
Received: 28 December 2016 Revised: 8 September 2017 Accepted: 22 November 2017

DOI: 10.1002/stc.2132

R E S E A R C H A R T I C L E

On the use of mode shape curvatures for damage
localization under varying environmental conditions

Yaser Shokrani1 Vasilis K. Dertimanis2 Eleni N. Chatzi2 Marco N. Savoia1

1Department of Civil, Chemical,
Environmental, and Materials
Engineering, University of Bologna, 40126
Bologna, Italy
2Department of Civil, Environmental and
Geomatic Engineering, Institute of
Structural Engineering, 8093 ETH Zürich,
Switzerland

Correspondence
Eleni N. Chatzi, Chair of Structural
Mechanics, Institute of Structural
Engineering, Department of Civil,
Environmental and Geomatic
Engineering, 8093 ETH Zürich,
Switzerland.
Email: chatzi@ibk.baug.ethz.ch

Funding information
Albert Lück foundation

Summary

A novel damage localization method is introduced in this study, which exploits
mode shape curvatures as damage features, while accounting for operational
variability. The developed framework operates in an output-only regime,that
is, it does not assume availability of records from the influencing environ-
mental/operational quantities but rather from response quantities alone. The
introduced tool comprises 3 stages pertaining to training, validation, and diag-
nostics. During the training stage, a representation of the healthy, or baseline,
structural state is acquired over varying operational conditions. A data matrix
is formulated, whose individual columns correspond to mode shape curvatures
at distinct operational conditions, and principal component analysis (PCA) is
applied for extraction of the imprints of separate operational sources on these
curvatures. To this end, a residual matrix between the original and the PCA
mapped data is formed serving for statistical characterization of each mode.
Subsequently, during the validation and diagnostics stages, the mode shape cur-
vature matrices for the currently inspected structural state are assembled and the
same PCA mapping is enforced. A typical hypothesis test and a corresponding
damage index are then adopted in order to firstly detect damage, and to secondly
localize damage, should this exist. The implementation of the proposed method
in 2 numerical case studies confirms its effectiveness and the encouraging results
suggest further investigation on operating structural systems.
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1 INTRODUCTION

Civil and mechanical structures are continually advancing in form and complexity but are inevitably exposed to damage
and deterioration since the very first day of operation. At this point in time, developed societies are faced with the issue
of managing and maintaining the significant portion of existing infrastructure, which has reached the end of its design
lifespan. In an effort to handle this issue in a sustainable manner, the concept of structural health monitoring (SHM)
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has emerged in the last decades.[1] SHM relies on monitoring-based supervision, which is commonly carried out in a
continuous and long-term manner, as opposed to the traditional practice of visual inspection, which is inevitably periodic
and often biased to expert judgment.[2] Over the past 35 years, SHM has been the focus of widespread growing attention
of both scholars and practitioners and has evolved rapidly as a result of its economic and safety benefits.[3]

In its broad definition, structural health monitoring pertains to the set of methods and tools concerned with the track-
ing of structural condition with the purpose of ensuring safety, integrity, and optimal operation and maintenance of
infrastructure.[4-6] SHM comprises four distinct levels,[7] namely, (a) detection of the presence of damage; (b) localization
of induced damage; (c) quantification of the severity and extent of damage; and (d) estimation of the remaining service life
of the structure. As damage alarms and intervention triggers are often considered the more critical and urgent tasks, the
former two categories have attracted the largest share of attention in existing literature. The damage detection procedure
typically decomposes sensory information into features that are indicative of the structure's condition, also referred to as
“health.” In this context, damage is often defined as a deviation, in the statistical sense, of the damaged system features
when compared against their baseline, or healthy, signatures.

In picking up such discrepancies, vibration-based methods are often adopted, which rely on the system's dynamic prop-
erties for discriminating between a healthy and unsound structure.[8] The underlying idea in these methods is that a
change in the vibration properties, such as modal frequency, modal shape, or mode shape curvature (MSC),[9] is a sig-
nal of induced damage in the structure.[10, 11] A very comprehensive literature review of these methods is available in the
works of Doebling et al.,[12] Sohn et al.,[13] and Limongelli et al.,[14] whereas further explorations can be found in Catbas
et al.,[15] Catbas and Aktan,[16] and Aktan et al.[17] It should be noted that the behavior of engineered systems does not
always comply with the commonly adopted simplifications of multiple degrees of freedom (DOFs) and vibration modes.
However, for some systems in particular, these simplifications do hold to a great extent. This includes systems that are
broadly exploited in the context of civil infrastructure, such as girder bridges and shear frames. A number of works in fact
prove efficacy of damage detection schemes on such systems. In this context, George et al.[18] employ a measure relying on
normalized energies derived from accelerometers that are distributed on railway bridge structures, demonstrating a direct
link between damage localization and the spatial arrangement of the sensing system. On the other hand, for the case of
shear-type frame structures, Celebi et al.[19] employ interstory drift ratios to estimate damage, once again exploiting the
equivalence of the system to a simplified model.

