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Abstract

The fully analytical solution for isothermal Bondi accretion onto a black hole (MBH) at the center of two-
component Jaffe galaxy models is presented. In a previous work, we provided the analytical expressions for the
critical accretion parameter and the radial profile of the Mach number in the case of accretion onto an MBH at the
center of a spherically symmetric one-component Jaffe galaxy model. Here we apply this solution to galaxy models
where both the stellar and total mass density distributions are described by the Jaffe profile with different scale
lengths and masses and to which a central MBH is added. For such galaxy models, all the relevant stellar
dynamical properties can also be derived analytically. In these new models, the hydrodynamical and stellar
dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the
galaxy stellar component. The formulae that are provided allow one to evaluate all flow properties and are then
useful for estimates of the scale radius and mass flow rate when modeling accretion onto MBHs at the center of
galaxies. As an application, we quantify the departure from the true mass accretion rate of estimates obtained using
the gas properties at various distances from the MBH, under the hypothesis of classical Bondi accretion.

Key words: galaxies: elliptical and lenticular, cD – galaxies: ISM – galaxies: nuclei – galaxies: structure – X-rays:
galaxies – X-rays: ISM

1. Introduction

Observational and numerical investigations of accretion onto
massive black holes (MBHs) at the center of galaxies often lack
the resolution to follow gas transport down to the parsec scale.
In these cases, the classical Bondi (1952) solution for
spherically symmetric, steady accretion of a spatially infinite
gas distribution onto a central point mass is commonly
adopted; this is the standard reference for estimates of the
accretion radius (i.e., the sonic radius) and mass accretion rate
(see, e.g., Rafferty et al. 2006; Sijacki et al. 2007; Di Matteo
et al. 2008; Gallo et al. 2010; Pellegrini 2010; Barai et al. 2011;
Bu et al. 2013; Volonteri et al. 2015; Cao 2016; Choi
et al. 2017; Park et al. 2017; Barai & Gouveia Dal Pino 2018;
Beckmann et al. 2018; Ramírez-Velasquez et al. 2018). Even
though highly idealized, during phases of moderate accretion
(in the “maintenance” mode), indeed, the problem can be
considered almost steady, and Bondi accretion could provide a
reliable approximation of the real situation (e.g., Barai et al.
2012; Ciotti & Ostriker 2012).

However, leaving aside the validity of the fundamental
assumptions of spherical symmetry, stationarity, and optical
thinness, two major problems affect the direct application of the
classical Bondi solution, namely that (1) the boundary values of
density and temperature of the accreting gas should be
evaluated at infinity; and (2) in a galaxy, the gas experiences
the gravitational effects of the galaxy itself (stars plus dark
matter) all the way down to the central MBH, and the MBH
gravity becomes dominant only in the very central regions,
inside the so-called “sphere of influence.” The solution
commonly adopted in numerical and observational applications
to alleviate these problems is to use values of the gas density
and temperature “sufficiently near” the MBH, thus assuming
that the galaxy effects are negligible. Of course, as the density
and temperature of the accreting gas change along the stream
lines, the predictions of classical Bondi accretion will also
change when based on the density and temperature measured at

a finite distance from the MBH. It is therefore of great interest
to be able to quantify the systematic effects on the accretion
radius and mass accretion rate obtained from the classical
Bondi solution, due to measurements taken at a finite distance
from the MBH and under the effects of the galaxy
potential well.
A first step toward a quantitative analysis of this problem

was carried out in Korol et al. (2016, hereafter KCP16), where
the Bondi problem was generalized to the case of mass
accretion at the center of galaxies, including the effect of
electron scattering on the accreting gas. KCP16 then calculated
the deviation from the true values of the estimates of the Bondi
radius and mass accretion rate, due to adopting as boundary
values for the density and temperature those at a finite distance
from the MBH and assuming the validity of the classical Bondi
accretion solution. In the specific case of Hernquist (1990)
galaxies, KCP16 obtained the analytical expression of the
critical accretion parameter as a function of the galaxy
properties and gas polytropic index γ. However, even for this
quite exceptional case, the radial profiles of the hydrodynami-
cal variables remained to be determined numerically.
Following KCP16, Ciotti & Pellegrini (2017, hereafter CP17)
showed that the whole accretion solution can be given in an
analytical way (in terms of the Lambert–Euler W-function) for
the isothermal accretion in Jaffe (1983) and Hernquist galaxy
models with central MBHs. This meant that for these models, it
is not only possible to analytically express the critical accretion
parameter, but also the whole radial profile of the Mach number
(and then of all the hydrodynamical functions) can be explicitly
written. To the best of our knowledge, CP17 provided the first
fully analytical solution of the accretion problem onto an MBH
at the center of a galaxy.
The galaxy models used in KCP16 and CP17, i.e., the

Hernquist and Jaffe models, are not only relevant because it is
possible for them to solve the accretion problem but also
because of their numerous applications in stellar dynamics.
In fact, these models belong to the family of the so-called
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γ-models (Dehnen 1993; Tremaine et al. 1994) and are known
to reproduce very well the radial trend of the stellar density
distribution of real elliptical galaxies and the bulge component
of spiral galaxies; at the same time, their simplicity allows for
analytical studies of one- and two-component galaxy models
(e.g., Carollo et al. 1995; Ciotti et al. 1996; Ciotti 1999). In
particular, Ciotti & Ziaee Lorzad (2018, hereafter CZ18),
expanding a previous study by Ciotti et al. (2009), presented
spherically symmetric two-component galaxy models (here-
after JJ models), where the stellar and total mass density
distributions are both described by the Jaffe profile with
different scale lengths and masses, and an MBH is added at the
center. The orbital structure of the stellar component is
described by the Osipkov–Merritt anisotropy (Merritt 1985).
Moreover, the dark matter halo (resulting from the difference
between the total and stellar distributions) can reproduce the
Navarro et al. (1997, hereafter NFW) profile remarkably well
over a very large radial range and down to the center. Among
other properties, for the JJ models, the solution of the Jeans
equations and the relevant global quantities entering the virial
theorem can be expressed analytically. Therefore, the JJ models
offer the unique opportunity to have a simple yet realistic
family of galaxy models with a central MBH, allowing for both
the fully analytical solution of the Bondi (isothermal) accretion
problem and the fully analytical solution of the Jeans equations;
all this then permits a simple joint study of stellar dynamics and
fluid dynamics without resorting to ad hoc numerical codes.

This paper is organized as follows. In Section 2, we recall
the main properties of the Jaffe isothermal accretion solution,
and in Section 3, we list the main properties of the JJ models. In
Section 4, we show how the structural and dynamical
properties of the stellar and dark matter components can be
linked to the parameters appearing in the accretion solution. In
Section 5, we examine the departure of the estimate of the mass
accretion rate from the true value when the estimate is obtained
using as boundary values for the density and temperature those
at points along the solution at a finite distance from the MBH.
The main conclusions are summarized in Section 6.

