
J.A. Pérez and S. Tini (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2018).

EPTCS 276, 2018, pp. 122–139, doi:10.4204/EPTCS.276.10

Unique Solutions of Contractions, CCS,

and their HOL Formalisation

Chun Tian

Fondazione Bruno Kessler∗

Trento, Italy

ctian@fbk.eu

Davide Sangiorgi

Università di Bologna and INRIA
Bologna, Italy

davide.sangiorgi@unibo.it

The unique solution of contractions is a proof technique for bisimilarity that overcomes certain

syntactic constraints of Milner’s “unique solution of equations” technique. The paper presents an

overview of a rather comprehensive formalisation of the core of the theory of CCS in the HOL

theorem prover (HOL4), with a focus towards the theory of unique solutions of contractions. (The

formalisation consists of about 20,000 lines of proof scripts in Standard ML.) Some refinements of

the theory itself are obtained. In particular we remove the constraints on summation, which must be

weakly-guarded, by moving to rooted contraction, that is, the coarsest precongruence contained in

the contraction preorder.

1 Introduction

A prominent proof method for bisimulation, put forward by Robin Milner and widely used in his landmark

CCS book [22] is the unique solution of equations, whereby two tuples of processes are componentwise

bisimilar if they are solutions of the same system of equations. This method is important in verification

techniques and tools based on algebraic reasoning [2, 29, 30].

In the versions of Milner’s unique solution theorems for proving that all solutions are weakly (or

rooted) bisimilar (in practice these are the most relevant cases), however, Milner’s proof method has

severe syntactical limitations, such that the equations must be “guarded and sequential,” that is, the

variables of the equations may only be used underneath a visible prefix and proceed, in the syntax tree,

only by the sum and prefix operators. One way of overcoming such limitations is to replace equations

with special inequations called contractions [32, 33]. Contraction is a preorder that, roughly, places some

efficiency constraints on processes. The uniqueness of solutions of a system of contractions is defined as

with systems of equations: any two solutions must be bisimilar. The difference with equations is in the

meaning of a solution: in the case of contractions the solution is evaluated with respect to the contraction

preorder, rather than bisimilarity. With contractions, most syntactic limitations of the unique-solution

theorem can be removed. One constraint that still remains in [33] (in which the issue is bypassed using a

more restrictive CCS syntax) is the occurrences of direct sums, due to the failure of the substitutivity of

contraction under direct sums.

The main goal of the work described in this paper is a rather comprehensive formalisation of the

core of the theory of CCS in the HOL theorem prover (HOL4), with a focus on the theory of unique

solutions of contractions. The formalisation, however, is not confined to the theory of unique solutions

of equations, but embraces a significant portion the theory of CCS [22] (mostly because the theory

of unique solutions relies on a large number of more fundamental results). Indeed the formalisation

encompasses the basic properties of strong and weak bisimilarity (e.g. the fixed-point and substitutivity

∗Part of this work was carried out when the first author was studying at Università di Bologna.

http://dx.doi.org/10.4204/EPTCS.276.10

Chun Tian & Davide Sangiorgi 123

properties), the basic properties of rooted bisimilarity (the congruence induced by weak bisimilarity, also

called observation congruence), and their algebraic laws. Further extensions (beyond Nesi [24]) include

four versions of “bisimulation up to” techniques (e.g., bisimulation up-to bisimilarity) [22, 34], and the

expansion and contraction preorder (two efficiency-like refinements of weak bisimilarity). Concerning

rooted bisimilarity, the formalisation includes Hennessy Lemma and Deng Lemma (Lemma 4.1 and 4.2

of [13]), and two long proofs saying the rooted bisimilarity is the coarsest (largest) congruence contained

in (weak) bisimilarity: one following Milner’s book [22], with the hypothesis that no processes can

use up all labels; the other without such hypothesis, essentially formalising van Glabbeek’s paper [10].

Similar theorems are proved for the rooted contraction preorder. In this respect, the work is an extensive

experiment with the use of the HOL theorem prover and its most recent developments, including a package

for expressing coinductive definitions.

From the view of CCS theory, this formalisation has offered us the possibility of further refining the

theory of unique solutions of equations, as formally proving a previously known result gives us a chance

to see what’s really needed for establishing that result. In particular, the existing theory [33] has placed

limitations on the body of the contractions due to the substitutivity problems of weak bisimilarity and

other behavioural relations with respect to the sum operator. We have thus refined the contraction-based

proof technique, by moving to rooted contraction, that is, the coarsest precongruence contained in the

contraction preorder. The resulting unique-solution theorem is now valid for rooted bisimilarity (hence

also for bisimilarity itself), and places no constraints on the occurrences of sums.

Another advantage of the formalisation is that we can take advantage of results about different equiv-

alences or preorders that share a similar proof structure. Examples are: the results that rooted bisimilarity

and rooted contraction are, respectively, the coarsest congruence contained in weak bisimilarity and the

coarsest precongruence contained in the contraction preorder; the result about unique solution of equa-

tions for weak bisimilarity that uses the contraction preorder as an auxiliary relation, and other unique

solution results (e.g., the one for rooted in which the auxiliary relation is rooted contraction); various

forms of enhancements of the bisimulation proof method (the ‘up-to’ techniques). In these cases, moving

between proofs there are only a few places in which the HOL proof scripts have to be modified. Then

the successful termination of the proof gives us a guarantee that the proof is complete and trustworthy,

removing the risk of overlooking or missing details as in hand-written proofs.

Structure of the paper Section 2 presents basic background materials on CCS, including its syntax, op-

erational semantics, bisimilarity and rooted bisimilarity. Section 3 discussed equations and contractions.

Section 3.4 presents rooted contraction and the related unique-solution result for rooted bisimilarity. Sec-

tion 4 highlights our formalisation in HOL4. Finally, Section 5 and 6 discuss related work, conclusions,

and a few directions for future work.

2 CCS

We assume a possibly infinite set of names L = {a,b, . . .} forming input and output actions, plus a

special invisible action τ /∈ L , and a set of variables A,B,. . . for defining recursive behaviours. Given a

deadlock 0, the class of CCS processes is then inductively defined from 0 by the operators of prefixing,

parallel composition, summation (binary choice), restriction, recursion and relabeling:

µ := τ | a | a

P := 0 | µ.P | P1 | P2 | P1 +P2 | (νa)P | A | recA.P | P [rf]

124 Unique Solutions of Contractions, CCS, and their HOL Formalisation

µ.P
µ

−→ P

P
µ

−→ P ′

P +Q
µ

−→ P ′

P
µ

−→ P ′

P |Q
µ

−→ P ′ |Q

P
a

−→ P ′ Q
a

−→Q′

P |Q
τ

−→ P ′ |Q′

P
µ

−→ P ′

(νa)P
µ

−→ (νa)P ′
µ 6= a,a

P{recA.P/A}
µ

−→ P ′

recA.P
µ

−→ P ′

P
µ

−→ P ′

P [rf]
rf(µ)

−−−→ P ′ [rf]
∀a. rf(a) = rf(a)

Figure 1: Structural Operational Semantics of CCS

The operational semantics of CCS is given by means of a Labeled Transition System (LTS), shown in

Fig. 1 as SOS rules (the symmetric version of the two rules for parallel composition and the rule for sum

are omitted). A CCS expression uses only weakly-guarded sums if all occurrences of the sum operator

are of the form µ1.P1 +µ2.P2 + . . .+µn.Pn, for some n ≥ 2. The immediate derivatives of a process

P are the elements of the set {P ′ | P
µ

−→ P ′ for some µ}. Some standard notations for transitions:
ǫ

=⇒

is the reflexive and transitive closure of
τ

−→, and
µ

=⇒ is
ǫ

=⇒
µ

−→
ǫ

=⇒ (the composition of the three relations).

Moreover, P
µ̂

−→ P ′ holds if P
µ

−→ P ′ or (µ = τ and P = P ′); similarly P
µ̂

=⇒ P ′ holds if P
µ

=⇒ P ′ or

(µ= τ and P = P ′). We write P (
µ

−→)nP ′ if P can become P ′ after performing n µ-transitions. Finally,

P
µ

−→ holds if there is P ′ with P
µ

−→ P ′, and similarly for other forms of transitions.