In a significant portion of published studies on this topic, the environmental factors and their effect on variation of vibra-
tion characteristics of the structure are neglected for the sake of simplicity, with environmental conditions are assumed
to be constant. However, in practice, the structure is subject to continually changing environments, for example, tem-
perature and humidity conditions, throughout its life cycle often masking the changes induced by actual damage or
deterioration.[20-22] The notable influence of varying environmental and operational effects, for example, traffic loads, is
noted in the works of Farrar et al.,[23] Alampalli,[24] Peeters and De Roeck,[25] and Cross et al.,[26] where changes of the
order of up to 50% are observed on natural frequencies. This practical challenge has been addressed more recently in a
number of works,[27-30] attempting to link environmental influences to the evolution of structural parameters, in an effort
to reduce the uncertainty in the monitoring and diagnostics procedures.

The driving principle behind the aforementioned studies lies in simulation of the influence of environmental varia-
tion onto modal parameters and subsequent separation of this from additional variations, which could be a consequence
of damage or irregularity.[31-34] In this context, it is necessary to derive a baseline model for the healthy (or reference)
structural state in order to further recognize irregularities that may be attributed to damage.[35-37] In this sense, Dervilis
et al.[38] present a robust regression framework for linking measured input quantities, such as temperature and wind
speed, to output response data, such as monitored natural frequencies of the Z24 and Tamar bridge. Spiridonakos and
Chatzi[39] employ a Polynomial Chaos Expansion on the Z24 bridge benchmark for furnishing a functional relationship
between input and output quantities, by exploiting available knowledge on the probabilistic distributions of the input. To
the same end, Peeters and De Roeck employ ARX-type models,[25] whereas Magãlhaes et al.[40] adopt dynamic regression
models of the variations of natural frequencies with respect to deck temperatures, deck vibration amplitudes, and modal
damping, to indirectly quantify the influence of the traffic jams over the bridge deck on the natural frequencies. However,
a major drawback of techniques relying on regression lies in the assumption of availability of environmental or opera-
tional load records, often in multiple locations across the structure. Consequently, the optimized number and positioning
of sensors that prove adequate in capturing both the environmental influence and potential damage effects comprise a
challenge.[41, 42] An obvious obstacle lies in the lack of access to direct measurements of operational influences such as
traffic, wind loads, or distributed temperature gradients, which may often result in neglecting sources of considerable
impact.
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In alleviating the need for a direct measurement of environmental or operational variations, a number of output-only
methodologies have been developed, which treat these quantities as embedded variables. Bernal[43] provides an inter-
esting overview of the damage detection and localization problem in civil engineering structures when environmental
metrics are not directly measured. In this context, Figueiredo et al.[44] employ machine learning alternatives; Harmanci
et al. [45] adopt output-only autoregressive models; Sohn et al.[46] and Dervilis et al.[47] rely on auto-associative neural net-
works; whereas Lämsä & Kullaa[42, 48] exploit factor analysis. A notable class of works in this domain takes advantage of
principle component analysis (PCA) as a means of accounting for the effect of environmental and operational factors.[49]

PCA[50] seeks to convert a set of correlated data into a set of linearly uncorrelated ones, deemed principal components.
This is achieved via a linear transformation aiming at reducing dimensionality while retaining the salient information
contained in the data. PCA is thus capable of revealing hidden patterns underlying complex data sets,[51] thereby find-
ing application across diverse fields including signal processing (e.g., the discrete Kosambi-Karhunen-Loève transform),
mechanical engineering and rotating machinery (e.g., the singular spectrum analysis and the proper orthogonal decom-
position), and mathematics (e.g., the singular value decomposition). The interested reader is referred to Jolliffe[52] for
a thorough review. Applications in structural engineering include modal analysis,[53] model updating,[54] reduced order
modeling,[55] and damage identification.[56, 57]

Within this context, Yan et al. successfully detect the presence of damage in both an experimental and simulated data
in varying environmental conditions by performing PCA on modal frequencies as features.[58, 59] Reynders et al.[60] intro-
duce an improved technique based on kernel principal component analysis. Nguyen et al.[61] suggest a time domain
approach to PCA for identifying damage on a bridge in Luxemburg, as well as a frequency domain approach to PCA,
which exploits availability of mode shapes and of an estimated frequency response function, for localization of damage.
Hoell and Omenzetter[62] perform damage detection by applying PCA on the partial autocorrelation coefficients of accel-
eration response records obtained in the healthy and damaged states. In an attempt to perform damage classification,
Tibaduiza et al.[63] combine PCA and self-organizing maps. Li et al.[64] propose the use of a modal sensitivity matrix as
a damage-sensitive feature for use with PCA (see also Koo et al.[65]), whereas Li et al.[66] study the effects of wind and
temperature on the modal frequencies, mode shapes, and damping ratios. Jin et al.[67] propose an adaptive scheme for
updating the reference information when performing damage detection under varying environmental conditions, and
Bellino et al. present a PCA-based approach to detect damage in time-varying systems.[68]