2. Isothermal Bondi Accretion in Jaffe Galaxies with a
Central MBH and Electron Scattering

Following KCP16, and in particular the full treatment of the
isothermal case in CP17, we shortly recall here the main
properties of isothermal Bondi accretion in the potential of a
Jaffe galaxy hosting an MBH at its center. Table 1 summarizes
the main assumptions and outcomes of KCP16 and CP17
compared to what is done in this work.

2.1. The Classical Bondi Solution

In the classical Bondi problem, the gas is perfect, has a
spatially infinite distribution, and is accreting onto an MBH of
mass MBH. The gas density and pressure are linked by the
polytropic relation

p
k T

m
p , , 1B

p

r
m

r r
r
r

=
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= ºg
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where γ is the polytropic index (γ= 1 in the isothermal case),
mp is the proton mass, má ñ is the mean molecular weight, kB is
the Boltzmann constant, and p¥ and r¥ are, respectively, the
gas pressure and density at infinity. The sound speed is
c ps g r= , and of course, in the isothermal case, it is
constant, c cs = ¥, its value at infinity.
The time-independent continuity equation is

r r v r M4 , 22
Bp r =( ) ( ) ˙ ( )

where v(r) is the modulus of the gas radial velocity, and MB˙ is
the time-independent accretion rate onto the MBH. An
important scale length of the problem, the so-called Bondi
radius, is naturally defined as
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we stress that the Bondi radius remains defined by the equation
above independently of the presence of the galactic potential.
After introducing the normalized quantities
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where  is the Mach number, Equation (2) determines the
accretion rate for the assigned MBH and boundary conditions,
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where λ is the dimensionless accretion parameter. In the
isothermal case, the classical Bondi problem (e.g., KCP16)
reduces to the solution of the following system:
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Table 1.
Comparison with Earlier Works

KCP16 CP17 This Paper (CP18)

Galaxy models Hernquist (1990) Hernquist (1990), Jaffe (1983) Two-component JJ (CZ18)
Accretion Polytropic (1 5 3 g ) Isothermal Isothermal (T TVb=¥ )
Number of sonic points One or two One or two (Hernquist), one (Jaffe) One

tl Analytica Analytic Analytic
Sonic radius Analytica Analytic Analytic
Mach number profile Numerical Analytic Analytic

Note.
a The general expression can be found as a function of γ, but only special (asymptotic) cases are given explicitly.
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As is well known, Λ cannot be chosen arbitrarily; in fact, both
g ( ) and f (x) have a minimum, and

g
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Solutions of Equation (6) exist only for g fmin min -L, i.e.,
for f gcr min minL L º - , which in turn is equivalent to the
condition

e

4
. 8cr

3 2
l l = ( )

Along the critical solutions, i.e., the solutions of Equation (6)
for crl l= , xmin marks the position of the sonic point, i.e.,

x 1min =( ) . For crl l< instead, two regular subcritical
solutions exist, one everywhere subsonic and one everywhere
supersonic, with the respective maximum and minimum value
of x( ) reached at xmin.

Summarizing, the solution of the classical Bondi problem
requires one to determine xmin and so crl , and possibly to
obtain the radial profile x( ) for a given crl l (see, e.g.,
Bondi 1952; Frank et al. 1992; KCP16; CP17). Once λ is
assigned and x( ) is known, all functions involved in the
accretion problem are known from Equations ((1) and (5) ): for
example, along the critical solution,

x
x x

, 9cr
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r
l
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while the modulus of the accretion velocity in the isothermal
case is v r c x= ¥( ) ( ).

2.2. Isothermal Bondi Accretion (with Electron Scattering) in
Jaffe Galaxies

The classical Bondi problem can be generalized by including
the effects of radiation pressure due to electron scattering and
the additional gravitational field of the host galaxy. In fact, the
accretion flow can be affected by the emission of radiation near
the MBH that exerts an outward pressure (see, e.g.,
Mościbrodzka & Proga 2013 for a study of the irradiation
effects on the flow). In the optically thin case, the radiation
feedback is implemented as a reduction of the gravitational
force of the MBH by the factor

L

L
1 , 10

Edd
c º - ( )

where L is the accretion luminosity, L cGM m4Edd BH p Tp s= is
the Eddington luminosity, and 6.65 10T

25s = ´ - cm2 is the
Thomson cross section. Note that the maximum luminosity
remains equal to LEdd as defined above, even in presence of the
potential of the host galaxy. As shown in KCP16 and CP17
(see also Lusso & Ciotti 2011), for the Bondi problem on an
isolated MBH, the critical value crl and the mass accretion rate
modified by electron scattering can be calculated analytically,
with the new critical parameter given by 2

crc l .
The more general problem of Bondi accretion with electron

scattering in the potential of a galaxy hosting a central MBH
was addressed in KCP16 and CP17. In particular, it was
shown that there is an analytical expression for xmin in the
isothermal case in Jaffe galaxies with a central MBH and in

the generic polytropic case for Hernquist galaxies with a
central MBH; thus, in both cases, it is possible to determine,
also in the presence of radiation pressure, the value of the
critical accretion parameter (that we now call tl ). For Hernquist
galaxies, the polytropic problem leads to the solution of a cubic
equation, producing one or two sonic points (depending on the
specific choice of the galactic parameters), while in the
isothermal Jaffe case, the relevant equation is quadratic, and
only one sonic point exists independently of the galaxy
parameters. In addition, CP17 showed that isothermal Bondi
accretion cannot be realized in Hernquist galaxies with M 0BH =
(or χ=0), while it is possible in a subset of Jaffe galaxies
(provided a simple inequality is satisfied among the galaxy
parameters). Summarizing, since is also given analytically in
the isothermal case, a fully analytical solution exists for
isothermal accretion onto MBHs at the center of Hernquist and
Jaffe galaxies. However, due to the complications of Bondi
accretion in Hernquist galaxies, and given that two-component
JJ models with a total Jaffe potential and central MBH have been
recently presented (CZ18), in the rest of the paper, we restrict
discussion to the case of two-component Jaffe galaxies. Of
course, the existence of the analytical accretion solution for the
one-component Hernquist model with a central MBH guarantees
that a similar analysis could be done for the two-component
Hernquist analogs of JJ models.
In the remainder of the section, we recall the main properties

of isothermal Bondi accretion in a Jaffe total potential with a
central MBH (CP17); in Section 4, these will be used to
address the problem of accretion in JJ models. The gravita-
tional potential of a Jaffe density distribution of total mass Mg
and scale length rg is given by
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and, with the introduction of the two parameters,
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the function f in Equation (6) becomes
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Note how, for 0  (or x  ¥), the galaxy contribution
vanishes, and the problem reduces to the classical case. In the
limit of χ=0 (L LEdd= ),1 radiation pressure exactly cancels
the MBH gravitational field, and the problem describes
accretion in the potential of the galaxy only, without electron
scattering and an MBH. When χ=1 (L= 0), the radiation
pressure has no effect on the accretion flow.
The presence of the galaxy potential and electron scattering

changes the accretion rate, which (in the critical case) we now
indicate as

M r c M4 , 14t B
2

t
t

cr
Bp l r

l
l

= =¥ ¥˙ ˙ ( )

where again MB˙ is the classical critical Bondi accretion rate for
the same chosen boundary conditions r¥ and c¥ in
Equation (5), and tl is the critical accretion parameter of the

1 Due to a typo, before their Section 4.1, KCP16 wrote that this case
corresponds to χ=1.
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new problem. From the same arguments presented in
Section 2.1, tl is known once the absolute minimum
f , ,min c x( ) is known; this, in turn, requires the determina-
tion of x , ,min c x( ), while the function g ( ) is unaffected
by the addition of the galaxy potential.