Further notations Letters R, S range over relations. We use infix notation for relations, e.g., P RQ
means that (P,Q) ∈ R. We use a tilde to denote a tuple, with countably many elements; thus the tuple may

also be infinite. All notations are extended to tuples componentwise; e.g., P̃ R Q̃means that Pi RQi, for

each component i of the tuples P̃ and Q̃. And C[P̃] is the process obtained by replacing each hole [·]i of

the context C with Pi. We write Rc for the closure of a relation under contexts. Thus P RcQmeans that

there are context C and tuples P̃ , Q̃ with P = C[P̃],Q = C[Q̃] and P̃ R Q̃. We use the symbol
def
= for

abbreviations. For instance, P
def
= G, where G is some expression, means that P stands for the expression

G. If ≤ is a preorder, then ≥ is its inverse (and conversely).

2.1 Bisimilarity and rooted bisimilarity

The equivalences we consider here are mainly weak ones, in that they abstract from the number of internal

steps being performed:

Definition 2.1. A process relation R is a bisimulation if, whenever P RQ, we have:

1. P
µ

−→ P ′ implies that there is Q′ such that Q
µ̂

=⇒Q′ and P ′ RQ′;

2. Q
µ

−→Q′,implies that there is P ′ such that P
µ̂

=⇒ P ′ and P ′ RQ′ .

P and Q are bisimilar, written as P ≈Q, if P RQ for some bisimulation R.

We sometimes call bisimilarity the weak one, to distinguish it from strong bisimilarity (∼), obtained

by replacing in the above definition the weak answerQ
µ̂

=⇒Q′ with the strongQ
µ

−→Q′. Weak bisimilarity

is not preserved by the sum operator (except for guarded sums). For this, Milner introduced observational

congruence, also called rooted bisimilarity [13, 31]:

Definition 2.2. Two processes P and Q are rooted bisimilar, written as P ≈c Q, if we have:

1. P
µ

−→ P ′ implies that there is Q′ such that Q
µ

=⇒Q′ and P ′ ≈Q′;

Chun Tian & Davide Sangiorgi 125

2. Q
µ

−→Q′ implies that there is P ′ such that P
µ

=⇒ P ′ and P ′ ≈Q′ .

Theorem 2.3. ≈c is a congruence in CCS, and it is the coarsest congruence contained in ≈.

3 Equations and contractions

3.1 Systems of equations

Uniqueness of solutions of equations [22] intuitively says that if a contextC obeys certain conditions, then

all processes P that satisfy the equation P ≈ C[P] are bisimilar with each other. We need variables to

write equations. We use capital letters X,Y,Z for these variables and call them equation variables. The

body of an equation is a CCS expression possibly containing equation variables. Thus such expressions,

ranged over by E, live in the CCS grammar extended with equation variables.

Definition 3.1. Assume that, for each i of a countable indexing set I , we have variables Xi, and

expressions Ei possibly containing such variables. Then {Xi = Ei}i∈I is a system of equations. (There

is one equation for each variable Xi.)

We write E[P̃] for the expression resulting from E by replacing each variable Xi with the process

Pi, assuming P̃ and X̃ have the same length. (This is syntactic replacement.)

Definition 3.2. Suppose {Xi = Ei}i∈I is a system of equations:

• P̃ is a solution of the system of equations for ≈ if for each i it holds that Pi ≈ Ei[P̃];

• it has a unique solution for ≈ if whenever P̃ and Q̃ are both solutions for ≈, then P̃ ≈ Q̃.

For instance, the solution of the equationX = a.X is the processR
def
= recA. (a.A), and for any other

solution P we have P ≈R. In contrast, the equation X = a |X has solutions that may be quite different,

for instance, K and K | b, for K
def
= recK. (a.K). (Actually any process capable of continuously

performing a actions (while behaves arbitrarily on other actions) is a solution for X = a |X.)

Definition 3.3 (guardedness of equations). A system of equations {Xi = Ei}i∈I is

• weakly guarded if, in each Ei, each occurrence of an equation variable is underneath a prefix;

• (strongly) guarded if, in each Ei, each occurrence of an equation variable is underneath a visible

prefix;

• sequential if, in each Ei, each of its subexpressions with occurrence of an equation variable, apart

from the variable itself, is in forms of prefixes or sums.

Theorem 3.4 (unique solution of equations, [22]). A system of guarded and sequential equations (without

direct sums) {Xi = Ei}i∈I has a unique solution for ≈.

To see the need of the sequentiality condition, consider the equation (from [22]) X = νa (a.X | a)
where X is guarded but not sequential. Any process that does not use a is a solution.

3.2 Contractions

The constraints on the unique-solution Theorem 3.4 can be weakened if we move from equations to a

special kind of inequations called contractions.

Intuitively, the bisimilarity contraction �bis is a preorder in which P �bis Q holds if P ≈ Q and, in

addition, Q has the possibility of being at least as efficient as P (as far as τ -actions performed). Process

Q, however, may be nondeterministic and may have other ways of doing the same work, and these could

be slow (i.e., involving more τ -steps than those performed by P).

126 Unique Solutions of Contractions, CCS, and their HOL Formalisation

Definition 3.5. A process relation R is a (bisimulation) contraction if, whenever P RQ,

1. P
µ

−→ P ′ implies there is Q′ such that Q
µ̂

−→Q′ and P ′ RQ′;

2. Q
µ

−→Q′ implies there is P ′ such that P
µ̂

=⇒ P ′ and P ′ ≈Q′ .

Bisimilarity contraction, written as P �bis Q (P contracts to Q), if P R Q for some contraction R.

In the first clause Q is required to match P ’s challenge transition with at most one transition. This

makes sure that Q is capable of mimicking P ’s work at least as efficiently as P . In contrast, the second

clause of Definition 3.5, on the challenges from Q, entirely ignores efficiency: it is the same clause of

weak bisimulation — the final derivatives are even required to be related by ≈, rather than by R.

Bisimilarity contraction is coarser than the expansion relation �e [1, 32]. This is a preorder widely

used in proof techniques for bisimilarity and that intuitively refines bisimilarity by formalising the idea of

‘efficiency’ between processes. Clause (1) is the same in the two preorders. But in clause (2) expansion

uses P
µ

=⇒ P ′, rather than P
µ̂

=⇒ P ′; moreover with contraction the final derivatives are simply required

to be bisimilar. An expansion P �e Q tells us that Q is always at least as efficient as P , whereas the

contraction P �bis Q just says that Q has the possibility of being at least as efficient as P .

Example 3.6. We have a 6�bis τ .a. However, a+ τ .a �bis a, as well as its converse, a �bis a+ τ .a.

Indeed, if P ≈ Q then P �bis P +Q. The last two relations do not hold with �e, which explains the

strictness of the inclusion �e ⊂ �bis.

Like (weak) bisimilarity and expansion, contraction is preserved by all operators but (direct) sum.

3.3 Systems of contractions

A system of contractions is defined as a system of equations, except that the contraction symbol � is used

in the place of the equality symbol =. Thus a system of contractions is a set {Xi �Ei}i∈I where I is an

indexing set and expressions Ei may contain the contraction variables {Xi}i∈I .

Definition 3.7. Given a system of contractions {Xi � Ei}i∈I , we say that:

• P̃ is a solution (for �bis) of the system of contractions if P̃ �bis Ẽ[P̃];

• the system has a unique solution (for ≈) if P̃ ≈ Q̃ whenever P̃ and Q̃ are both solutions.

The guardedness of contractions follows Def. 3.3 (for equations).

Lemma 3.8. Suppose P̃ and Q̃ are solutions for �bis of a system of weakly-guarded contractions that

uses weakly-guarded sums. For any context C that uses weakly-guarded sums, if C[P̃]
µ

=⇒R, then there

is a context C ′ that uses weakly-guarded sums such that R�bis C
′[P̃] and C[Q̃]

µ̂
=⇒≈ C ′[Q̃].1

Proof. (sketch from [33]) Let n be the length of the transition C[P̃]
µ

=⇒ R (the number of ‘strong steps’

of which it is composed), and let C ′′[P̃] and C ′′[Q̃] be the processes obtained from C[P̃] and C[Q̃] by

unfolding the definitions of the contractions n times. Thus in C ′′ each hole is underneath at least n
prefixes, and cannot contribute to an action in the first n transitions; moreover all the contexts have only

weakly-guarded sums.