The majority of the previous studies focuses on the first level of the SHM process, that is, detection and possibly clas-
sification. The current paper proceeds one step further, presenting a PCA-based approach to damage localization and
classification under varying environmental conditions. To this end, the MSCs are adopted in this work as features that
enable higher level SHM procedures. To the best of the knowledge of the authors, the MSCs[69-71] have never been used
thus far as a vibration feature in conjunction with the PCA. The aim of this study is to fill this gap and explore this issue by
proposing a simple, straightforward, and effective framework for damage localization under changing operational condi-
tions. To this end, a structural system that is amenable to environmental/operational changes over a long-term horizon
is considered. Given a number of monitored vibration modes, the MSCs are defined as the directional derivatives of the
mode shapes along a specific direction. Under normal operating conditions, the variation of the calculated MSCs is tied
to the independent sources of operational variability.

Accordingly, PCA is applied to the MSCs in a process that comprises a training, validation, and diagnostic stage: In the
first, the MSC data matrices are formulated across a representative operational period, a residual matrix is calculated, and
the statistical characterization of each node is estimated. In the validation and diagnostic stages, the corresponding MSC
data matrices are decomposed using the PCA mapping established during the training stage. A simple hypothesis test and
an induced damage index are then utilized for achieving damage detection and localization, with the latter depending
on the type of considered vibration modes. The developed approach is exemplified through two simulated applications,
across different scenarios of environmental variation, with results validating efficiency and robustness.

2 A FRAMEWORK FOR DAMAGE LOCALIZATION

2.1 Problem statement
Consider a structural system(𝜏, t)with n DOFs, which may be represented by a second-order vector differential equation
of the form

M(𝜏)ẍ(t) + C(𝜏)ẋ(t) + K(𝜏)x(t) = P(𝜏)f(t), (1)
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where x(t) corresponds to the [n× 1] vector of dynamic displacements; M(𝜏), C(𝜏), and K(𝜏) are the [n× n] mass, viscous
damping, and stiffness matrices, respectively; and f(t) is the [m × 1] excitation vector, acting on the structure as defined
by the [n × m] allocation matrix P(𝜏).

The above form of Equation 1 implies that (𝜏, t) responds on two time scales: The short-term scale, expressed by the
temporal quantity t, pertains to structural response due to the effects of the excitation f(t), whereas the long-term scale,
expressed by the temporal quantity 𝜏, pertains to variation of structural properties due to slowly evolving phenomena,
such as the interaction of the structure with its environment. Although no explicit unit need be assigned to the long-term
scale, it is herein assumed that it can be clearly distinguished from the short scale, thus rendering the structure described
by Equation 1 a (slowly) time-varying system.

The vibration modes of (𝜏, t) are characterized by the set

(𝜏) =
{
𝜔𝑗(𝜏), 𝜁𝑗(𝜏),Φ𝑗(𝜏)|𝑗 = 1, … ,n

}
, (2)

where 𝜔j(𝜏), 𝜁 j(𝜏), and 𝚽j(𝜏) correspond to the natural frequencies, the damping ratios, and the mode shapes, respec-
tively, of the jth mode. Without loss of generality, it is assumed that vectors 𝚽j(𝜏) correspond to the normal modes of the
structure. It should be noted that the analysis that follows can be further generalized to structures characterized by com-
plex mode shapes. Equation 2 implies that under normal operating conditions, that is, without structural damage, the
vibration modes will vary only with respect to effects evolving in the long-term scale.

At this point, we shift from the notion of DOFs of dimension n, to the finite number of nodes p in which a system is
commonly discretized and monitored, with each node aggregating information over multiple directions and correspond-
ing DOFs, as illustrated in Figure 1. In this context, the mode shapes may be broken down into their components along
the individual main axes x, y, z:

Φ𝑗(𝜏) =
[
ΦT

𝑗,x(𝜏)Φ
T
𝑗,𝑦(𝜏)Φ

T
𝑗,z(𝜏)

]T
, 𝑗 = 1, … ,n. (3)

The MSC for each mode j and along each distinct direction x, y, or z may then be recovered by the well-known central
difference approximation formula at all available grid points k = 1, … , p:

Ψ𝑗,x(𝜏, k) =
Φ𝑗,x(𝜏, k + 1) − 2Φ𝑗,x(𝜏, k) + Φ𝑗,x(𝜏, k − 1)