As shown in CP17 for the Jaffe galaxy, the position of the
only minimum of f (corresponding to the sonic radius of the
critical solution) in Equation (13) is given by

x
r

r

2 2 8
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and then one can evaluate f f xmin min= ( ) and fln t minl = -
gmin. In the peculiar case of χ=0, a solution of the accretion
problem is possible only for 2  x , with
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When 2 x , then x 0min  (the sonic point is at the origin),
f 2 lnmin x , and, finally, et

2l x . Note that the χ=0
case can also be interpreted as the case of a null MBH mass,
and the formulae in Equation (16) can be used provided the
dependence of , ξ, and rB on MBH is factored out and
simplified before considering the limit for M 0BH  . Thus,
when M 0BH = , the condition for the existence of the solution
and the position of the sonic radius are
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Moreover, even though tl in Equation (16) diverges for
M 0BH  , the accretion rate given in Equation (14) also
remains finite in this case, with a value that can be easily
calculated in closed form in terms of the galaxy parameters.

The radial trend of the Mach number for the critical accretion
solution of Equation (6) with f in Equation (13) and tl l= is
given by Equation (35) in CP17, that is,
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whereW is the Lambert–Euler function, and its relevant properties
are given in CP17 (Appendix A; see also Appendix B in CZ18).
Note that the subcritical ( tl l< ) solutions are obtained by using
W z0,( ) for the subsonic branch andW z1,-( ) for the supersonic
branch. It is useful to recall that, from the expansion for x 0 +

of the supersonic branch of W z1,-( ) in Equation (18), one has
that for 0c > , x x2 1 2 c~ -( ) , while for χ=0, x ~( )

x x2 1 2 ln min x-( ) ( ) (provided that 2  x); moreover,
the expansion of x( ) for x  ¥ along the solution with vani-
shing Mach number at infinity gives x e xx

t
2 l~ c- +( ) ( ) .

Once the Mach number radial profile is known, the density profile
of the accreting gas is obtained from the analog of Equation (9),
with

x
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3. The Two-component Galaxy Models

We now extend the results in Section 2.1, pertinent to
isothermal accretion in the one-component Jaffe model, to the
family of two-component JJ models presented in CZ18. These
models are characterized by a total density distribution (stars
plus dark matter) gr described by a Jaffe profile of total mass
Mg and scale length r ;g the stellar density distribution

*
r is also

described by a Jaffe profile of stellar mass M* and scale radius
r*. The velocity dispersion anisotropy of the stellar component
is described by the Osipkov–Merritt formula (Merritt 1985),
and an MBH is added at the center of the galaxy. Remarkably,
almost all stellar dynamical properties of JJ models with a
central MBH can be expressed by analytical functions.
The accretion solution of CP17 for an MBH at the center of a

Jaffe potential fully applies to JJ models that are the first family of
two-component galaxy models with a central MBH where both the
fluidodynamics of accretion and the dynamics of the galaxy can be
described in an analytical way. In practice, for isothermal accretion
in the JJ models, there is the unique opportunity to easily compare
the dynamical properties of the stellar component of the galaxy
(velocity dispersion, MBH sphere of influence, etc.) with the
accretion flow properties (sonic radius, Bondi radius, critical
accretion parameter, Mach number profile, etc.). Here we take an
important step further and fix the constant gas temperature T¥ by
using the virial temperature of the stellar component (see
Section 3.2 for the full description of the virial temperature and
Section 4 for the procedure of linking the gas temperature to the
virial temperature). In this way, the JJ models not only provide a
more realistic potential well for accretion but also determine the
accretion temperature itself, yielding a natural “closure” for
the problem and fully constraining the solution. In order to link
the properties of the JJ models to the general solution given
in CP17, in the following two sections, we introduce the properties
of JJ models that are relevant for the present study.

3.1. Structure of the JJ Models

The density distribution of the stellar component of JJ
galaxies is

r
M r

r r r s s
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, , 20

2 2
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where M* is the total stellar mass and r* is the scale length; the
effective radius Re of the stellar profile is R r0.7447e * . We
adopt M* and r* as the mass and length scales and define
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as the density and potential scales, and the last parameter
measures the MBH-to-galaxy stellar mass ratio. After introdu-
cing the structural parameters (cf. Equation (12))
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r
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g
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we can give the total density distribution (stars plus dark
matter) that is also described by a Jaffe profile of scale length rg

and total mass M M Mg DM*= + :
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A summary of the parameters describing the galaxy structure is
given in Table 2.

From the request that the dark halo has a nonnegative total
mass MDM, it follows that 1g  (see Equation (22)). The
cumulative mass within the sphere of radius r and the
associated gravitational potential are given by

M r
M s

s
r

s

s
, ln , 24g

g

g
g

n g

g g

* 
x x x

=
+

F =
Y

+
( ) ( ) ( )

and the analogous quantities for the stellar component are
obtained from Equation (24) for 1g g x= = . It also follows
that the half-mass (spatial) radius of the total mass profile is rg,
and it is r* for the stellar mass.

The density distribution DMr of the dark halo is given by

r
s s s
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so that the DMr of the JJ models is not a Jaffe profile, unless the
stellar and total length scales are equal ( 1gx = ); the total mass
associated with DMr is M M 1DM g* = -( ). The request of a
nonnegative MDM does not prevent the possibility of an
unphysical, locally negative dark matter density for an arbitrary
choice of g and gx . In fact, CZ18 showed that the condition to
have 0DM r at all radii is

max
1

, . 26g m
g

g 
x

xº
⎛
⎝
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⎞
⎠
⎟⎟ ( )

This condition also implies a monotonically decreasing DMr
with important dynamical consequences. A dark halo of a
model with g m = is called a minimum halo model. In the
following, we use the parameter α to measure how much g is
larger than the minimum halo mass model for assigned gx :

, 1. 27g m  a a= ( )

The special value 1gx = corresponds to the minimum value
1m = , i.e., to stellar and total densities that are proportional;

in this case, Equation (22) shows that for α=1, there is no
dark matter, and one recovers the one-component Jaffe model
used in CP17. The properties of the dark halo profile as a
function of gx and g are fully discussed in CZ18. We stress
that everywhere in this paper, we are restricted to a dark profile
more diffuse than the stellar mass, which is obtained for

1;g x this choice corresponds to the common expectation for
real galaxies.2 From Equations (26) and (27), then, in the
following, we always have that g g ax= .
It can be of interest for applications to evaluate the dark

matter fraction within a sphere of a chosen radius. This amount
is easily calculated from Equation (24) as

