abstract 
	1 Introduction
	2 Experimental apparatus
	3 Data analysis
	4 Results
	5 Conclusions
	Acknowledgements
	References