We have C[P̃] �bis C
′′[P̃], and C[Q̃] �bis C

′′[Q̃], by the substitutivity properties of �bis (we exploit

here the syntactic constraints on sums). Moreover, since each hole of the context C ′′ is underneath at

1There’s no typo here: C[Q̃]
µ̂

=⇒≈ C′[Q̃] means ∃R̃. C[Q̃]
µ̂

=⇒ R̃ ≈ C′[Q̃]. Same as in Lemma 3.12.

Chun Tian & Davide Sangiorgi 127

least n prefixes, applying the definition of �bis on the transition C[P̃]
µ

=⇒R, we infer the existence of C ′

such that C ′′[P̃]
µ̂

=⇒ C ′[P̃] �bis R and C ′′[Q̃]
µ̂

=⇒ C ′[Q̃]. Finally, again applying the definition of �bis on

C[Q̃] �bis C
′′[Q̃], we derive C[Q̃]

µ̂
=⇒≈ C ′[Q̃].

Theorem 3.9 (unique solution of contractions for ≈). A system of weakly-guarded contractions having

only weakly-guarded sums, has a unique solution for ≈.

Proof. (sketch from [33]) Suppose P̃ and Q̃ are two such solutions (for ≈) and consider the relation

R
def
= {(R,S) | R≈C[P̃],S ≈ C[Q̃] for some context C (weakly-guarded sum only)} . (1)

We show that R is a bisimulation. Suppose R R S vis the context C , and R
µ

−→ R′. We have to find S′

with S
µ̂

=⇒ S′ and R′ R S′. From R≈ C[P̃], we derive C[P̃]
µ̂

=⇒R′′ ≈ R′ for some R′′. By Lemma 3.8,

there is C ′ with R′′ �bis C
′[P̃] and C[Q̃]

µ̂
=⇒≈ C ′[Q̃]. Hence, by definition of ≈, there is also S′ with

S
µ̂

=⇒ S′ ≈ C ′[Q̃]. This closes the proof, as we have R′ ≈ C ′[P̃] and S′ ≈ C ′[Q̃].

3.4 Rooted contraction

The unique solution theorem of Section 3.3 requires a constrained syntax for sums, due to the congruence

and precongruence problems of bisimilarity and contraction with such operator. We show here that the

constraints can be removed by moving to the induced congruence and precongruence, the latter called

rooted contraction:

Definition 3.10. Two processes P and Q are in rooted contraction, written as P �c
bis Q, if

1. P
µ

−→ P ′ implies that there is Q′ with Q
µ

−→Q′ and P ′ �bis Q
′;

2. Q
µ

−→Q′ implies that there is P ′ with P
µ

=⇒ P ′ and P ′ ≈Q′ .

The precise formulation of this definition was guided by the HOL theorem prover and the following

two principles: (1) the definition should not be recursive, along the lines of rooted bisimilarity ≈c in

Def. 2.2; (2) the definition should be built on top of existing contraction relation �bis (because of its

completeness). A few other candidates were quickly tested and rejected, e.g., because of precongruence

issue. The proof of the precongruence result below is along the lines of the analogous result for rooted

bisimilarity with respect to bisimilarity.

Theorem 3.11. �c
bis is a precongruence in CCS, and it is the coarsest precongruence contained in �bis.

For a system of rooted contractions, the meaning of “solution for �c
bis” and of a unique solution for

≈c is the expected one — just replace in Def. 3.7 the preorder �bis with �c
bis, and the equivalence ≈ with

≈c. For this new relation, the analogous of Lemma 3.8 and of Theorem 3.9 can now be stated without

constraints on the sum operator. The schema of the proofs is almost identical, because all properties of

�c
bis needed in this proof is its precongruence, which is indeed true on unrestricted contexts including

direct sums:

Lemma 3.12. Suppose P̃ and Q̃ are solutions for �c
bis of a system of weakly-guarded contractions. For

any context C , if C[P̃]
µ

=⇒R, then there is a context C ′ such that R�bis C
′[P̃] and C[Q̃]

µ
=⇒≈C ′[Q̃].

Theorem 3.13 (unique solution of contractions for ≈c). A system of weakly-guarded contractions has a

unique solution for ≈c. (thus also for ≈)

128 Unique Solutions of Contractions, CCS, and their HOL Formalisation

Proof. We first follow the same steps as in the proof of Theorem 3.9 to show the relation R (now with

�c
bis and unrestricted context C) in (1) is bisimulation, exploting Lemma 3.12. Then it remains to show

that, for any two process P and Q with action µ, if P
µ

−→ P ′ then there is Q′ such that Q
µ

=⇒ Q′ (not

Q
µ̂

=⇒Q′!) and P ′ RQ′, and also for the converse direction, exploting Lemma 4.13 of [22] (surprisingly).

By definition of bisimulation (not ≈!) and ≈c, we actually proved P ≈c Q instead of P ≈Q.

4 Formalisation

We highlight here a formalisation of CCS in the HOL theorem prover (HOL4) [36], including the new

concepts and theorems proposed in the first half of this paper. The whole formalisation (apart from

minor fixes and extensions in this paper) is described in [37], and the proof scripts are in HOL4 official

examples2. The current work consists of about 20,000 lines of proof scripts in Standard ML.

Higher Order Logic (or HOL Logic) [16], which traces its roots back to LCF [11, 21] by Robin

Milner and others since 1972, is a variant of Church’s simple theory of types (STT) [6], plus a higher

order version of Hilbert’s choice operator ε, Axiom of Infinity, and Rank-1 (prenex) polymorphism.

HOL4 has implemented the original HOL Logic, while some other theorem provers in HOL family

(e.g. Isabelle/HOL) have certain extensions. Indeed the HOL Logic has considerable simpler logical

foundations than most other theorem provers. As a consequence, formal theories built in HOL is easily

convincible and can also be easily ported to other proof systems, sometimes automatically [18].

HOL4 is written in Standard ML, a single programming language which plays three different roles:

1. It serves as the underlying implementation language for the core HOL engine;

2. it is used to implement tactics (and tacticals) for writing proofs;

3. it is used as the command language of the HOL interactive shell.

Moreover, using the same language HOL4 users can write complex automatic verification tools by calling

HOL’s theorem proving facilities. (The formal proofs of theorems in CCS theory are mostly done by an

interactive process closely following their informal proofs, with minimal automatic proof searching.)

In this formalisation we consider only single-variable equations/contractions. This considerably

simplifies the required proofs in HOL, also enhances the readability of proof scripts without loss of

generality. (For paper proofs, the multi-variable case is just a routine adaptation.)

4.1 CCS and its transitions by SOS rules

In our CCS formalisation, the type “β Label” (’b or β is the type variable for actions) accounts for

visible actions, divided into input and output actions, defined by HOL’s Datatype package:

val _ = Datatype ‘Label = name ’b | coname ’b‘;

The type “β Action” is the union of all visible actions, plus invisible action τ (now based on HOL’s

option theory). The cardinality of “β Action” (and therefore of all CCS types built on top of it)

depends on the choice (or type-instantiation) of β.

The type “(α, β) CCS”, accounting for the CCS syntax3, is then defined inductively: (’a or α is

2https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/CCS

3The order of type variables α and β is irrelevant. Our choice is aligned with other CCS literals. CCS(h,k) is the CCS

subcalculus which can use at most h constants and k actions. [12] Thus, to formalize theorems on such a CCS subcalculus,

the needed CCS type can be retrieved by instantiating the type variables α and β in “(α, β) CCS” with types having the

corresponding cardinalities h and k. Monica Nesi goes too far by adding another type variable γ for value-passing CCS [25].

https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/CCS

Chun Tian & Davide Sangiorgi 129

the type variable for recursion variables, “β Relabeling” is the type of all relabeling functions, ‘ is for

backquotes of HOL terms):

val _ = Datatype ‘CCS = nil

| var ’a

| prefix (’b Action) CCS

| sum CCS CCS

| par CCS CCS

| restr ((’b Label) set) CCS

| relab CCS (’b Relabeling)

| rec ’a CCS ‘;

We have added some grammar support, using HOL’s powerful pretty printer, to represent CCS

processes in more readable forms (c.f. the column HOL (abbrev.) in Table 1, which summarizes the

main syntactic notations of CCS). For the restriction operator, we have chosen to allow a set of names as

a parameter, rather than a single name as in the ordinary CCS syntax; this simplifies the manipulation of

processes with different orders of nested restrictions.