M r

M r

s

s
1

1
, 28DM

g

g

g

x

ax
= -

+

+
( )

( ) ( )
( )

where M r M r M rDM g *= -( ) ( ) ( ). Figure 1 shows the ratio
between the dark mass and the total mass within a sphere of
radius r Re= as a function of gx for various values of α: the
minimum halo case (α=1) and two cases (blue and red
curves) with g m > . Dark matter fractions below unity are
easily obtained, with low fractions (<0.4) for the minimum

Table 2.
List of Defining Parameters for the Galaxy and Accretion Flow

Symbol Description

Galaxy Structure

Mg Total mass

M* Stellar mass
MBH Central MBH mass
rg Total density scale length

r* Stellar density scale length

Vs Stellar virial velocity dispersion
TV Stellar virial temperature

μ MBH/M*
gx rg/r*

g Mg/M*
( gax= , 1g x , α�1)

Accretion Flow

T¥ Temperature ( TVb= , β>0)
c¥ Sound velocity
rB Bondi radius
rmin Sonic radius
Mt˙ Mass accretion rate

 Mach number

tl Critical accretion parameter
 Mg/MBH

ξ rg/rB

xmin rmin/rB

cb Critical β ( 3 2 g= ( ))

Figure 1. Ratio between the dark mass and the total mass of the JJ models
(Equation (28)) within a sphere of radius r R r0.75e *=  as a function of gx
for the minimum halo case (α=1, black) and two nonminimum halo cases
(α=2, blue; and α=3, red). The dark mass fraction is zero for the one-
component (stellar) model, obtained for 1gx = and α=1.

2 The extension of the analysis to the cases 0 1g x < would be immediate.
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halo case. These low values agree with those required by the
modeling of the dynamical properties of nearby early-type
galaxies, which indicate that the dark mass within Re is lower
than the stellar mass (e.g., Cappellari et al. 2015).

For what concerns the radial profile of DMr , for r  ¥,
Equation (25) shows that r1DM g g

4
*

r x r~ - µ -( ) , and so
the densities of the dark matter and stars in the outer regions are
proportional. For r→0, in nonminimum halo models,

r1DM g g
2

*
r x r~ - µ -( ) , while in the minimum halo

models, s r2 1 1DM g
1

*
r x r~ - µ -( ) , so that these latter

models are centrally baryon-dominated, being r 2
*
r µ - . It is

interesting to compare the dark halo profile of JJ models with
the NFW profile of total mass MDM that we rewrite for r rt<
(the so-called truncation radius) as

r
f c s s

f c c
c

c

1
,

ln 1
1

, 29

NFW
n g

NFW
2


r

r
x

=
-

+

= + -
+

( )
( )

( ) ( )

( ) ( ) ( )

where r rNFW NFW *x º is the NFW scale length rNFW in units of
r*, and c r rt NFWº . From the considerations above about the
behavior of rDMr ( ) at small and large radii, it follows that DMr
and NFWr at small and large radii cannot, in general, be similar.
However, in the case of the minimum halo, near the center,

DMr ∝r−1, and it can be proven that DMr and NFWr can be
made identical for r→0 by fixing

f c2
30NFW

gx
x

=
( )

( )

in Equation (29). Therefore, once a specific JJ minimum halo
model is considered, Equations (29) and (30) allow one to
determine the NFW profile that has the same total mass and
central density profile as DMr . It turns out that the dark halo
profiles of JJ minimum halo models are surprisingly well
approximated by the NFW profile over a very large radial range
for realistic values of NFWx and c (CZ18).

3.2. Dynamics of the JJ Models

CZ18 presented and discussed the analytical solutions of the
Jeans equations and all the dynamical properties of Osipkov–
Merritt anisotropic JJ models with a central MBH of mass MBH,
where the total gravitational potential is

r r
s

. 31T g
nmF = F -

Y( ) ( ) ( )

The radial component of the stellar velocity dispersion tensor is
given by r r rr

2
g
2

BH
2s s s= +( ) ( ) ( ), where gs indicates the

contribution due to rgF ( ), and BHs is the contribution due to the
MBH. Under the assumption of Osipkov–Merritt anisotropy,

0gs ( ) is coincident with the isotropic case (except for purely
radial orbits), independently of the anisotropy radius r 0a > ,
and is given by

0
2 2

, 32g
2 n g

g

n
s

x
a

=
Y

=
Y( ) ( )

where in the last identity, we use Equation (27) and restrict to
1g x . Note that the value of 0gs ( ) is therefore independent of

gx for 1g x , and, in the minimum halo model, it is coincident
with that of the one-component (purely stellar) Jaffe model.
The leading term of the MBH contribution to rs near the center
(except for the case of purely radial orbits, r 0a = ) coincides
with the isotropic case independently of the Osipkov–Merritt
anisotropy radius, with

r
s3

; 33BH
2 ns

m
~

Y( ) ( )

at variance with rgs ( ), it diverges as rm for r→0. Therefore,
in the presence of the central MBH, rs is dominated by its
contribution, similarly to the projected velocity dispersion ( gps ).
In order to relate the models with observed quantities, it is

helpful to consider the projected velocity dispersion in the
central regions. CZ18 shows that for r 0a > ,

0 0 , 34gp gs s=( ) ( ) ( )

while, independently of the value of r 0a  ,

R
r

R

2

3
, 35BHp

2 n *s
m
p

~
Y( ) ( )

where R is the radius in the projection plane. The two equations
above determine a fiducial value for the radius (Rinf ) of the so-
called sphere of influence. We define Rinf operationally as the
distance from the center in the projection plane where the
(galaxy-plus-MBH) projected velocity dispersion Rps ( ) equals
a chosen fraction ò of the projected velocity dispersion of the
galaxy in the absence of the MBH. In practice, as R rinf * ,
and in JJ models without an MBH, the velocity dispersion
profile flattens to a constant value, which we define as

R R 0 1 0 , 36p BHp
2

inf gp
2

gps s s s+ = +( ) ( ) ( ) ( ) ( ) ( )

and from Equations (34) and (35), one has

R

r

4

3 2

4

3 2
, 37inf g

g*    

x m

p
m

pa
=

+
=

+( ) ( )
( )

where the last identity holds for 1g x . For realistic values of
the parameters, Rinf is of the order of a few pc (see Section 5.1
for a more quantitative discussion).
As anticipated in the Introduction, a reasonable estimate of

the gas temperature, supported by observations (e.g., Pellegrini
2011), is given by the stellar virial temperature TV =

m 3p V
2m sá ñ (see Section 4 for a detailed presentation of the

link between the gas temperature and TV). The definition of Vs
comes from the virial theorem that, for the stellar component,
reads

K W W2 , 38g BH* * *= - - ( )

where K M 2V
2

* *sº is the total kinetic energy of the stars,
and

W G r r M r dr4 39g
0

g* *òp r= -
¥

( ) ( ) ( )

is the interaction energy of the stars with the total gravitational
field of the galaxy (stars plus dark matter), and, finally,