Δx2 (4a)

Ψ𝑗,𝑦(𝜏, k) =
Φ𝑗,𝑦(𝜏, k + 1) − 2Φ𝑗,𝑦(𝜏, k) + Φ𝑗,𝑦(𝜏, k − 1)

Δ𝑦2 (4b)

Ψ𝑗,z(𝜏, k) =
Φ𝑗,z(𝜏, k + 1) − 2Φ𝑗,z(𝜏, k) + Φ𝑗,z(𝜏, k − 1)

Δz2 , (4c)

for j = 1, … ,n, where k±1 indicates the neighboring node along the given direction. As explained in what follows, dam-
age detection and localization is herein achieved via efficient simulation of the long-term evolution of the MSC quantities
defined in Equation 4.

FIGURE 1 Mapping of the jth normal mode shape to the nodes of S(𝜏, t)
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2.2 Principal component analysis
Assume that MSC data is available at distinct long-term time instants 𝜏1, 𝜏2, … , 𝜏q. Then for each directional derivative
of Equation 4, the following [p × q] matrix can be formulated for every vibration mode, where subscripts j and x, y, z are
henceforth omitted

D =
⎡⎢⎢⎢⎣
Ψ(𝜏1, 1) Ψ(𝜏2, 1) … Ψ(𝜏q, 1)
Ψ(𝜏1, 2) Ψ(𝜏2, 2) … Ψ(𝜏q, 2)

⋮ ⋮ ⋱ ⋮
Ψ(𝜏1, 𝑝) Ψ(𝜏2, 𝑝) … Ψ(𝜏q, 𝑝)

⎤⎥⎥⎥⎦ . (5)

By applying the PCA, D can be linearly mapped to a matrix K of lower dimension

K = TD, (6)

where K ∈ Rd×q and T ∈ Rd×𝑝 are referred to as the scores and loading matrices, respectively. Both the required dimension
d and matrix T are calculated through the singular value decomposition of the covariance matrix of D

1
q

DDT = UΣ2UT , (7)

where U ∈ R𝑝×𝑝 is orthogonal, whereas Σ ∈ R𝑝×𝑝 is diagonal and contains the singular values. The latter can be grouped
in two subsets by rewriting the right hand side of Equation 7 as[

U1 U2
] [ Σ1 O

O Σ2

] [
UT

1
UT

2

]
, (8)

with
Σ1 = diag{𝜎1, 𝜎2, … , 𝜎d} (9a)

Σ2 = diag{𝜎d+1, 𝜎d+2, … , 𝜎q} (9b)

and
𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎d > 0 ≈ 𝜎d+1 = · · · = 𝜎q (10)

implying that the trailing subset of singular values is negligible and can be discarded. From Equations (7)–(10), it follows
that

1
q

DDT ≈ U1Σ2
1UT

1 , (11)

where for U1 ∈ R𝑝×d, orthogonality is maintained. One can thus select T = UT
1 .

The dimension d ≪ p corresponds herein to the number of all individual sources (e.g., environmental factors and
traffic loads) that affect the MSC under normal operating conditions in the long-term scale. It must be emphasized that
any individual source of structural uncertainty is reflected in d, as long as it is systematic. In general, the choice of an
appropriate value for d is not critical and, usually, a range of values may lead to similar results in terms of reliability,
accuracy, and consistency. It should however be noted that the selection of either quite low or very high values of d may
result in an inadequate mapping. In the former case, the selection discards the (possibly) many influencing factors and
renders the method unable to represent the inherent variation, whereas in the latter case, the probability of overfitting is
increased.

2.3 Damage detection and localization
Following the previous formulation, Figure 2 illustrates the proposed damage detection and localization strategy. The
procedure initiates with the training stage in the healthy, or baseline, structural state, during which a representative pop-
ulation of temporal points in the long-term scale and a number of characteristic vibration modes are selected (input
parameters 𝜏q and n, respectively). The term representative implies that the training set should reflect a range of variations
of the influencing agents. The set of temporal points,  (𝜏) = {𝜏1, 𝜏2, … , 𝜏q}, is then split into two subsets, the estimation
e(𝜏) and validation v(𝜏) set, with e(𝜏) ∪ v(𝜏) =  (𝜏) and e(𝜏) ∩ v(𝜏) = ∅. For each of the temporal points included in
e(𝜏), the matrices Dj are formulated for j = 1, 2, … ,n. Accordingly, PCA as described in the previous section is applied,
and the dimension d and the loading matrices Tj are estimated. A PCA-based approximation of the original data matrix
appearing in Equation 5 for mode j, D̂𝑗 may be obtained by re-mapping the projected data back to the original space as
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D̂𝑗 = TT
𝑗 K𝑗 = TT

𝑗 T𝑗D𝑗 , 𝑗 = 1, 2, … ,n. (12)

The loss of information from this mapping can be assessed by a residual matrix Rj as

R𝑗 = D𝑗 − D̂𝑗 , (13)

the kth individual row of which, herein notated as [Rj]k,∗, quantifies the loss of information at every node of the structure,
from the mapping and recovery process. A statistical distribution is then fitted to the samples of every [Rj]k,∗ vector. It will
be henceforth assumed that each of the row samples of the Rj matrices can be approximated by a normal distribution.
This is by no means a restrictive assumption; it merely determines the outlier detection technique implemented during
the validation and diagnostics stages (see below), and for which several variants are admissible.