Operator CCS Notation HOL term HOL (abbrev.)

nil 0 nil nil

prefix u.P prefix u P u..P

sum P +Q sum P Q P + Q

parallel P | Q par P Q P ‖ Q

restriction (ν L) P restr L P ν L P

recursion recA.P rec A P rec A P

relabeling P [rf] relab P rf relab P rf

constant A var A var A

invisible action τ tau τ
input action a label (name a) In a

output action a label (coname a) Out a

Table 1: Syntax of CCS operators, constant and actions

The transition semantics of CCS processes follows Structural Operational Semantics (SOS) in Fig. 1:

⊢ u..P −u→ P [PREFIX]

⊢ P −u→ P ′ ⇒ P + Q −u→ P ′ [SUM1]

⊢ P −u→ P ′ ⇒ Q + P −u→ P ′ [SUM2]

⊢ P −u→ P ′ ⇒ P ‖ Q −u→ P ′ ‖ Q [PAR1]

⊢ P −u→ P ′ ⇒ Q ‖ P −u→ Q ‖ P ′ [PAR2]

⊢ P −label l→ P ′ ∧ Q −label (COMPL l)→ Q′ ⇒ P ‖ Q −τ→ P ′ ‖ Q′ [PAR3]

⊢ P −u→ Q ∧ ((u = τ) ∨ (u = label l) ∧ l /∈ L ∧ COMPL l /∈ L) ⇒
ν L P −u→ ν L Q [RESTR]

⊢ P −u→ Q ⇒ relab P rf −relabel rf u→ relab Q rf [RELABELING]

⊢ CCS_Subst P (rec A P) A −u→ P ′ ⇒ rec A P −u→ P ′ [REC]

The rule REC (Recursion) says that if we substitute all appearances of variable A in P to (recA.P)
and the resulting process has a transition to P ′ with action u, then (recA.P) has the same transition.

From HOL’s viewpoint, these SOS rules are inductive definitions on the tenary relation TRANS of type

“(α, β) CCS →β Action →(α, β) CCS →bool”, generated by HOL’s Hol_reln function.

130 Unique Solutions of Contractions, CCS, and their HOL Formalisation

A useful function that we have defined, exploiting the interplay between HOL4 and Standard ML (and

following an idea by Nesi [24]) is a complex Standard ML function taking a CCS process and returning

a theorem indicating all its direct transitions.4 For instance, we know that the process (a.0 | ā.0) has

three possible transitions: (a.0 | ā.0)
a

−→ (0 | ā.0), (a.0 | ā.0)
ā

−→ (a.0 | 0) and (a.0 | ā.0)
τ

−→ (0 | 0).
To completely describe all possible transitions of a process, if done manually, the following facts should

be proved: (1) there exists transitions from (a.0 | ā.0) (optional); (2) the correctness for each of the

transitions; and (3) the non-existence of other transitions.

For large processes it may be surprisingly hard to manually prove the non-existence of transitions.

Hence the usefulness of appealing to the new function CCS_TRANS_CONV. For instance this function is

called on the process (a.0 | ā.0) thus: (“ is for double-backquotes of HOL terms, > is HOL’s prompt)

> CCS_TRANS_CONV ‘‘par (prefix (label (name "a")) nil)

(prefix (label (coname "a")) nil)‘‘

This returns the following theorem, indeed describing all immediate transitions of the process:

⊢ In “a”..nil ‖ Out “a”..nil −u→ E ⇐⇒
((u = In “a”) ∧ (E = nil ‖ Out “a”..nil) ∨
(u = Out “a”) ∧ (E = In “a”..nil ‖ nil)) ∨

(u = τ) ∧ (E = nil ‖ nil) [Example.ex_A]

4.2 Bisimulation and Bisimilarity

To define (weak) bisimilarity, we first need to define weak transitions of CCS processes. Following the

name adopted by Nesi [24], we define a (possibly empty) sequence of τ -transitions between two processes

as a new relation called EPS (
ǫ

⇒), which is the RTC (reflexive transitive closure, denoted by ∗ in HOL4)

of ordinary τ -transitions of CCS processes:

EPS = (λE E ′. E −τ→ E ′)∗ [EPS_def]

Then we can define a weak transition as an ordinary transition wrapped by two ǫ-transitions:

E =u⇒ E ′ ⇐⇒ ∃E1 E2. E
ǫ

⇒ E1 ∧ E1 −u→ E2 ∧ E2
ǫ

⇒ E ′ [WEAK_TRANS]

For the definition of bisimilarity and the associated coinduction principle [35], we have taken ad-

vantage of HOL’s coinductive relation package (Hol_coreln [15]), a new tool since its Kananaskis-11

release (March 3, 2017).5 This essentially amounts to defining bisimilarity as the greatest fixed-point of

the appropriate functional on relations. Precisely we call the Hol_coreln command as follows: (here

WB is meant to be WEAK_EQUIV (≈) in the rest of this paper; ! and ? stand for universal and existential

quantifiers.)

val (WB_rules , WB_coind , WB_cases) = Hol_coreln ‘

(!(P :(’a, ’b) CCS) (Q :(’a, ’b) CCS).

(!l.

(!P’. TRANS P (label l) P’ ==>

(?Q’. WEAK_TRANS Q (label l) Q’ /\ WB P’ Q’)) /\

(!Q’. TRANS Q (label l) Q’ ==>

(?P’. WEAK_TRANS P (label l) P’ /\ WB P’ Q ’))) /\

(!P’. TRANS P tau P’ ==> (?Q’. EPS Q Q’ /\ WB P’ Q’)) /\

(!Q’. TRANS Q tau Q’ ==> (?P’. EPS P P’ /\ WB P’ Q’))

==> WB P Q)‘;

4If the input process could yield something infinite branching, due to the use of recursion or relabeling operators, the program

will loop forever without outputting a theorem.

5https://hol-theorem-prover.org/kananaskis-11.release.html#new-tools

https://hol-theorem-prover.org/kananaskis-11.release.html#new-tools

Chun Tian & Davide Sangiorgi 131

Hol_coreln returns 3 theorems, of the first being always the same as input term6 (now proved auto-

matically as a theorem). The second and third theorems, namely WB_coind and WB_cases, express

the coinduction proof method for bisimilarity (i.e. any bisimulation is contained in bisimilarity) and the

fixed-point property of bisimilarity (bisimilarity itself is a bisimulation, thus the largest bisimulation):

1. ⊢ ∀WB′.

(∀a0 a1.

WB′ a0 a1 ⇒
(∀ l.

(∀P ′.

a0 −label l→ P ′ ⇒
∃Q′. a1 =label l⇒ Q′ ∧ WB′ P ′ Q′) ∧

∀Q′.

a1 −label l→ Q′ ⇒
∃P ′. a0 =label l⇒ P ′ ∧ WB′ P ′ Q′) ∧

(∀P ′. a0 −τ→ P ′ ⇒ ∃Q′. a1

ǫ
⇒ Q′ ∧ WB′ P ′ Q′) ∧

∀Q′. a1 −τ→ Q′ ⇒ ∃P ′. a0

ǫ
⇒ P ′ ∧ WB′ P ′ Q′) ⇒

∀a0 a1. WB′ a0 a1 ⇒ WB a0 a1 [WB_coind, WEAK_EQUIV_coind]

2. ⊢ ∀a0 a1.

WB a0 a1 ⇐⇒
(∀ l.

