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Abstract—A Visual Sensor Network (VSN) is composed by

several cameras, in general with different characteristics and

orientations, which are used to cover a certain Area of Interest

(AoI). To provide an optimal and autonomous exploitation of the

VSN video streams, suitable algorithms are needed for selecting

the cameras capable to guarantee the best video quality for the

specific AoI in the scene. In this work, a novel content and

context-aware camera ranking algorithm is proposed, with the

goal to maximize the Quality of Experience (QoE) to the final

user. The proposed algorithm takes into account the pose, camera

resolution and frame rate, and the quantity of motion in the

scene. Subjective tests are performed to compare the ranking

of the algorithm with human ranking. Finally, the proposed

ranking algorithm is compared with common objective video

quality metrics and a previous ranking algorithm, confirming

the validity of the approach.

Index Terms—Visual Sensor Networks, QoE, camera selection

techniques, ranking algorithms.

I. INTRODUCTION

In recent years it has been widely acknowledged that the use
of camera networks open the way to a large number of new
applications. In particular, VSNs have been recently proposed
in scenarios where a single camera could not provide a reliable
coverage or a sufficient visual quality [1], [2]. Currently, VSNs
are developed for surveillance of large areas, for environmental
control of inaccessible or wild areas, and for telepresence
in 3D remote video conferences. Furthermore, VSNs are a
fundamental tool in tele-medicine to provide remote medical
assistance and to support clinical therapy from a distance [3],
[4]. One of the most critical issues is related to the large
amount of data that each node collects from the monitored
environment. In this regard, wireless camera networks require
careful design and implementation of efficient radio resource
allocation and node scheduling policies. The objective is to
select, in each moment, the best camera subset that is able
to satisfy some specific criteria: in literature this is defined
as camera selection for large camera networks [1], [2], [5].
Several camera ranking proposals are based on geometrical
considerations: the placement and orientation of the nodes are
taken into account to define camera selection cost metrics.
Each camera node is characterized by a directional sensing
model. The gathered information depend on the direction on
which the camera is oriented and the 3D viewing volume
defined by the camera Field of View (FoV). The optimal
camera deployment is also addressed in recent works [6], [7].
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Fig. 1: Example of VSN

In this work, a novel content and context-aware camera
ranking algorithm is proposed. Differently from the works
in the literature, we approached the problem of the camera
ranking with the aim to maximize the QoE to the final user.
We designed the proposed ranking strategy taking into account
the intrinsic parameters and resolution which characterize each
camera. Furthermore, the camera selection is performed taking
into account the camera position and related distance from the
target of interest. Moreover, the proposed algorithm is based
on the quantity of motion that is captured by each camera,
and therefore denoted as Camera Ranking for Dynamic Scenes
(CRDS) in the following.

II. SCENARIO DESCRIPTION

Let us consider the camera network scenario in Fig. 1, where
the target (patient at the center of the figure) has to be mon-
itored through the usage of a multi-camera system. Different
wireless cameras with monitoring functionalities are placed in
different positions. Each camera covers a particular portion of
the considered area depending on its orientation and FoV. The
knowledge of the point of interest allows a preliminary camera
selection discarding all the cameras not capable to provide
useful information for the final user. For example, camera B
will be not taken into consideration in the final ranking. In this
work, we assume that the cameras’ position and attitude, are
known in real-time, e.g., by means of inertial units mounted
on the devices. Modern equipment for emergency teams, in



fact, are nowadays more frequently capable to provide location
information in order to improve the efficiency and the safety
of the operations. Second, a pinhole model, which is the most
widely used for mapping a 3D scene into a 2D image, has been
adopted to describe the camera nodes. For a more realistic
model, the pinhole is enriched with the camera FoV, which
delimits the portion of the 3D monitored area. In Fig. 2-A,
a 3D pinhole camera model has been depicted, with different
vertical and horizontal FoVs. In the figure, the camera optical
center is c, the point to be monitored is p, and u determines
the camera orientation. Based on the camera pose and the point
of interest, we delimit the AoI as illustrated in Fig. 2. The
AoI is the 2D portion of the real-world in which the scene of
interest is located. Considering the linear dependence between
pixels and visualized area (in square meters), the proposed
3D camera model is decomposed in two 2D models where
the number of linear pixels per meter is computed considering
each FoV singularly. In addition, assuming the camera model
has no rotations with respect to the global system reference,
a geometric transformation is applied to translate the global
system reference into the camera system reference. Thus, in
Fig. 2-B, p0