W GM r r dr4 40BH BH
0* *òp r= -
¥

( ) ( )
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is the interaction energy of the stars with the central MBH.
Note that W BH* diverges because the stellar density profile
diverges near the origin as r−2; instead, W BH* converges for γ
models with 0�γ<2. Since we will use K* to evaluate the
gas temperature over the whole body of the galaxy (where
the MBH effect is negligible), we only consider W g* in the

determination of Vs . Therefore, W MV
2

g* *s º - , where,
from CZ18,

W M W W,
1 ln

1
, 41g n g g g

g g

g
2* *

x x

x
= -Y =

- -

-
~ ~

( )
( )

and W 1 1 2g =
~( ) / . It follows that WV

2
n g g n g g s a x= Y = Y

~ ( ),
where we introduced the function Wg g g g x xº

~( ) . Note that

g g x( ) increases from 1 1 2g =( ) to 1g ¥ =( ) . In practice,
at fixed α and increasing gx , Equation (27) dictates that g
increases to arbitrarily large values, but since 1g  , W g* and

Vs (and so the mass-weighted squared escape velocity) remain
limited. Physically, this is due to the fact that more massive
halos are necessarily more and more extended because of the
request for positivity in Equation (26), with a compensating
effect on the depth of the total potential. Moreover, from
Equations (32) and (34), it follows that 2 0V

2
g g gp

2s x s= ( ) ( ), so
that in JJ models without an MBH, Vs is just proportional to the
stellar central projected velocity dispersion, and the proportion-
ality constant is a function of gx only, with 0V gps s= ( )
for 1gx = .

4. Linking Stellar Dynamics to Fluidodynamics

In the general solution of CP17, once the parameters and ξ
in Equation (12) are assigned and the Jaffe structural scales Mg
and rg characterizing the total galactic potential are chosen, the
gas temperature T¥ remains fixed, because r rg Bx = . There-
fore, generic values of ξ can easily correspond to unrealistic
values of the gas temperature. Clearly, JJ models offer an
interesting possibility: as the dynamical properties of the stellar
component of the galaxy can be analytically calculated once the
total potential (due to stars, dark matter, and a central MBH) is
assigned, the virial theorem for the stellar component can be
used to compute the virial “temperature” TV of the stars, a
realistic proxy for the gas temperature T ;¥ then, the CP17
solution for the accreting gas in the total Jaffe potential of a
given TV can be built. In practice, the idea is to self-consistently
“close” the model, determining a fiducial value for the gas
temperature as a function of the galaxy model hosting
accretion. In this approach, the steps to build an accretion
solution are (1) choose M*, r*, μ, g , and gx for a realistic
galactic model; (2) obtain the gas virial temperature T ;V and
(3) derive  and ξ to be used in the Bondi problem and
construct the corresponding CP17 solution.

Suppose the galaxy parameters in the first step are given.
Then, for assigned g , gx , and μ, the parameter  in the
accretion solution is obtained from Equations (12), (21), and
(22) as

, 42
g g


m

ax

m
= = ( )

where the last expression depends on the fact that we are
restricted to the case 1g x . Since 10 3m » - and g is

expected (say) in the range 1 20¸ , the  values fall in the
range 10 103 4¸ (see also Section 5.1 for a more quantitative
discussion).
From Equation (12), the second parameter (ξ) characterizing

the accretion solution requires the computation of the Bondi
radius rB and then of the gas temperature T ;¥ we choose
T TVb=¥ , with β>0 a dimensionless parameter. Thus, the
isothermal sound speed is given by

c
kT

m 3
, 432

p

V
2

m
bs

=
á ñ

=¥
¥ ( )

and from Equations (3) and (41), the Bondi radius reads

r

r
W

3
, . 44B

g
g g g g

* 


m
ab

x x= º ~( ) ( )

From the behavior of the function g g x( ), it follows that at fixed
α and β, one has

r

r

3 6
, 45B

*
 m

ab
m

ab
( )

where the lower limit is obtained for gx  ¥ and the upper
limit for 1;gx = in this latter case, α=1 gives the value of
rB/r* in a one-component (stellar) Jaffe galaxy. As expected, rB

decreases for increasing α, β, and gx , i.e., for increasing T¥.
Figure 2 (top left panel) shows the trend of rB/r* with gx in the
minimum halo case (α=1) and for α=2 and 3 when β=1
and μ=0.002. Therefore, in a real galaxy with r* of the order
of a few kpc and a gas temperature of the order of TV, rB is of
the order of tens of pc (see also Section 5.1 for a more
quantitative discussion). As additional information on rB, in
Figure 2 (top right panel), we show the trend of rB/Rinf with gx
for β=1; note that from Equations (37) and (44), the ratio is
independent of α and μ, so that only one curve is plotted;
higher values of β correspond to smaller values of rB.
Using Equations (12) and (44), we finally obtain the

expression

3 3
. 46

g g g  
x

abx

m
b

= = ( )

It follows that 6x ab m ( ) for 1gx  , while it grows
without bound for gx  ¥, as 3gx abx m~ ( ). In practice, at
variance with the general cases in KCP16 and CP17,  and ξ

are now linked, and increasing values of  correspond to
increasing values of ξ. The list of all parameters introduced in
this work is given in Table 2. Figure 2 (bottom left panel)
shows the trend of ξ with gx in the minimum halo case (α=1)
and for α=2 and 3 and β=1. Here rB is of the order of

r10 ;3
g

- higher values of β correspond to larger values of ξ.
Having obtained the expressions for and ξ as a function of

the model parameters, a few considerations are in order. The
first is that in JJ models, isothermal accretion is always possible
in the absence of a central MBH and β=1, because the
accretion condition in Equation (17) is automatically satisfied
by the virial temperature of the stellar component when
T TV=¥ . By allowing for a T TV>¥ , it is easy to show that
Bondi isothermal accretion in the absence of a central MBH (or
when χ=0) is possible in JJ models only for gas temperatures
lower than a critical value, i.e., only for 3 2c gb b º ( ).
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From the behavior of g , it follows that 3 2 3c b , where
the lower limit corresponds to gx  ¥ and the upper limit to

1gx = . The second is that from Equation (46), the ratio
2 c x b b= appearing in the definition of f (x) in

Equation (13) depends on β and gx only, and it shows that
for very large values of β, the problem reduces to the classical
Bondi accretion.