(∀P ′.

a0 −label l→ P ′ ⇒
∃Q′. a1 =label l⇒ Q′ ∧ WB P ′ Q′) ∧

∀Q′.

a1 −label l→ Q′ ⇒
∃P ′. a0 =label l⇒ P ′ ∧ WB P ′ Q′) ∧

(∀P ′. a0 −τ→ P ′ ⇒ ∃Q′. a1

ǫ
⇒ Q′ ∧ WB P ′ Q′) ∧

∀Q′. a1 −τ→ Q′ ⇒ ∃P ′. a0

ǫ
⇒ P ′ ∧ WB P ′ Q′ [WB_cases, WEAK_EQUIV_cases]

The coinduction principle WB_coind says that any bisimulation is contained in the resulting relation

(i.e. it is largest), but it didn’t constrain the resulting relation in the set of fixed points (e.g. even the

universal relation — the set of all pairs — would fit with this theorem); the purpose of WB_cases is to

further assert that the resulting relation is indeed a fixed point. Thus WB_coind and WB_cases together

make sure that bisimilarity is the greatest fixed point, as the former contributes to “greatest” while the

latter contributes to “fixed point”. Without HOL’s coinductive relation package, bisimilarity would have

to be defined by following literally Def. 2.1; then other properties of bisimilarity, such as the fixed-point

property in WB_cases, would have to be derived manually (which is quite hard; indeed it was one of the

main results in Nesi’s formalisation work in HOL88 [24]).

4.3 Context, guardedness and (pre)congruence

We have chosen to use λ-expressions (with the type “(α, β) CCS →(α, β) CCS”) to represent multi-

hole contexts. This choice has a significant advantage over one-hole contexts, as each hole corresponds

to one appearance of the same variable in single-variable expressions (or equations). Thus contexts can

6Our mixing of HOL notation and mathematical notation in this paper is not arbitrary. We have to paste here the original

proof scripts, which is written in HOL’s ASCII term notation (c.f. [15] for more details). HOL4 also supports writing Unicode

symbols directly in proof scripts but we did not make use of them. However, all formal definitions and theorems in the paper

are automatically generated from HOL4 in which we have made an effort for generating Unicode and TeX outputs as natural as

possible. What is really arbitrary is the presense/absense of outermost universal quantifiers in all generated theorems.

132 Unique Solutions of Contractions, CCS, and their HOL Formalisation

be directly used in formulating the unique solution of equations theorems in single-variable cases. The

precise definition is given inductively:

CONTEXT (λ t. t)

CONTEXT (λ t. p)

CONTEXT e ⇒ CONTEXT (λ t. a..e t)

CONTEXT e1 ∧ CONTEXT e2 ⇒ CONTEXT (λ t. e1 t + e2 t)

CONTEXT e1 ∧ CONTEXT e2 ⇒ CONTEXT (λ t. e1 t ‖ e2 t)

CONTEXT e ⇒ CONTEXT (λ t. ν L (e t))

CONTEXT e ⇒ CONTEXT (λ t. relab (e t) rf) [CONTEXT_rules]

A context is weakly guarded (WG) if each hole is underneath a prefix:

WG (λ t. p)

CONTEXT e ⇒ WG (λ t. a..e t)

WG e1 ∧ WG e2 ⇒ WG (λ t. e1 t + e2 t)

WG e1 ∧ WG e2 ⇒ WG (λ t. e1 t ‖ e2 t)

WG e ⇒ WG (λ t. ν L (e t))

WG e ⇒ WG (λ t. relab (e t) rf) [WG_rules]

A context is (strongly) guarded (SG) if each hole is underneath a visible prefix:

SG (λ t. p)

CONTEXT e ⇒ SG (λ t. label l..e t)

SG e ⇒ SG (λ t. a..e t)

SG e1 ∧ SG e2 ⇒ SG (λ t. e1 t + e2 t)

SG e1 ∧ SG e2 ⇒ SG (λ t. e1 t ‖ e2 t)

SG e ⇒ SG (λ t. ν L (e t))

SG e ⇒ SG (λ t. relab (e t) rf) [SG_rules]

A context is sequential (SEQ) if each of its subcontexts with a hole, apart from the hole itself, is in

forms of prefixes or sums: (c.f. Def. 3.3 and p.101,157 of [22] for the informal definitions.)

SEQ (λ t. t)

SEQ (λ t. p)

SEQ e ⇒ SEQ (λ t. a..e t)

SEQ e1 ∧ SEQ e2 ⇒ SEQ (λ t. e1 t + e2 t) [SEQ_rules]

In the same manner, we can also define variants of contexts (GCONTEXT) and weakly guarded contexts

(WGS) in which only guarded sums are allowed (i.e. arbitrary sums are forbidden):

GCONTEXT (λ t. t)

GCONTEXT (λ t. p)

GCONTEXT e ⇒ GCONTEXT (λ t. a..e t)

GCONTEXT e1 ∧ GCONTEXT e2 ⇒ GCONTEXT (λ t. a1..e1 t + a2..e2 t)

GCONTEXT e1 ∧ GCONTEXT e2 ⇒ GCONTEXT (λ t. e1 t ‖ e2 t)

GCONTEXT e ⇒ GCONTEXT (λ t. ν L (e t))

GCONTEXT e ⇒ GCONTEXT (λ t. relab (e t) rf) [GCONTEXT_rules]

WGS (λ t. p)

GCONTEXT e ⇒ WGS (λ t. a..e t)

GCONTEXT e1 ∧ GCONTEXT e2 ⇒ WGS (λ t. a1..e1 t + a2..e2 t)

WGS e1 ∧ WGS e2 ⇒ WGS (λ t. e1 t ‖ e2 t)

WGS e ⇒ WGS (λ t. ν L (e t))

WGS e ⇒ WGS (λ t. relab (e t) rf) [WGS_rules]

Chun Tian & Davide Sangiorgi 133

A (pre)congruence is a relation on CCS processes defined on top of CONTEXT. The only difference

between congruence and precongruence is that the former must be an equivalence (reflexive, symmetric,

transitive), while the latter can be just a preorder (reflexive, transitive):

congruence R ⇐⇒
equivalence R ∧
∀x y ctx. CONTEXT ctx ⇒ R x y ⇒ R (ctx x) (ctx y) [congruence_def]

[precongruence_def]precongruence R ⇐⇒
PreOrder R ∧ ∀x y ctx. CONTEXT ctx ⇒ R x y ⇒ R (ctx x) (ctx y)

For example, we can prove that, strong bisimilarity (∼) and rooted bisimilarity (≈c) are both congru-

ence by above definition: (the transitivity proof of rooted bisimilarity is actually not easy.)

⊢ congruence STRONG_EQUIV [STRONG_EQUIV_congruence]

⊢ congruence OBS_CONGR [OBS_CONGR_congruence]

Although weak bisimilarity (≈) is not congruence with respect to CONTEXT, it is indeed “congruence”

with respect to GCONTEXT (or if the CCS syntax were defined with only guarded sum operator [32]) as

weak bisimilarity (≈) is indeed preserved by weakly-guarded sums.

4.4 Coarsest (pre)congruence contained in ≈ (�bis)

As bisimilarity (≈) is not congruence, for this reason rooted bisimilarity has been introduced (Def. 2.2).

In this subsection we discuss two proofs of an important result stating that rooted bisimilarity is the

coarsest congruence contained in bisimilarity [10, 13, 22] (thus it is the best one):

∀p q. p ≈c q ⇐⇒ (∀r. p + r ≈ q + r) . (2)

Actually the coarsest congruence contained in (weak) bisimilarity, namely the bisimilarity congruence

[10], can be constructed as the composition closure (CC) of (weak) bisimilarity:

WEAK_CONGR = CC WEAK_EQUIV [WEAK_CONGR]

CC R = (λg h. ∀c. CONTEXT c ⇒ R (c g) (c h)) [CC_def]

Indeed, for any relation R on CCS processes, the composition closure of R is always finer (i.e. smaller)

than R, no matter if R is (pre)congruence or not7: (here ⊆r stands for relational subset)

⊢ ∀R. CC R ⊆r R [CC_is_finer]

Furthermore, we prove that any (pre)congruence contained inR (which itself may not be) is contained in

the composition closure of R (hence the closure is the coarsest one):

⊢ ∀R R′. congruence R′ ∧ R′ ⊆r R ⇒ R′ ⊆r CC R [CC_is_coarsest]

⊢ ∀R R′. precongruence R′ ∧ R′ ⊆r R ⇒ R′ ⊆r CC R [CC_is_coarsest’]

Given the central role of the sum operator, we also consider the closure of bisimilarity under such

operator, called equivalence compatible with sums (SUM_EQUIV):

SUM_EQUIV = (λp q. ∀r. p + r ≈ q + r) [SUM_EQUIV]

Rooted bisimilarity ≈c (a congruence contained in ≈), is now contained in WEAK_CONGR, which

in turn is trivially contained in SUM_EQUIV, as shown in Fig. 2. Thus, to prove (2), the crux is to

prove that SUM_EQUIV implies rooted bisimilarity (≈c), making all three relations (≈c, WEAK_CONGR and

SUM_EQUIV) equivalent:

∀p q. (∀r. p + r ≈ q + r) ⇒ p ≈c q . (3)

134 Unique Solutions of Contractions, CCS, and their HOL Formalisation

Weak bisimilarity (≈) Equiv. compatible with sums (SUM_EQUIV)

⊆
rr

Bisimilarity congruence (WEAK_CONGR)

⊆

OO ⊆ 11
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞
❞

Rooted bisimilarity (≈c)

⊆

OO

Figure 2: Relationship between the equivalences mentioned

The standard argument [22] requires that p and q do not use up all available labels (i.e. visible actions).