= p� c denotes the target position; u0
= u� c

describes the camera orientation; d is the distance between
the optical center and the monitored target; finally, N1 is the
number of linear pixels along the first dimension of the image
plane. The angle between the orientation vector u

0 and the
target position p

0 is

↵ = arccos

✓
p

0 · u0

|p0| · |u0|

◆
. (1)

The projection of the distance d = kp0k on the optical axis
is calculated as d

0
= d cos↵, and the length visualized along

the considered image plane is

M = 2 d

0
tan ✓ . (2)

III. CAMERA RANKING FOR DYNAMIC SCENES (CRDS)

In [5] a camera ranking algorithm, called Camera Ranking
for Static Scenes (CRSS), has been proposed for low motion
scenes. CRSS is based on the amount of pixels required to
represent a unit area (1 square meter) at the target distance.
In this section, a new algorithm for video with arbitrary
motion called Camera Ranking for Dynamic Scenes (CRDS),
is proposed.

Conceptually, the CRDS takes into account the spatial
features considered in CRSS, but includes in the ranking
criteria also the acquisition frame rate and the average motion
feature velocity. In order to study the impact of frame rate
and resolution on the final perceived video quality, we assume
without loss of generality that each video sequence can be
modelled as a three-dimensional continuous signal. The video
signal is acquired by the cameras and then is discretized
taking into account the frame rate and the spatial resolution
as sampling frequencies. We start by defining a model for
the intrinsic video power spectrum of the filmed scene. Then,
the camera quality for the specific scene is estimated as the
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Fig. 2: The pinhole camera model: A) 3D representation; B)
2D representation.

amount of intrinsic video power that the camera can acquire.
Given the sampling frequencies, this acquired power depends
on the signal bandwidth in the spatial and temporal domains:
the larger is the sampling frequency, the greater is the collected
power by the signal. The spatial sampling rate depends on the
geometry of the scenario and on the scaled resolution, based
on the CRSS principle. The role of the temporal sampling
rate depends on the scaled video motion. In this regard, we
used the analysis leading to the concept of spatio-temporal
power video spectrum, as proposed in [8]. In that work, the
authors started by analyzing a thousands of video segments,
in order to identify common regularities in natural scenes. A
video segment is a 3-dimensional hypercube of size L⇥L⇥T ,
where the first two dimensions refer to the spatial coordinates
of a point in a frame, while the third dimension identifies
the time instant within the sequence. Indicating with s(x, t)

the windowed light intensity in point x = (x1, x2) at time
t, the correlation between two points separated by the spatio-
temporal distance (⇠, ⌧) can be expressed as:

r(⇠, ⌧) =
1

L

2
T

Z L

0

Z L

0

Z T

0
s(x+ ⇠, t+ ⌧) · s(x, t)dx1dx2dt

(3)
where the spatial displacement is ⇠ = (⇠1, ⇠2).

The power spectrum of the considered spatio-temporal
segment is obtained through the Fourier transform of r(⇠, ⌧):

R(f , w) =

Z L

�L

Z L

�L

Z T

�T
r(⇠, ⌧) · ej2⇡(f ·⇠+w⌧)

d⇠1d⇠2d⌧ (4)

where f = (f1, f2) are the spatial frequencies and w the
temporal frequency, respectively. Assuming that the objects
in the scene are placed at a distance in the range [d1, d2]

from the camera and that their static spectrum is rotationally
symmetric, the following expression is derived for the average
power spectrum [8]:

G(f, w) =

K

f

m+1

Z d2

d1

P

✓
w

f

z

◆
z dz (5)

where f = ||f ||, P (·) is the velocity distribution of the objects
in the scene along a certain direction1, and K and m are two
parameters whose values are estimated numerically. Note that

1Note that in the model of [8] also the velocity distribution of the objects
in the scene is assumed as rotationally invariant.



in (5) the power spectrum depends on the velocity distribution,
which in many natural scenes can be approximated by simple
power-law distribution [8]. Finally, the power spectrum of
natural varying images is modeled as [8]:

G(f, w) =

Kv̄

2f

m�1
w

2


n� 2

(x+ 1)

n�1
� n� 1

(x+ 1)

n�2

�wd2
fv0

wd1
fv0

(6)

where v̄ is the average object velocity, and v0, n are constant
values. This analytical model was numerically validated in
[8] by observing that the measured power spectrum of the
considered video segments, once scaled by the factor f

m+1

and expressed as a function of f/w, shows a behavior in total
accordance to (6). Hence, the total collected power can be
calculated as:

P =

Z wul

0

Z ful

0
G(f, w) df dw. (7)

For each camera, ful and wul depend on the spatial and
temporal bandwidth for the considered video signal. According
to the Shannon sampling theorem, the camera frame rate Fr

acts as a temporal sampling factor transforming the continuous
signal in a discretized version. Thus, the temporal bandwidth
is wul = Fr/2.
To determine the spatial frequency, we should take into ac-
count (see Fig.2-B) the length visualized along the considered
image plane M, given by (2), the distance between the camera
optical center and the filmed scene d’, and the number of
pixels forming the AoI on the image plane, NA1. The spatial
sampling frequency in cycles per degree is therefore

Sf = arctan

✓
M

d

0 ·NA1

◆�1

[cycles/degree] (8)

where b = M/NA1 is the length projected on one linear pixel.
The best spatial frequency is guaranteed when the AoI fullfill
the whole image plane: more precisely, when the camera is
placed at the distance d

0 such that that N1 = NA1 (Fig. 2-
B). In this ideal case the scene of interest is sampled taking
into account the whole spatial resolution of the considered
camera. Increasing the distance, the projection of the AoI on
the image plane gets smaller: respect to the ideal case, the
spatial resolution NA1 is lower and the spatial sampling is
coarser, resulting in lower spatial frequency. In accordance to
the relation between spatial bandwidth and spatial frequency,
the spatial bandwidth is ful = Sf/2.
Once the spatial and temporal bandwidth have been calculated
for each camera, the CRDS uses (7) for ranking: the higher is
the power, the higher will be the camera classification in the
ranking.

IV. EXPERIMENTAL RESULTS

A. VSN parameters and AoI description
The CRDS algorithm has been experimentally validated on

the videos of nine different cameras. In Tab. I we summarize
the camera frame rate, the image dimensions, and the related
AoI dimensions. The cameras are placed with the same pose

Camera (Ci) Image dim. AoI dim. Frame rate (Fr)

1 720⇥576 320⇥320 25
2 720⇥576 320⇥320 12.5
3 720⇥576 320⇥320 6.25
4 360⇥288 160⇥160 25
5 360⇥288 160⇥160 12.5
6 360⇥288 160⇥160 6.25
7 180⇥144 80⇥80 25
8 180⇥144 80⇥80 12.5
9 180⇥144 80⇥80 6.25

TABLE I: Set of cameras used for testing the CRDS

Fig. 3: Left: Frame extracted from C1. Right: the related AoI.

respect to the object of interest, which is placed at a distance
d

0
= 5 m. For simplicity, we first acquired the video from a

high resolution and frame rate camera, C1. Then, the video
camera streams C2, . . . , C9 have been virtually obtained by
applying frame decimation and image resizing techniques on
C1. For example, the video sequence provided by C6 is
obtained applying spatial decimation factor equal to 2 and
a temporal decimation factor equal to 4 on C1. In Fig. 3 we
provide a frame captured by C1 and related AoI.

B. Object of interest velocity extraction
In this section, we describe the feature velocity extraction

technique we implemented to define the mean velocity of the
object of interest within the AoI. In the first step, we calibrated
camera C1 (See Tab. I) through the Camera Calibration
Toolbox for Matlab R�. We extracted the optical flow using
the OpenCV library [9]. In particular, we utilized a technique
to find the dense optical flow based on Gunner Farneback’s
algorithm. For each i

th sub-block belonging to the AoI we
calculated the related velocity in the following way:

vi = kmik2 · q�1
lin · Fr (9)

where kmik2 is the displacement magnitude of the considered
sub-block and qlin = N1/M is the number of linear pixels
used for describing a single meter at the considered distance
d’= 5 m. In Fig. 3-right the displacement vectors in the AoI
are indicated by the bold arrows. Then, to compute the average
velocity v̄, as requested in (6), we use the fact that, during a
video visualization, the attention of the user is more focused
on objects that are moving. In other words, the human-eye is
more attracted from rapid object position variations, and less
sensitive to what-is-happening in the background and in the
contour features. Taking into account this behavior, the average
velocity has been expurgated from all the features character-
ized by low or approximately null quantity of movement [9].