The critical value cb also plays an important role in models
with a central MBH, determining a particular temperature at
which there is a sudden transition in the position of the sonic

radius. In fact, the location of rmin in terms of the scale length r*
is given by

r

r
x

r

r
, , , 47min

min
B

* *
c x= ( ) ( )

where xmin is given by Equation (15) and can be easily
computed analytically once  and ξ are determined. Figure 2
(bottom right panel) shows rmin/r* as a function of gx for α=1
and different values of β. The most relevant feature is the
considerable variation in the position of rmin, from very external

Figure 2. Relevant scale lengths of the isothermal accretion solution in JJ models as a function of r rg g *x = . An MBH-to-galaxy stellar mass ratio μ=2×10−3 is
assumed, and T TVb=¥ . Top left: ratio rB/r* from Equation (44) with β=1 and α=1, 2, 3, following the color scheme as in Figure 1. Top right: ratio rB/Rinf of the
Bondi radius to the radius of the sphere of influence of the MBH, Rinf , for ò=0.5 from Equations (37) and (44) with β=1. Note that this ratio is independent of α
and μ. Bottom left: parameter r rg Bx = from Equation (46) with β=1 and α=1, 2, 3. Bottom right: ratio rmin/r* for α=1 and β=1, 3/2, 2, 3. For large values
of  and cb b< , the ratio is almost independent of α but strongly dependent on gas temperature, as follows from Equations (44), (47), and (48). Filled circles
(r r 13.84, 0.011, 0.0026min *  ) mark the position of the sonic radius for the minimum halo case with 20gx = .
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to very inner regions, for β increasing. Equation (47) shows
that rmin is determined by the combined behavior of two
functions, namely xmin and r r ;B * we now focus on xmin,
having already established that r 1B bµ , and thus the large
variation of rmin can only be due in part to the dependence of rB

on β. Instead, from Equations (15), (42), and (46), for  ¥
and fixed3 β, xmin is given by

x

, ,

, ,

, .

48min

1

2 c

2 c

2 1 c

c

c





b b

b b

b b

~

<

=

>

b b

c

c
b b

-

-

⎧

⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )

Note that the limit  ¥ describes models with increasing α

at fixed μ and gx , increasing gx at fixed α and μ, or a vanishing
MBH mass at fixed α and gx . As in the present models, α�1,

1g x , and μ=0.002, then  is quite large, and the
asymptotic trends in Equation (48) already provide a reason-
able approximation of the true behavior that is increasingly
better for large values of α and gx and small values of μ. Of
course, an independent check of the first two expressions above
can be obtained by recovering them from the exact
Equation (16) (pertinent to a Jaffe galaxy with M 0BH = ) by
using Equations (42) and (46) for vanishing MBH mass, i.e.,

0m  ,   ¥, and cb b .
Qualitatively, Equation (48) shows that for cb b< , xmin

increases as. Instead, for cb b> , xmin is independent of,
and for very large values of the gas temperature tends to 2c ,

the limit value of classical Bondi accretion with electron
scattering (e.g., CP17, see their Equation (25)). As Figure 3
shows, even a moderate increase in the gas temperature
produces a sudden decrease in the value of xmin. A numerical
investigation of polytropic accretion in JJ models shows
that xmin suddenly drops to values 1 as γ increases with
respect to the isothermal case. This behavior is reminiscent
of the sudden transition of xmin from external to internal
regions in Hernquist galaxies, discussed in CP17; in this
case, the transition is due to the existence, for 1g > , of
two minima for the polytropic function f (x) of the Jaffe
potential (as obtained by inserting Equation (11) into
Equation (47) in KCP16). In the polytropic Hernquist
case, the two minima can also be present in the isothermal
case (CP17, Appendix B.2), while for the Jaffe potential in
the isothermal case, there is only one minimum, given in
Equation (15).
It is now easy to explain the behavior of the curves in

Figure 2 (bottom right panel), where several cases of
Equation (47) are plotted. For example, from the first identity
in Equation (48) and Equations (42)–(44), Equation (47)
predicts that for   ¥ and cb b< , we have r rmin * ~

1g cx b b -( ), so that for gx  ¥ and β=1, it results in
r r 2min g* x~ , while for 1gx = and large values of α/μ,
one has r r2min *» . For T¥ corresponding to the range
3 2 3 b , there is a transition value of gx such that,
for larger gx , cb drops below the adopted β, and the third
expression in Equation (48) applies. In these cases, the
sonic radius moves to the central regions, with r rmin * ~

1ccm a b b -[ ( )].
Finally, Figure 4 shows the trend of tl as a function of gx for

α=1, 2, and 3 and, when α=1, for different gas
temperatures as determined by the β value (dotted lines). In
analogy with Equation (48), an asymptotic analysis shows that

Figure 3. Position of xmin as a function of the temperature parameter β for
μ=0.002 and three minimum halo models (α=1) with 1, 3, 20;gx = these
correspond to critical values of the temperature given by 3, 2.2, 1.7cb  ,
respectively (filled circles). The values of xmin are reproduced remarkably well
by the asymptotic expressions in Equation (48).

Figure 4. Critical accretion parameter tl as a function of gx for the minimum
halo case α=1 (black),2 (blue), and 3 (red) and χ=1 and β=1. The dotted
curves refer to α=1 and three different values of β.

3 From Equation (46) 2 cx b b= , and from Equation (15), it follows
immediately that the limit for   ¥ is not uniform in β.
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in the limit of   ¥,

, ,

, ,
49e

e

t

1

4 c

4 c

2
c

2
2 c

2




l

b b

b b
~

<

=

b b-
b
b-⎧

⎨⎪

⎩⎪
( )

( )

and, for simplicity, we do not report the expression of tl for
cb b> , which can, however, be easily calculated. For fixed 

and χ, very large β corresponds to t
2

crl c l~ , in accordance
with the classical case (KCP16; CP17). Equation (49) nicely
explains the values and trend of tl with gx and α, in particular

the almost perfect proportionality of tl to 2
g
2a x . From

Equation (14), this implies that, for the same boundary
conditions, the true accretion rate Mt˙ for increasing gx becomes

much larger than MB˙ , the rate in the sole presence of the MBH.

5. Two Applications

We present here two applications of the results above. The
first is a practical illustration of how to determine the main
parameters describing the galactic structure, and the gas
accretion in it, for JJ models (see Table 2). One will see how
very reasonable values for the main structural properties can
be obtained, and then realistic galaxy models can be built.
The second application considers the deviation from the true
value of the mass accretion derived using the density along the
accretion solution in JJ galaxies and the framework of classical
Bondi theory.

5.1. Accretion in Realistic Galaxy Models

Here we show how to build JJ galaxy models with the main
observed properties of real galaxies and how to derive the
corresponding parameters for isothermal accretion.

The first step consists of the determination of the stellar
component of the JJ galaxy. This is done via the choice of two
main galaxy properties, for example, the effective radius Re and
the stellar projected velocity dispersion 0gps ( ). For JJ models,

0 0gp gs s=( ) ( ), and rgs ( ) is quite flat at the center; thus, 0gps ( )
is very close to the emission-weighted projected stellar velocity
dispersion within a small fraction of Re (as typically given by
observations). For a chosen Re and 0gps ( ), then, one has
r R1.34 e*  (see the comment below Equation (20)), and then M*
from Equations (21) and (32), once a value for α�1 is fixed. The
central MBH enters the problem via a choice for μ that we take to
be μ=2×10−3 (e.g., Kormendy & Ho 2013). Then the radius of
influence Rinf can be evaluated from Equation (37). As an
example, for a choice of R 5e = kpc and 0 210gps =( ) km s−1,
one has r 6.7 kpc*  , M 1.38 1011

*a ´ Me, and Rinf 
4.6 a pc, for a fiducial ò=0.5.