Formalising such an argument requires however a detailed treatment on free and bound names of CCS

processes (with the restriction operator being a binder), not done yet. However, the proof of (3) can be

carried out just assuming that all immediate weak derivatives of p and q do not use up all available labels.

We have formalised this property and called it the free action property:

free_action p ⇐⇒ ∃a. ∀p′. ¬(p =label a⇒ p′) [free_action_def]

With this property, the actual formalisation of (3) says:
[COARSEST_CONGR_RL]

⊢ free_action p ∧ free_action q ⇒ (∀r. p + r ≈ q + r) ⇒ p ≈c q

With an almost identical proof, rooted contraction (�c
bis) is also the coarsest precongruence contained

in bisimilarity contraction (�bis) (the other direction of (2) is trivial):
[COARSEST_PRECONGR_RL]

⊢ free_action p ∧ free_action q ⇒ (∀r. p + r �bis q + r) ⇒ p �c
bis q

The formal proofs of above two results precisely follow Milner [22]. If only p (or q) has free actions

while the other uses up all available labels, the classic assumption fn(p)∪ fn(q) 6= L (here fn stands for

free names) does not hold, and the proof cannot be completed. Our assumption is a bit weaker in the

sense that, p and q do not really need to have the same free action (also, a and a are different actions).

There exists a different, more complex proof of (2), given by van Glabbeek [10], which does not

require any additional assumption. The core lemma says, for any two processes p and q, if there exists

a stable (i.e. τ -free) process k which is not bisimilar with any derivative of p and q, then SUM_EQUIV

indeed implies rooted bisimilarity (≈c):

⊢ (∃k.

STABLE k ∧ (∀p′ u. p =u⇒ p′ ⇒ ¬(p′ ≈ k)) ∧
∀q ′ u. q =u⇒ q ′ ⇒ ¬(q ′ ≈ k)) ⇒

(∀r. p + r ≈ q + r) ⇒
p ≈c q [PROP3_COMMON]

STABLE p ⇐⇒ ∀u p′. p −u→ p′ ⇒ u 6= τ [STABLE]

To actually get this process k, the proof relies on arbitrary infinite sum of processes and uses transfinite

induction to obtain an arbitrary large sequence of processes (firstly introduced by Jan Willem Klop [10])

that are all pairwise non-bisimilar. We have partially formalised this proof, because the typed logic

implemented in various HOL systems (including Isabelle/HOL) is not strong enough to define a type

for all possible ordinal values [26], thus we have replaced transfinite induction with plain induction. As

a consequence, the final result is about a restricted class of processes (which we have taken to be the

finite-state processes). This proof uses extensively HOL’s pred_set theory [19] and has an interesting

mix of CCS and pure mathematics in it. (c.f. [37] for more details.)

7But if R is equivalence (or preorder), the composition closure of R must be congruence (or precongruence). Also there is

no need to put R g h in the antecedent of CC_def, as this is anyhow obtained from the trivial context (λx. x).

Chun Tian & Davide Sangiorgi 135

4.5 Unique solution of contractions

A delicate point in the formalisation of the results about unique solution of contractions are the proof

of Lemma 3.12 and lemmas alike; in particular, there is an induction on the length of weak transitions.

For this, rather than introducing a refined form of weak transition relation enriched with its length, we

found it more elegant to work with traces (a motivation for this is to set the ground for extensions of this

formalisation work to trace equivalence in place of bisimilarity).

A trace is represented by the initial and final processes, plus a list of actions so performed. For

this, we first define the concept of label-accumulated reflexive transitive closure (LRTC). Given a labeled

transition relation R on CCS, LRTC R is a label-accumulated relation representing the trace of transitions:

LRTC R a l b ⇐⇒
∀P.

(∀x. P x [] x) ∧
(∀x h y t z. R x h y ∧ P y t z ⇒ P x (h::t) z) ⇒
P a l b [LRTC_DEF]

The trace relation for CCS can be then obtained by calling LRTC on the (strong, or single-step) labeled

transition relation TRANS (
µ
→) defined by SOS rules:

TRACE = LRTC TRANS [TRACE_def]

If the list of actions is empty, that means that there is no transition and hence, if there is at most one

visible action (i.e., a label) in the list of actions, then the trace is also a weak transition. Here we have

to distinguish between two cases: no label and unique label (in the list of actions). The definition of “no

label” in an action list is easy (here MEM tests if a given element is a member of a list):

NO_LABEL L ⇐⇒ ¬∃ l. MEM (label l) L [NO_LABEL_def]

The definition of “unique label” can be done in many ways, the following definition (a suggestion

from Robert Beers) avoids any counting or filtering in the list. It says that a label is unique in a list of

actions if and only if there is no label in the rest of list:

UNIQUE_LABEL u L ⇐⇒
∃L1 L2. (L1 ++ [u] ++ L2 = L) ∧ NO_LABEL L1 ∧ NO_LABEL L2 [UNIQUE_LABEL_def]

The final relationship between traces and weak transitions is stated and proved in the following

theorem (where the variable acts stands for a list of actions); it says, a weak transition P
u
⇒ P ′ is also a

trace P
acts
−→ P ′ with a non-empty action list acts, in which either there is no label (for u= τ), or u is the

unique label (for u 6= τ):

⊢ P =u⇒ P ′ ⇐⇒
∃acts.

TRACE P acts P ′ ∧ ¬NULL acts ∧
if u = τ then NO_LABEL acts else UNIQUE_LABEL u acts [WEAK_TRANS_AND_TRACE]

Now the formalised version of Lemma 3.8: [UNIQUE_SOLUTION_OF_CONTRACTIONS_LEMMA]

⊢ (∃E. WGS E ∧ P �bis E P ∧ Q �bis E Q) ⇒
∀C.

GCONTEXT C ⇒
(∀ l R.

C P =label l⇒ R ⇒
∃C ′.

136 Unique Solutions of Contractions, CCS, and their HOL Formalisation

GCONTEXT C ′ ∧ R �bis C ′ P ∧
(WEAK_EQUIV ◦r (λx y. x =label l⇒ y)) (C Q)

(C ′ Q)) ∧
∀R.

C P =τ⇒ R ⇒
∃C ′.

GCONTEXT C ′ ∧ R �bis C ′ P ∧
(WEAK_EQUIV ◦r EPS) (C Q) (C ′ Q)

Traces are actually used in the proof of above lemma via the following “unfolding lemma”:

⊢ GCONTEXT C ∧ WGS E ∧ TRACE ((C ◦ FUNPOW E n) P) xs P ′ ∧
LENGTH xs ≤ n ⇒
∃C ′.

GCONTEXT C ′ ∧ (P ′ = C ′ P) ∧
∀Q. TRACE ((C ◦ FUNPOW E n) Q) xs (C ′ Q) [unfolding_lemma4]

It roughly says, for any context C and weakly-guarded context E, if C[En[P]]
xs

=⇒ P ′ and the length

of actions xs 6 n, then P has the form of C ′[P] (meaning that P is not touched during the transitions).

Traces are used for reasoning about the number of intermediate actions in weak transitions. For instance,

from Def. 3.5, it is easy to see that, a weak transition either becomes shorter or remains the same when

moving between �bis-related processes. This property is essential in the proof of Lemma 3.8. We show

only one such lemma, for the case of non-τ weak transitions passing into �bis (from left to right):

⊢ P �bis Q ⇒
∀xs l P ′.

TRACE P xs P ′ ∧ UNIQUE_LABEL (label l) xs ⇒
∃xs′ Q′.