The steps involved in the training stage are summarized as follows (see also Figure 2):

[T1] Decide on the number n of the monitored vibration modes.
[T2] Collect MSC data over a number of 𝜏q distinct long-term scale temporal points.
[T3] From the set  (𝜏), extract a representative estimation subset, e(𝜏).
[T4] Construct the data matrices Dj for j = 1, 2, … ,n.

FIGURE 2 Training and diagnostics stages of the proposed damage localization process
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FIGURE 3 Case study I: temperature-dependent structural system in horizontal vibration
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FIGURE 4 Young's modulus of steel versus temperature

TABLE 1 Structural and
environmental parameters for the
structure of Figure 3 (Case study I)

Parameter Value Unit

N 49 -
m 30 kg
L 0.30 m
A 2.83×10−5 m2

TL1 -10 ◦C
TL2 20 ◦C
TR1 -10 ◦C
TR2 40 ◦C
𝛥TR 0.5 ◦C
𝜏q 101 -

[T5] Perform PCA and extract the loading matrices Tj.
[T6] Calculate the residual matrices Rj.
[T7] Perform statistical characterization of the sample row vectors [Rj]k,∗ and estimate the N𝑗(𝜇k, 𝜎

2
k) distributions, for

k = 1, 2, … , p.
The output of the training process contains the loading matrices Tj and the N𝑗(𝜇k, 𝜎

2
k) distributions for every mode and

every node of the structure. Prior to adopting these quantities for the diagnostics process, a verification step is imple-
mented on the MSC data from the long-term scale temporal points of the validation set v(𝜏). The steps involved are



8 of 20 SHOKRANI ET AL.

identical to these of the diagnostics stage overviewed next, so they are not listed here for brevity. It must be noted that, as
Figure 2 indicates, if the validation results are unsuccessful the training stage must be revisited in terms of the training
points and the adopted normality assumption. On the contrary, if validation proves successful, the estimated quantities
may be subsequently used for the diagnostics stage.

This stage pertains to the MSC data matrix established at a long-term temporal point 𝜏I, where damage might have
occurred. This new data may be appended to the existing Dj matrices as trailing columns, that is,

D𝑗I = [D𝑗 ,W𝑗], 𝑗 = 1, 2, … ,n, (14)

where W𝑗 = [Ψ𝑗(𝜏I, 1), … ,Ψ𝑗(𝜏I, 𝑝)]T . Using the loading matrices of the training stage and Equation 12, projection and
re-mapping of DjI reads

D̂𝑗I = TT
𝑗 T𝑗D𝑗I (15)
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1
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0
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FIGURE 5 First five normalized mode shapes of the structure at 𝜏1. The relative position of every node has been arranged vertically for
convenience (Case study I)
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FIGURE 6 Training and validation stages: samples of the residual matrix at Node 10 for the first five vibration modes. The black dots
correspond to the long-term scale temporal points of the estimation set e(𝜏), and the green dots to the ones of the validation set v(𝜏). The
red dashed line corresponds to the mean value 𝜇 of the estimation samples (e.g., the black dots) and the red continuous lines to 𝜇±3𝜎, where
𝜎 is the standard deviation of the estimation samples (Case study I)
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FIGURE 7 Training stage: normal probability plots for the estimation samples of Figure 6 (Case study I)
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FIGURE 8 Diagnostics stage: damage index for 15% damage in Bar element 10 (Case study I)

and the updated residual matrix is retrieved as

R𝑗I = D𝑗I − D̂𝑗I. (16)

The difference between Rj as defined in Equation 13 and RjI appearing in Equation 16 is that the latter contains one
additional sample in every row. It hence should be determined whether this sample complies with the estimated distribu-
tion of this row, N𝑗(𝜇k, 𝜎

2
k), or whether it in fact originates from an unmodelled source, such as damage. This is a typical

univariate single outlier detection problem, which may be addressed using Grubbs' test,[72] provided the data is approx-
imately normal. If this is not the case, then alternative tests should be considered (e.g., the Walsh test). Grubbs' test is
briefly reviewed in the Appendix A. In the herein adopted version, the Grubbs' two-sided test statistic G is compared to
the critical Grubbs value Gcr (for an upper one-tailed test), at a certain significance level 𝛼. If G < Gcr, the null hypothesis
(e.g., no outliers are contained in the data) is adopted, otherwise the alternative hypothesis (e.g., outliers are contained
in the data) is adopted instead. A damage index may then be defined in terms of the distance of the new sample from the
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mean value of the corresponding distribution