Ci,j 1 2 3 4 5 6 7 8 9

1 60 65 90 100 65 100 65 100
2 40 65 30 90 100 65 65 100
3 35 35 40 15 45 20 30 65
4 10 70 60 100 65 100 65 60
5 0 10 85 0 65 65 100 65
6 35 0 55 35 35 65 80 60
7 0 35 80 0 35 35 80 95
8 35 35 70 35 0 20 20 90
9 0 0 35 40 35 40 50 10

TABLE II: PMOS results

With this approach, the average object of interest velocity for
our experimental video sequences resulted to be v̄ = 5.7 m/s.

C. Subjective video quality assessment results
Subjective tests are typically used in the video processing

field to obtain the human user’s perception of the quality
of the processed video sequences. In this work, the video
quality assessment will be used as reference metric to rank
the cameras based on a perceived quality point of view. We
adopted a modified MOS version, namely Pairwise Mean
Opinion Score (PMOS). In PMOS, the quality assessment is
obtained visualising a pair of video sequences at each time.
The viewer is asked to express his/her preference choosing
the video sequence with the highest perceived quality. Each
possible pairwise video combination is visualized and judged
by the voters. We selected a population of 25 voters equally
divided between males and females. The camera set is char-
acterized by different spatial and temporal resolution and this
makes a direct quality comparison of the AoI unfeasible. For
this reason, the scene of interest is extracted based on the
position of the point of interest and the camera position and
orientation. Then, the video sequences focusing the scene of
interest are re-sampled in the spatial and temporal domain
to a common format, so that they can be directly compared
through objective and subjective tests. In Tab. II the PMOS
results have been proposed. Specifically, each element Ci,j

of Tab. II indicates the percentage of users which prefer the
video sequence provided by Ci over Cj . For example, the 70%

of voters prefers C4 over C2. In the final step, the Kemeny-
Young method is applied to obtain a camera ranking based
on the PMOS results. The Kemeny-Young technique has been
developed to identify the most popular choices in an election
exploiting a pairwise comparison and assigning a score to all
possible ranking sequences. Each sequence considers which
choice might be most popular, which choice might be second
most popular, and so down to which choice might be least-
popular. The ranking sequence obtaining the highest score is
the selected one [10].

D. Camera ranking techniques comparison
The comparison between two different sorting metrics is

a non-trivial problem: a great number of works has been
proposed in literature with the aim at measuring the difference
between sorting techniques. We implemented two known met-
rics, such as the Spearman’s rank correlation coefficient and

the Kendall’s tau distance. These metrics calculate the possible
correlation (or distance) between two different ranking strate-
gies. In statistics, Spearman’s Correlation Coefficient (SCC)
is a non-parametric measure of statistical dependence between
two variables [11]. The Kendall’s Tau Distance (KTD) mea-
sures the total number of pairwise inversion between two
ranking lists. The larger the distance, the more dissimilar the
two lists are [12]. However, these metrics do not consider the
ranking positions as well as the element relevance in the pair-
wise inversion counting: due to this reason, such metrics are
called invariant. A general solution of this problem consists
of weighting each ranking inversion by taking into account
the element positional information or defining an element
relevance criteria. Intuitively, a raking inversion on a high-
weight element should be more penalizing than an inversion
on a low-weight element. Following this approach, we defined
a Weighted Kendall’s Tau Distance (WKTD) version in which
the element relevance is determined by the subjective test
results. Let [n] = 1, . . . , n be a set of elements and Wn be
the set of permutations on [n]. In its turn,  2 Wn is the
permutation provided by the PMOS results and  (i) is the
ranking of the i

th elements. Again, � 2 Wn is the permutation
provided by one the proposed camera ranking algorithms.
The WKTD resulting distance between rankings, ¯

K( ,� ), is
defined as:

¯

K( ,� ) =

1

⇠

X

(i,j):i<j

Ki,j( ,� ) (10)

where:

Ki,j( ,� ) = |wi,j( (i) <  (j) ^ �(i) > �(j))