TRACE Q xs′ Q′ ∧ P �bis Q ∧ LENGTH xs′ ≤ LENGTH xs ∧
UNIQUE_LABEL (label l) xs′ [contracts_AND_TRACE_label]

With all above lemmas, we can thus finally prove Theorem 3.9:

⊢ WGS E ⇒ ∀P Q. P �bis E P ∧ Q �bis E Q ⇒ P ≈ Q

[UNIQUE_SOLUTION_OF_CONTRACTIONS]

4.6 Unique solution of rooted contractions

The formal proof of “unique solution of rooted contractions theorem” (Theorem 3.13) has the same

initial proof steps as Theorem 3.9; it then requires a few more steps to handle rooted bisimilarity in

the conclusion. Overall the two proofs are very similar, mostly because the only property we need

from (rooted) contraction is its precongruence. Below is the formally verified version of Theorem 3.13

(having proved the precongruence of rooted contraction, we can use weakly-guarded expressions, without

constraints on sums; that is, WG in place of WGS):
[UNIQUE_SOLUTION_OF_ROOTED_CONTRACTIONS]

⊢ WG E ⇒ ∀P Q. P �c
bis E P ∧ Q �c

bis E Q ⇒ P ≈c Q

Having removed the constraints on sums, the result is similar to Milner’s original ‘unique solution of

equations’ theorem for strong bisimilarity (∼) — the same weakly guarded context (WG) is required:

⊢ WG E ⇒ ∀P Q. P ∼ E P ∧ Q ∼ E Q ⇒ P ∼ Q [STRONG_UNIQUE_SOLUTION]

In contrast, Milner’s “unique solution of equations” theorem for rooted bisimilarity (≈c) has more

severe constraints (must be both strongly guarded and sequential):
[OBS_UNIQUE_SOLUTION]

⊢ SG E ∧ SEQ E ⇒ ∀P Q. P ≈c E P ∧ Q ≈c E Q ⇒ P ≈c Q

Chun Tian & Davide Sangiorgi 137

5 Related work on formalisation

Monica Nesi did the first CCS formalisations for both pure and value-passing CCS [24, 25] using early

versions of the HOL theorem prover.8 Her main focus was on implementing decision procedures (as a

ML program, e.g. [7]) for automatically proving bisimilarities of CCS processes. Her work is the working

basis of ours. However, the differences are substantial, especially in the way of defining bisimilarities. We

greatly benefited from features and standard libraries in recent versions of HOL4, and our formalisation

has covered a much larger spectrum of the (pure) CCS theory.

Bengtson, Parrow and Weber did a substantial formalisation work on CCS, π-calculi and ψ-calculi

using Isabelle/HOL and its nominal logic, with main focus on the handling of name binders [3, 4, 27].

Other formalisations in this area include the early work of T. F. Melham [20] and O.A. Mohamed [23]

in HOL, Compton [8] in Isabelle/HOL, Solange9 in Coq and Chaudhuri et al. [5] in Abella, the latter

focuses on ‘bisimulation up-to’ techniques for CCS and π-calculus. Damien Pous [28] also formalised

up-to techniques and some CCS examples in Coq. Formalisations less related to ours include Kahsai and

Miculan [17] for the spi calculus in Isabelle/HOL, and Hirschkoff [14] for the π-calculus in Coq.

6 Conclusions and future work

In this paper, we have highlighted a formalisation of the theory of CCS in the HOL4 theorem prover

(for lack of space we have not discussed the formalisation of some basic algebraic theory, of the basic

properties of the expansion preorder, and of a few versions of ‘bisimulation up to’ techniques). The

formalisation has focused on the theory of unique solution of equations and contractions. It has also

allowed us to further develop the theory, notably the basic properties of rooted contraction, and the

unique solution theorem for it with respect to rooted bisimilarity. The formalisation brings up and

exploits similarities between results and proofs for different equivalences and preorders. We think that

the statements in the formalisation are easy to read and understand, as they are very close to the original

statements found in standard CCS textbooks [13, 22].

For the future work, it would be worth extending to multi-variable equations/contractions. A key

aspect could be using unguarded constants as free variables (FV) and defining guardedness directly on

expressions of type CCS (instead of CCS → CCS), then linking to contexts. For instance, an expression

is weakly-guarded when each of its free variables, replaced by a hole, results in a weakly-guarded context:

⊢ weakly_guarded1 E ⇐⇒
∀X. X ∈ FV E ⇒ ∀e. CONTEXT e ∧ (e (var X) = E) ⇒ WG e

Formalising other equivalences and preorders could also be considered, notably the trace equivalences,

as well as more refined process calculi such as value-passing CCS. On another research line, one could

examine the formalisation of a different approach [9] to unique solutions, in which the use of contraction

is replaced by semantic conditions on process transitions such as divergence.

Acknowledgements We have benefitted from suggestions and comments from several people from the

HOL community, including (in alphabet order) Robert Beers, Jeremy Dawson, Ramana Kumar, Michael

Norrish, Konrad Slind, and Thomas Türk. The second half of this paper was written in memory of

Michael J. C. Gordon, the creator of HOL theorem prover.

8Part of this work can now be found at https://github.com/binghe/HOL-CCS/tree/master/CCS-Nesi.

9https://github.com/coq-contribs/ccs

https://github.com/binghe/HOL-CCS/tree/master/CCS-Nesi
https://github.com/coq-contribs/ccs

138 Unique Solutions of Contractions, CCS, and their HOL Formalisation

References

[1] S. Arun-Kumar & Matthew Hennessy (1992): An efficiency preorder for processes. Acta Informatica 29(8),

pp. 737–760, doi:10.1007/BF01191894.

[2] Jos C. M. Baeten, Twan Basten & Michel A. Reniers (2010): Process Algebra: Equational Theories of

Communicating Processes. Cambridge University Press, doi:10.1017/CBO9781139195003.

[3] Jesper Bengtson (2010): Formalising process calculi. Ph.D. thesis, Acta Universitatis Upsaliensis.

[4] Jesper Bengtson & Joachim Parrow (2007): A completeness proof for bisimulation in the pi-calculus using

isabelle. Electronic Notes in Theoretical Computer Science 192(1), pp. 61–75, doi:10.1016/j.entcs.

2007.08.017.

[5] Kaustuv Chaudhuri, Matteo Cimini & Dale Miller (2015): A lightweight formalization of the metatheory of

bisimulation-up-to. In: Proceedings of the 2015 Conference on Certified Programs and Proofs, ACM, pp.

157–166, doi:10.1145/2676724.2693170.

[6] Alonzo Church (1940): A formulation of the simple theory of types. The journal of symbolic logic 5(2), pp.

56–68, doi:10.2307/2266170.

[7] Rance Cleaveland, Joachim Parrow & Bernhard Steffen (1993): The Concurrency Workbench: A semantics-

based tool for the verification of concurrent systems. ACM Transactions on Programming Languages and

Systems (TOPLAS) 15(1), pp. 36–72, doi:10.1145/151646.151648.

[8] Michael Compton (2005): Embedding a fair CCS in Isabelle/HOL. In: Theorem Proving in Higher Order

Logics: Emerging Trends Proceedings, p. 30, doi:10.1.1.105.834. Available at https://web.comlab.

ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36.

[9] Adrien Durier, Daniel Hirschkoff & Davide Sangiorgi (2017): Divergence and Unique Solution of Equa-

tions. In Roland Meyer & Uwe Nestmann, editors: 28th International Conference on Concurrency Theory

(CONCUR 2017), Leibniz International Proceedings in Informatics (LIPIcs) 85, Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, pp. 11:1–11:16, doi:10.4230/LIPIcs.CONCUR.2017.11.

Available at http://drops.dagstuhl.de/opus/volltexte/2017/7784.

[10] Rob J. van Glabbeek (2005): A characterisation of weak bisimulation congruence. In: Processes, Terms and

Cycles: Steps on the Road to Infinity, Springer, pp. 26–39, doi:10.1007/11601548_4.

[11] Michael J. C. Gordon, Arthur J. Milner & Christopher P. Wadsworth (1979): Edinburgh LCF: A Mechanised

Logic of Computation. Lecture Notes in Computer Science 78, Springer, Berlin Heidelberg, doi:10.1007/

3-540-09724-4.