𝛽𝑗,k =

{
0 G < Gcr|[R𝑗 ]k,𝜏I |

𝜎k
G > Gcr,

(17)

for j = 1, 2, … ,n and k = 1, 2, … , p. The reason for formulating the damage index of Equation 17, instead of adopting
the pure G statistic and a simple Boolean zero-one decision pattern, is that the underlying mechanisms of structural
damage are often complex, with damage in one location bearing effects, and associated outliers, in further locations along
the structure. It must be further emphasized that there is no guarantee that under a specific damage, the same index is
“excited” in all monitored modes, implying that a damage may be sensitive in only a subset of particular higher order
modes. As Figure 2 indicates, damage may “hit” at different points of the MSCs, or may not be captured at all.

To conclude, the diagnostics stage comprises the following steps:

[I1] Gather MSC data at a long-term scale temporal point 𝜏I.
[I2] Construct the data matrices DjI for j = 1, 2, … ,n as in Equation 14.
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FIGURE 9 Diagnostics stage: damage index for damages at random positions and of random amplitudes along the structure (Case study I)
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[I3] Calculate the residual matrices RjI.
[I4] Perform hypothesis testing for the extended row vectors of RjI.
[I5] Estimate the 𝛽 j,k metric across monitored nodes and for all modes considered.
[I6] Assess/decide on the current state of the structure.

3 CASE STUDIES

3.1 A spring–mass chain model
The proposed scheme is now applied to the damage detection and localization problem of the simulated,
temperature-dependent structural system of Figure 3(a). The structure consists of a series of masses that are inter-
connected with steel bar elements, which are characterized by length L, cross-sectional area A, and nonlinear
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FIGURE 11 Case study II: a 4-span bridge structure
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FIGURE 12 Young's modulus of concrete versus temperature

1 6 11 16 21 26 31 36 41

1 6 11 16 21 26 31 36 41

1 6 11 16 21 26 31 36 41

1 6 11 16 21 26 31 36 41

1 6 11 16 21 26 31 36 41

FIGURE 13 First five mode shapes of the bridge at 𝜏1 (Case study II)
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temperature-dependent modulusE as specified in Figure 4. An equivalent mechanical system is approximated, as shown in
Figure 3(b) with springs of stiffness k equal to EA∕L, while damage is introduced in the form of diverse levels of modulus
reduction in specific bar elements, ranging from 5% to 50%. Table 1 lists the adopted numerical values for the underlying
parameters.

As illustrated in Figure 3(c), the structure is exposed to temperature variations along its length with the temperature of
the far right bar, henceforth referred to as the reference temperature, varying between TR1 and TR2, whereas the tempera-
ture on the far left varies between TL1 and TL2. A linear interpolation is assumed for the temperatures of the intermediate
bar elements (Figure 3(c)). Under this setting, 𝜏q = 101 distinct structural realizations are carried out at different values
of the reference temperature (see Table 1). For the first temperature curve, the one that refers to long-term scale 𝜏1 and
corresponds to reference temperature TR1 = −10 ◦C and far left bar temperature TL1 = −10 ◦C (e.g., with no tempera-
ture gradient), Figure 5 displays the first five normalized mode shapes of the structure, where the relative motions of the
nodes are represented vertically (instead of horizontally), in order to better visualize the induced modal behavior.

Upon establishing that d = 1 is appropriate for the adequate description of the operational variability, Figures 6, 7
illustrate the results of the training and validation stages on Node 10 of the structure, whose behavior is characteristic
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FIGURE 14 Mode shape curvatures of the bridge at 𝜏1 (Case study II)
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of all the other nodes examined. Figure 6 demonstrates the samples of the [Rj]10,∗ vectors for the estimation set e(𝜏),
comprising the first 80 temporal points of the training set  (𝜏). All values are contained within the 𝜇±3𝜎 confidence
intervals, whereas the normal probability plots of Figure 7 confirm the assumption of approximate normality and qualify
Grubbs' test as appropriate. This is further supported in the validation stage, where the appended samples of the validation
set v(𝜏) are bounded by the same statistics, returning zero-valued damage indices.