The second step consists of the determination of the
parameters g and gx that fix the total density distribution of
the galaxy, in particular its total potential. Since g g ax= , we
can only fix either g or gx . It may be convenient to fix gx , for
the following reason. A detailed dynamical modeling of stellar
kinematical data for galaxies of the local universe has shown
that the dark matter fraction within Re is low (e.g.,
Cappellari 2016). To fit with this result, one can use
Equation (28), which relates gx and the dark matter fraction
within any radius r; thus, for the desired (low) value of the dark
matter fraction, gx remains determined. Figure 1 shows that the

ratio M R M RDM e g e( ) ( ) is always in the range determined by the
dynamical modeling for α=1. The figure also shows that, for

5g x , the dark matter fraction within r Re= is quite
independent of gx . This means that a certain freedom remains
in the choice of gx , and we can further constrain it from other
considerations. If α=1, we may require that the scale length
of the dark halo (rNFW) is larger than that of the stars (i.e.,

1NFWx > ). For example, a value of the concentration parameter
c;10, as predicted for galaxies of the local universe (e.g.,
Dutton & Macciò 2014), gives 2.6NFWx = for 20gx =
(Equation (30)). Finally, one recovers the stellar virial velocity
dispersion 2 0V

2
g g gp

2s x s= ( ) ( ) and then TV from Vs 2. Since

g g x( ) varies only by a factor of two for 1gx = to¥, in turn, TV

varies at most by a factor of two. For 20gx = , one has
280Vs  km s−1 and T 2.0 10V

6´ K (for má ñ=0.6).
Having completely determined the galaxy structure with the

choice of two observed quantities, Re and 0gps ( ), and three
parameters (μ, α, gx ), the next step consists of the determina-
tion of the accretion properties. These are all fixed, once the
galaxy structure is fixed; only the gas temperature needs to be
chosen. The first parameter describing accretion is , obtained
from Equation (42). The second parameter is ξ, which comes
from Equation (46) once the parameter β is fixed in
Equation (43). With the choice of this last parameter, i.e.,
with the choice of T¥, all of the accretion properties are finally
determined analytically, in particular the gas sound speed c¥
(Equation (43)), Bondi radius rB (Equations (3) and (44)), sonic
radius rmin (Equations (15) and (47)), critical accretion
parameter tl (as described after Equation (15)), and Mach
number profile  (Equation (18)). As an example, for the
galaxy model considered, for α=1, β=1, and 20gx = , one
has 104 = , r 45B  pc, 2.96 103x ´ , r 93 kpcmin  , and

5.23 10t
7l ´ .Instead, changing only the gas temperature to

β=2, one has  unchanged, r 23B  pc, 5.91 103x ´ ,
r 73min  pc, and 2.85 10t

6l ´ .
Figure 5 shows the Mach number profiles for accretion onto

an MBH (the classic Bondi problem) and an MBH at the center
of a JJ model for the minimum halo case and three values of β.
For the three galaxy models, the top axis gives the radial scale
in terms of r/r*. Again, it is apparent how a modest increase in
the gas temperature produces a dramatic decrease of rmin. Real
galaxies show an average observed temperature TX of their hot
coronae (that here should be identified with T¥) that implies for

T TVb = ¥ a value in the range 1 2.5» – (Pellegrini 2011;
Posacki et al. 2013). Moreover, β on average decreases for

0gs ( ) increasing, as 0g
0.2b sµ -( ) (see Figure 2 in Pellegrini

2011). In conclusion, the supersonic region of the flow is
expected to increase for larger 0gs ( ) and to be confined within
Re or much less for β1.
Figure 6 shows a comparison between the gas velocity

profile and the stellar velocity dispersion profile for the JJ
models in Figure 5. Notice that near the center, rBH

1 2s ~ -

and r 1 2 ~ - , so that their ratio is a constant; it can be easily
shown that this constant is 6c , independent of α, β, gx , g ,
and μ. In principle, then, the value of BHs close to the center of
a galaxy is a proxy for the (isothermal) gas inflow velocity.

5.2. The Bias in Estimates of the Mass Accretion Rate

We investigate here the use of the classical Bondi solution in
problems involving accretion onto MBHs residing at the center
of galaxies. This use is common in the interpretation of
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observational results, numerical investigations, or cosmological
simulations (see Section 1). In many such studies, when the
instrumental resolution is limited or the numerical resolution is
inadequate, an estimate of the mass accretion rate is derived
using the classical Bondi solution, taking values of temperature
and density measured at some finite distance from the MBH.
This procedure clearly produces an estimate that can depart
from the true value, even when assuming that accretion fulfills
the hypotheses of the Bondi model (stationarity, spherical
symmetry, etc.). KCP16 developed the analytical setup of the
problem for generic polytropic accretion, with the inclusion of

the effects of radiation pressure and a galactic potential; they
also investigated numerically the size of the deviation for
Hernquist galaxies. CP17 presented a detailed exploration of
the deviation for isothermal accretion in one-component Jaffe
and Hernquist galaxies. Here we consider the more realistic
case of two-component JJ models in the isothermal case,
exploiting the fully analytical character of JJ models.
We first consider the deviation of the estimate of the mass

accretion rate for the classical Bondi solution when taking
values of temperature and density measured at some finite
distance from the MBH. For assigned values of r¥, T¥, γ, and

Figure 5. Mach number profiles as a function of x r rB= for isothermal Bondi accretion (with χ=1). The top left panel refers to classical Bondi accretion, and the
other panels refer to accretion in a JJ galaxy model plus a central MBH with μ=2×10−3, 20g g x= = , and β=1, 2, 3; the scale on the top axis gives the
variable r/r*. The subsonic regime is plotted in blue and the supersonic one in red. Solid lines show the two critical solutions, and dotted lines show the two subcritical
solutions (with 0.8 crl l= in the top left panel and 0.8 tl l= in the others).
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MBH, the Bondi radius rB and the critical accretion rate MB˙ are
given by Equation (3) and by Equation (5) with crl l= . If one
inserts into these equations the values of rr ( ) and T(r) at a
finite distance r from the MBH, taken along the classical Bondi
solution, and considers them as “proxies” for r¥ and T¥, then
estimated values for the accretion radius (re) and mass accretion
rate (Me˙ ) are obtained:

r r
GM

c r
M r r r r c r, 4 . 50e

BH

s
2 e e

2
cr sp l rº º( )

( )
˙ ( ) ( ) ( ) ( ) ( )

The question is how much re and Me˙ depart from the true values
rB and MB˙ as a function of r. In the isothermal case, the sound
speed is constant, with c r cs = ¥( ) , and then r r re B=( ) ,
independently of the distance from the center at which the
temperature is evaluated. Then M r r r c4 ;e B

2
crp l r= ¥˙ ( ) ( ) at

infinity, M Me B=˙ ˙ . At finite radii, instead

M r

M
x

x x
, 51e

B

cr
2

r
l

= =
˙ ( )

˙ ˜( )
( )

( )

where the last identity comes from Equation (9), and x( ) is
given in Equation (19) of CP17. The deviation of Me˙ from MB˙ ,
then, is just given by xr̃( ) at the radius r where the “measure” is
taken. Thus, Me˙ gives an overestimate of MB˙ , and this
overestimate becomes larger for decreasing x (see Figure 1 in
KCP16 and Figure 4 in CP17).