[12] Roberto Gorrieri (2017): CCS (25, 12) is Turing-complete. Fundamenta Informaticae 154(1-4), pp. 145–166,

doi:10.3233/FI-2017-1557.

[13] Roberto Gorrieri & Cristian Versari (2015): Introduction to Concurrency Theory. Transition Systems and

CCS, Springer, Cham, doi:10.1007/978-3-319-21491-7.

[14] Daniel Hirschkoff (1997): A full formalisation of π-calculus theory in the calculus of constructions. In:

International Conference on Theorem Proving in Higher Order Logics, Springer, pp. 153–169, doi:10.1007/

BFb0028392.

[15] HOL4 contributors (2018): The HOL System DESCRIPTION. Available at http://sourceforge.net/

projects/hol/files/hol/kananaskis-12/kananaskis-12-description.pdf.

[16] HOL4 contributors (2018): The HOL System LOGIC. Available at http://sourceforge.net/projects/

hol/files/hol/kananaskis-12/kananaskis-12-logic.pdf.

[17] Temesghen Kahsai & Marino Miculan (2008): Implementing spi calculus using nominal techniques. In:

Conference on Computability in Europe, Springer, pp. 294–305, doi:10.1007/978-3-540-69407-6_33.

[18] Joe Leslie-Hurd (2011): The OpenTheory standard theory library. In: NASA Formal Methods Symposium,

Springer, pp. 177–191, doi:10.1007/978-3-642-20398-5_14.

http://dx.doi.org/10.1007/BF01191894
http://dx.doi.org/10.1017/CBO9781139195003
http://dx.doi.org/10.1016/j.entcs.2007.08.017
http://dx.doi.org/10.1016/j.entcs.2007.08.017
http://dx.doi.org/10.1145/2676724.2693170
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1145/151646.151648
http://dx.doi.org/10.1.1.105.834
https://web.comlab.ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36
https://web.comlab.ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.11
http://drops.dagstuhl.de/opus/volltexte/2017/7784
http://dx.doi.org/10.1007/11601548_4
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.3233/FI-2017-1557
http://dx.doi.org/10.1007/978-3-319-21491-7
http://dx.doi.org/10.1007/BFb0028392
http://dx.doi.org/10.1007/BFb0028392
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-logic.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-logic.pdf
http://dx.doi.org/10.1007/978-3-540-69407-6_33
http://dx.doi.org/10.1007/978-3-642-20398-5_14

Chun Tian & Davide Sangiorgi 139

[19] Thomas F. Melham (1992): The HOL pred_sets Library. Universiy of Cambridge Computer Lab, doi:10.

1.1.219.5390. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.

5390.

[20] Thomas F. Melham (1994): A Mechanized Theory of the Pi-Calculus in HOL. Nord. J. Comput. 1(1), pp.

50–76, doi:10.1.1.56.4370. Available at http://core.ac.uk/download/pdf/22878407.pdf.

[21] Robin Milner (1972): Logic for Computable Functions: description of a machine implementation. Technical

Report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE. Available at http://www.dtic.mil/

dtic/tr/fulltext/u2/785072.pdf.

[22] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice-Hall.

[23] Otmane Aït Mohamed (1995): Mechanizing a π-calculus equivalence in HOL. In: International Conference

on Theorem Proving in Higher Order Logics, Springer, pp. 1–16, doi:10.1007/3-540-60275-5_53.

[24] Monica Nesi (1992): A formalization of the process algebra CCS in high order logic. Technical Report

UCAM-CL-TR-278, University of Cambridge, Computer Laboratory. Available at http://www.cl.cam.

ac.uk/techreports/UCAM-CL-TR-278.pdf.

[25] Monica Nesi (1999): Formalising a Value-Passing Calculus in HOL. Formal Aspects of Computing 11(2),

pp. 160–199, doi:10.1007/s001650050046.

[26] Michael Norrish & Brian Huffman (2013): Ordinals in HOL: Transfinite arithmetic up to (and beyond)

ω1. In: International Conference on Interactive Theorem Proving, Springer, pp. 133–146, doi:10.1007/

978-3-642-39634-2_12.

[27] Joachim Parrow & Jesper Bengtson (2009): Formalising the pi-calculus using nominal logic. Logical Methods

in Computer Science 5, doi:10.2168/LMCS-5(2:16)2009.

[28] Damien Pous (2007): New up-to techniques for weak bisimulation. Theoretical Computer Science 380, pp.

164–180, doi:10.1016/j.tcs.2007.02.060.

[29] Andrew W. Roscoe (1998): The theory and practice of concurrency. Prentice Hall. Available at http://

www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

[30] Andrew W. Roscoe (2010): Understanding Concurrent Systems. Springer, doi:10.1007/

978-1-84882-258-0.

[31] Davide Sangiorgi (2011): Introduction to Bisimulation and Coinduction.Cambridge University Press, doi:10.

1017/CBO9780511777110.

[32] Davide Sangiorgi (2015): Equations, contractions, and unique solutions. In: ACM SIGPLAN No-

tices, 50, ACM, pp. 421–432, doi:10.1145/2676726.2676965. Available at https://hal.inria.fr/

hal-01089205.

[33] Davide Sangiorgi (2017): Equations, contractions, and unique solutions. ACM Transactions on Com-

putational Logic (TOCL) 18, p. 4, doi:10.1145/2971339. Available at https://hal.inria.fr/

hal-01647063.

[34] Davide Sangiorgi & Robin Milner (1992): The problem of “Weak Bisimulation up to”. In: International

Conference on Concurrency Theory, Springer, pp. 32–46, doi:10.1007/BFb0084781. Available at http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5964.

[35] Davide Sangiorgi & Jan Rutten (2011): Advanced Topics in Bisimulation and Coinduction. Cambridge

University Press, doi:10.1017/CBO9780511777110.

[36] Konrad Slind & Michael Norrish (2008): A brief overview of HOL4. In: International Conference on Theorem

Proving in Higher Order Logics, Springer, pp. 28–32, doi:10.1007/978-3-540-71067-7_6. Available at

http://ts.data61.csiro.au/publications/nicta_full_text/1482.pdf.

[37] Chun Tian (2017): A Formalization of Unique Solutions of Equations in Process Algebra. Master’s thesis,

AlmaDigital, Bologna. Available at http://amslaurea.unibo.it/14798/.

http://dx.doi.org/10.1.1.219.5390
http://dx.doi.org/10.1.1.219.5390
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.5390
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.219.5390
http://dx.doi.org/10.1.1.56.4370
http://core.ac.uk/download/pdf/22878407.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://dx.doi.org/10.1007/3-540-60275-5_53
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-278.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-278.pdf
http://dx.doi.org/10.1007/s001650050046
http://dx.doi.org/10.1007/978-3-642-39634-2_12
http://dx.doi.org/10.1007/978-3-642-39634-2_12
http://dx.doi.org/10.2168/LMCS-5(2:16)2009
http://dx.doi.org/10.1016/j.tcs.2007.02.060
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1007/978-1-84882-258-0
http://dx.doi.org/10.1017/CBO9780511777110
http://dx.doi.org/10.1017/CBO9780511777110
http://dx.doi.org/10.1145/2676726.2676965
https://hal.inria.fr/hal-01089205
https://hal.inria.fr/hal-01089205
http://dx.doi.org/10.1145/2971339
https://hal.inria.fr/hal-01647063
https://hal.inria.fr/hal-01647063
http://dx.doi.org/10.1007/BFb0084781
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5964
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5964
http://dx.doi.org/10.1017/CBO9780511777110
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://ts.data61.csiro.au/publications/nicta_full_text/1482.pdf
http://amslaurea.unibo.it/14798/

	1 Introduction
	2 CCS
	2.1 Bisimilarity and rooted bisimilarity

	3 Equations and contractions
	3.1 Systems of equations
	3.2 Contractions
	3.3 Systems of contractions
	3.4 Rooted contraction

	4 Formalisation
	4.1 CCS and its transitions by SOS rules
	4.2 Bisimulation and Bisimilarity
	4.3 Context, guardedness and (pre)congruence
	4.4 Coarsest (pre)congruence contained in (_bis)
	4.5 Unique solution of contractions
	4.6 Unique solution of rooted contractions

	5 Related work on formalisation
	6 Conclusions and future work