In the diagnostics stage, Figure 8 plots the damage indices calculated at every mode for a single damage (15% modulus
reduction) at Bar element 10. The damage has been quite accurately detected and localized, returning sufficiently high
values of 𝛽 j,9 and 𝛽 j,10 for Nodes 9 and 10, respectively (e.g., the neighboring nodes of the damaged bar element). One
may also observe the presence of nonnegligible damage indices in further nodes, particularly in the last mode. Although
these values do correspond to outliers of the diagnostics residual matrix in these locations, they may not be considered
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FIGURE 15 Training and validation stages: performance of the residual matrix at Node 15 in horizontal direction (Case study II)
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as significant indications of damage in the respective nodes. Instead, these are attributed to the normality assumption for
the rows of the residual matrices at these locations. An increase in the dimension d may be one way to deal with this issue.

The case of multiple simultaneous damages is also considered in this case study. Figure 9 illustrates the results for
three damages randomly imposed on the structure, both in terms of position (Bar elements 2, 9, and 35) and in terms of
amplitude (40%, 30%, and 45%, respectively). All damages have been successfully detected and localized, albeit localization
is not apparent across all modes. For instance, in the third mode, the damage in Bar element 9 is hardly visualized, while
for the fourth mode the damage in Bar element 35 is not clearly picked up. It is further observed that the values of the
indices among damaged nodes are not consistent. For example, the severity of damage in Bar element 9 is lower (30%)
than the one in Bar element 35 (45%), yet in the fourth mode, the damage index at Node 9 is sufficiently higher than
the one of Nodes 34–35. This observation is expected as damage bears different effects to different modes. Although this
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FIGURE 16 Training and validation stages: performance of the residual matrix at Node 15 in vertical direction (Case study II)
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FIGURE 17 Diagnostics stage: damage index for 10% damage in Bar element 4 (Case study II).
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FIGURE 18 Diagnostics stage: damage index for 20% damage in Bar element 17 (Case study II)

issue may be tackled with availability of a model, and classification of expected damage patterns, this study indicates that
substantial evidence may be collected on the basis of output-only data alone.

The former observation raises the question of whether the damage index of Equation 17 can be correlated to the damage
severity. Returning to Bar element 10, the indices for different damage levels, ranging from 5% to 50%, have been calculated
and displayed in Figure 10 for the first five modes. The correlation between the damage index and the damage severity is
quite obvious for all modes, yet the same damage level does not return the same index value in all modes.

3.2 A 4-span bridge
The second case study pertains to the damage localization problem of the simulated 4-span bridge model illustrated in
Figure 11, which corresponds to a modified version of the one presented in Yan et al.[58] and here serves for benchmarking
purposes. The bridge is discretized in 41 nodes and 40 beam elements, 8 of which are concrete (e.g., 2 around each inter-
mediate support). Environmental variations of the bridge are taken into account by introducing temperature-dependent
Young modulus for steel and concrete, as shown at Figures 4 and 12. The bridge is additionally exposed to temperature
variations along its length, as in the previous case study, with the reference temperature varying between TL1 = −10 ◦C
and TL2 = 40 ◦C and the left between TR1 = −10 ◦C and TR2 = 0 ◦C. A linear interpolation between the two ends is
assumed for the temperature of the intermediate nodes along the bridge (Figure 3(c) and Table 1). The first five mode
shapes of the bridge at 𝜏1 (e.g., no temperature gradient) are displayed in Figure 13, where it is observed that (a) each
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mode is locally excited in only two of the four spans and (b) the relative motion of the nodes in the horizontal direction is
negligible compared to the one in the vertical direction. Yet Figure 14 reveals that the directional MSCs retain significant
information in both directions and they should be equally considered for damage detection and localization.

Damage is again introduced as local modulus reductions in specific positions (see Figure 11), namely, 10% in Bar ele-
ment 4 (Nodes 4 and 5, Span 1), 20% in Bar element 17 (Nodes 16 and 17, Span 2), 30% in Bar element 25 (Nodes 24 and
25, Span 3), and 40% in Bar element 37 (Nodes 36 and 37, Span 4). Under this setting, 101 distinct realizations are carried
out for different values of the reference temperature. Out of these, the odd and the even temporal points compose the
training and the validation sets, e(𝜏) and v(𝜏), respectively.

In order to determine dimension d for each direction, a number of values are examined and the final selection is made
in accordance to the quality of the induced normal probability plots over a number of nodes. Dimensions of d = 1 for
the horizontal and d = 2 for the vertical direction are selected as appropriate. Figures 15, 16 display the results of the
training and the validation stages for an indicative node (Node 15) in both directions. The training and the validation
subsets exhibit quite standard behavior, with the former returning good approximations to the normal distribution and
the latter being constrained within the 99.7% distribution limits, returning zero damage indices.