_ wj,i( (i) >  (j) ^ �(i) < �(j))| . (11)

In the classical KTD formulation wi,j = 1 and wj,i = 1. In
Tab. II, Ci,j is the percentage of users who preferred element
i over element j. Therefore, Ci,j is also intended as the
percentage of users who may be unsatisfied if element i and j

are ranked in the opposite order. Hence, we propose to modify
the KTD by setting the weights wi,j = Ci,j and wj,i = Cj,i

in (10): the higher is the user preference on a certain ranking
order, the more significant is the pairwise inversion counting
in the considered metric. Accordingly, the normalization factor
⇠ is calculated in (12) taking into account all the possible
pairwise inversions, as

⇠ =

X

(i,j):i<j

|Ci,j( (i) <  (j)) _ Cj,i( (i) >  (j))| . (12)

V. CAMERA RANKING VALIDATION

In Tab. III we collected the camera ranking results consider-
ing the objective metrics, the CRSS and the proposed CRDS.
In particular, the position of camera Ci in each considered
ranking techniques is provided. Furthermore, the subjective
test results are also provided based on the Kemeny-Young
method in the second column of Tab. III. We can notice the
CRSS results mainly depend on the camera resolutions. This is
due to the fact that the camera set is characterized by the same



Ci PMOS PSNR SSIM CRSS CRDS

1 1 1 1 1 1
2 3 2 2 2 3
3 8 5 4 3 7
4 2 3 3 4 2
5 4 4 5 5 4
6 5 6 6 6 8
7 6 7 7 7 5
8 7 8 8 8 6
9 9 9 9 9 9

TABLE III: Subjective test results (second column) and cam-
era ranking results for the implemented techniques.

PSNR SSIM CRSS CRDS

KTD 0.05 0.11 0.14 0.02
SCC 0.78 0.78 0.84 0.93

WKTD 0.09 0.14 0.19 0.02

TABLE IV: Distances and correlation between automatic and
human ranking with v̄ = 5.7 m/s.

pose and this algorithm does not depends on the frame rate and
the feature velocities. In its turn, several inversions occur if the
ranking provided by the subjective tests are compared with the
objective ones. In particular, we can observe how the objective
metrics tend to favour high-resolution cameras; conversely,
the subjective tests privilege cameras characterized by higher
frame rate. The CRDS algorithm validation is composed by
two steps. In the first step, we verified the average feature
velocity computation and the feasibility of the assumption we
made in Sec. IV-B. To this purpose, several CRDS results
are provided varying the average feature velocity v̄ in (6).
In Fig. 4 these results are compared with the subjective tests
using the KTD, WKTD and the complementary version of
the Spearman’s coefficient (C-SCC). We can notice that the
application of CRDS using the average expurgated velocity we
calculated in IV-B provides the best similarity between CRDS
and subjective test results. In the second step, we provided
a detailed evaluation of the proposed CRDS comparing the
obtained results with the users’ perceived video quality defined
by the subjective tests. We can observe how the CRDS and
the subjective test ranking results are identical for the top four
cameras (i.e., C1,2,4,5) which can be identified as the best
quality cameras. The main difference is related to the low-
quality cameras which are C6,7,8. Coherently, the proposed
ranking algorithm tends to prefer higher frame rate cameras
again, while the users’ preference privilege lower frame rate
cameras but higher resolution cameras in this case. In Tab. IV,
the KTD, WKTD and SCC values are presented comparing
the ranking based on subjective tests and the other proposed
ranking techniques. We can notice that CRDS provides the best
results, i.e., the lowest distances and the highest correlation,
when compared with the human ranking.

VI. CONCLUSION

In this work, a novel camera ranking algorithm has been
presented. The proposed algorithm is aimed to find the camera
subset that best satisfies specific ranking criteria, and is de-
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Fig. 4: Distances (KTD, C-SCC, and WKTD) between CRDS
and the subjective tests, as a function of the parameter v̄ in
(6), for the recorded scene.

signed to optimize the QoE for the final user in terms of video
quality and significance. To validate the proposed technique,
a multi-camera acquisition system has been arranged and
the collected video sequences have been evaluated through
objective and subjective tests. The experimental results show
the effectiveness of the proposed ranking solution to provide
the best user experience in terms of visual quality.
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