In the presence of a galaxy, the departure of M re˙ ( ) of
Equation (50) from the true mass accretion rate
M r c4t B

2
tp l r= ¥ ¥˙ is

M r

M

x

x x
, 52e

t

cr

t

cr
2

l r
l

l
= =

˙ ( )
˙

˜( )
( )

( )

where ρ(r) is taken along the solution for accretion within the
potential of the galaxy,4 the last identity comes from
Equation (19), and x( ) is given in Equation (18).
Figure 7 (left panel) shows the trend of Me˙ /Mt˙ with r. One

sees that the use of rr ( ) instead of r¥ leads to an overestimate
for r taken in the central regions, while M re˙ ( ) becomes an
underestimate for r a few r10 3

*´ - . The radius marking the
transition from the region in which there is an overestimate to
that in which there is an underestimate depends on the specific
galaxy model. Figure 7 also shows the positions of rB for the
parameters chosen for the galaxy and accretion flow. Thus, in
numerical simulations not resolving rB, Me˙ should be boosted
by a large factor to approximate the true accretion rate, Mt˙ .
Moreover, since Me˙ /Mt˙ increases steeply with decreasing r,
this “boost factor,” in turn, also varies steeply with r. For
example, for a representative distance from the center of
300 pc, for the same galaxy model considered in Section 5.1
with r 6.7 kpc*  , the boost factor suggested by Figure 7 varies
between 50 (for 1gx = ) and 250 (for 20gx = ). For the
same galaxy and a distance of 1 kpc from the center, the values
are 670 (for 1gx = ) and 2000 (for 20gx = ). In the right
panel of Figure 7, we also show the bias measured at the Bondi
radius as a function of gx . The panel indicates an underestimate
by roughly a factor of 5.
It is instructive to find the reason for the trend of Me˙ near the

center and at large radii. From Equation (52) and the expansion
of for x 0 + and x  ¥, one has

M r

M x
x

2
, 0 , 53e

t

cr

3 2

l
c

~  +
˙ ( )

˙ ( )

and

M r

M
x, . 54e

t

cr

t

l
l

~  ¥
˙ ( )

˙ ( )

Therefore, near the center, M M re t
3 2~ -˙ ˙ , while at large radii,

as in general t crl l (see Figure 4), Me˙ /Mt˙ becomes very
small.

6. Summary and Conclusions

The classical Bondi accretion theory is the tool commonly
adopted in many investigations where an estimate of the
accretion radius and mass accretion rate is needed. In this
paper, extending the results of previous works (KCP16; CP17),
we focus on the case of isothermal accretion in two-component
galaxies with a central MBH and radiation pressure contributed
by electron scattering in the optically thin regime. In CP17, it
was shown that the radial profile of the Mach number and the
critical eigenvalue of the isothermal accretion problem can be
expressed analytically in Jaffe and Hernquist potentials with a
central MBH. Here we adopt the two-component JJ galaxy
models presented in CZ18. These are made of a Jaffe stellar
component plus a dark halo such that the total density is also
described by a Jaffe profile; all the relevant dynamical
properties of JJ models, including the solution of the Jeans
equations for the stellar component, can be expressed
analytically. Therefore, the results of CP17 and CZ18 give
the opportunity of building a family of two-component galaxy

Figure 6. Accretion velocity profile for the gas (dotted) and isotropic stellar
velocity dispersion profile (solid), both normalized to nY , for the minimum
halo model with 20g g x= = . The accretion solutions correspond to β=1,
2, and 3 and are given by the black, blue, and red dotted lines, respectively. The
horizontal dotted lines mark the corresponding values of c nY¥ . For each β,
the intersection between the accretion velocity and the sound velocity marks
the sonic point (bottom right panel in Figure 2; filled circles).

4 In the monatomic adiabatic case γ=5/3, one has that M r Me cr t tl l=˙ ( ) ˙
independently of the distance from the center, while r re ( ) departs from rB
(KCP16, see their Equation (42)).
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models where all the accretion properties can be given
analytically and then explored in detail, with no need to resort
to numerical studies. The main results of this work can be
summarized as follows.

(1) The parameters describing accretion in the hydrodyna-
mical solution of CP17 ( and ξ) have been linked to the
galaxy structure. In particular, it is assumed that the isothermal
gas has a temperature T¥ proportional to the virial temperature
of the stellar component, TV. Then, simple formulae are derived
relating the galactic properties (as the effective radius, Re, and
the radius of influence of the MBH, Rinf ) with those describing
accretion (as the Bondi radius, rB, and the sonic radius, rmin).
The critical accretion parameter tl is also expressed as a
function of the galactic properties.

(2) For realistic galaxy structures, rB is of the order of a
few r10 3

*´ - , and Rinf is of the order of r0.1 B . For T TV=¥ ,
the sonic radius rmin is of the order of a few Re. For moderately
higher values of T¥, rmin suddenly drops to radii within rB. The
same also happens for a small increase of the polytropic index
above unity, and this behavior is reminiscent of the similar
jump shown by rmin in Hernquist models, as discussed in CP17.
As a consequence, accretion in JJ models can switch from
being supersonic over almost the whole galaxy to being
subsonic everywhere, except for r rB . An explanation for this
phenomenon is given.

(3) As for the isothermal accretion in one-component Jaffe
models, the determination of the critical accretion parameter
involves the solution of a quadratic equation, and there is only
one sonic point for any choice of the parameters describing the
galaxy. In the presence of the galaxy, tl is several orders of
magnitude larger than without the galaxy. It is found that Bondi
accretion in JJ models in absence of a central MBH (or when
χ=0) is possible, provided that T¥ is lower than a critical
value and we derive the explicit formula for it. This critical
value depends only on gx and is in the range T T3 2 V ¥

3. It also determines the jump in rmin in models with the
central MBH.

(4) We provide a few examples of accretion in realistic
galaxy models and present the resulting Mach number profiles
and the trends of the accretion velocity and isotropic stellar
velocity dispersion profiles.
(5)We finally examine the problem of the deviation from the

true value Mt˙ of an estimate of the mass accretion rate M re˙ ( )
obtained adopting the classical Bondi solution for accretion
onto an MBH, where the gas density and temperature at some
finite distance from the center are inserted as proxies for their
values at infinity. The size of the departure of M re˙ ( ) from Mt˙ ,
which is determined by the presence of the galaxy, is given as a
function of the distance r from the center. Here M re˙ ( )
overestimates Mt˙ if the gas density is taken in the very central
regions and underestimates Mt˙ if it is taken outside a few Bondi
radii. This shows the sensitivity to the model parameters of the
determination of a physically based value for the so-called
“boost factor” adopted in simulations, and that in general, a
universally valid prescription is impossible.

We thank the referee for useful comments that improved the
presentation.
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