Having established a statistically sound training stage for the bridge in its healthy state, the results of the diagnostics
stage are expanded individually for each damage over Figures 17 –20. The behavior of the damage index leads to some
interesting remarks. In the case of the first damage (e.g., 10% damage in Bar element 4, see Figure 17), a very accurate
detection and localization result occurs in horizontal direction (Figure 17(a)). The indices of the two neighboring nodes
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FIGURE 19 Diagnostics stage: damage index for 30% damage in Bar element 25 (Case study II)
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FIGURE 20 Diagnostics stage: damage index for 40% damage in Bar element 37 (Case study II)
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of the damaged bar element have returned sufficiently high values in all monitored modes, whereas the values of all other
nodes are essentially zero. On the contrary, a mixed behavior is observed in the vertical direction (Figure 17(b)), where
damage is rather detected (Modes 2 and 5), almost detected (Mode 4), or not detected at all (Modes 1 and 3). This behavior
is partially attributed to the shape of the MSCs at the vertical direction and the point of damage (see Figure 14(b)) in
conjunction with the relatively low damage level. It is noted that higher values of d do not improve the performance: On
the contrary, they produce rather “noisy” damage indices.

The performance of the proposed methodology in all other individual damages is quite similar: The damage is very
accurately detected and localized in the horizontal direction (left plots of Figures 18 –20), whereas it is detected but only
partially localized in the vertical direction (left plots of Figures 18 –20), although the behavior of the latter is significantly
better. This is however expected, because (a) the damages are of higher severity and (b) the locations are more “infor-
mative” in terms of mode shape and MSC behavior (Figures 13 and 14(b)). Nonetheless, it appears that these damages
produce a cloud of indices around the exact location in the vertical direction, rendering the detection successful and the
localization partially successful, at least in comparison to their horizontal counterparts.

Figure 21 illustrates the calculated indices for both directions when all damages are included in the same diagnostics
stage. The aforementioned comments are obviously valid here as well, and it is interesting to observe that the values of the
damage indices in the horizontal direction almost precisely follow the damage severity in most of the vibration modes. It
can be therefore argued that the effects of the underlying damages result as rather distributed along the vertical direction,
while they remain dominantly local along the horizontal.
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FIGURE 21 Diagnostics stage: damage index for multiple damages (Case study II)
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A final remark pertains to the case of noise-corrupted data. Figure 22 contains the same information as Figure 21,
only now the MSCs have been corrupted with Gaussian white noise, by superimposing an independent random value to
each MSC vector entry, of zero mean and standard deviation that is 5% of the value of that entry. From Figure 22(a), it
follows that the damage index maintains the same behavior along the horizontal direction, returning values with slightly
lower amplitudes, whereas in the vertical direction (Figure 22(b)), the “noisy” behavior previously mentioned is rather
amplified along the length of the bridge. This indicates that the damage index exhibits increased robustness against data
contamination.

4 CONCLUSION

This paper introduces a PCA-based method for addressing the challenges in the damage detection and localization process
caused by varying environmental conditions. The developed procedure distinguishes between variations induced due to
environmental influences and changes induced by damage or deterioration. In the case of linear or weakly nonlinear
behavior, the proposed method is successful in discerning between damaged and intact structural data sets. A training
stage is required on the healthy, or baseline system, in order to capture the influence of environmental and operational
effects in the response features and to accurately represent these via a PCA transformation. During the diagnostics stage,
the residual between the original and approximated MSC features is exploited to form a damage index on the basis of a
simple hypothesis test. Values of this index above an acceptable threshold serve for damage detection and localization.
A significant advantage of the proposed method is that it is output-only, that is, it requires no explicit measurement of
environmental or operational parameters, obviating many practical hindrances. The presented numerical case studies
indicate good performance both in terms of detection and in terms of localization, with quantification posing somewhat
of a challenge. Engineering judgment may serve in addressing the latter issue, because a particular type of damage will
often bear more pronounced effects on specific modes, which would imply that quantification ought be sought on the
basis of specific modal subsets as opposed to the entire modal set. A major contribution of this study lies in demonstrating
that substantial evidence towards all four levels of the SHM process (detection, localization, quantification, and decision)
may be collected on the basis of output-only monitoring data.
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APPENDIX A: THE GRUBBS' TEST

The Grubbs' test[72] aims at detecting a single outlier from a sample x = [x1, x2, … , xN] of univariate data that follows
approximately the normal distribution. This is succeeded through the hypothesis test,

H0: The data set contains no outliers.
H1: The data set contains exactly one outlier.

which is treated at a significant level 𝛼. The current study implements the two-sided version of the test, in which the
Grubbs' statistic is defined as

G = max{|x − 𝜇x|}
𝜎x

,

where 𝜇x and 𝜎x are the mean and the standard deviation of the sample, respectively. The critical Grubbs' value reads

Gcr =
N − 1√

N

√√√√√√√
(

t a
2N

,N−2

)2

N − 2 +
(

t a
2N

,N−2

)2

with t a
2N

,N−2 denoting the critical value of the t-distribution at a 𝛼∕(2N) significance level and N − 2 degrees of freedom.
The null hypothesis (H0) is rejected if G > Gcr.
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