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We prove a local limit theorem, that is, a central limit theorem for densities, for a sequence of independent
and identically distributed random variables taking values on an abstract Wiener space; the common law
of those random variables is assumed to be absolutely continuous with respect to the reference Gaussian
measure. We begin by showing that the key roles of scaling operator and convolution product in this infinite
dimensional Gaussian framework are played by the Ornstein–Uhlenbeck semigroup and Wick product,
respectively. We proceed by establishing a necessary condition on the density of the random variables
for the local limit theorem to hold true. We then reverse the implication and prove under an additional
assumption the desired L1-convergence of the density of X1+···+Xn√

n
. We close the paper comparing our

result with certain Berry–Esseen bounds for multidimensional central limit theorems.
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1. Introduction

The classic one-dimensional central limit theorem asserts that, for a given sequence {Xn}n≥1
of independent and identically distributed random variables with mean zero and variance one,
the sequence X1+···+Xn√

n
converges in distribution as n → +∞ to the standard normal law. One

may wonder whether under more restrictive assumptions the previously mentioned convergence
holds in some stronger sense. One can, for instance, be interested in the convergence of the
density (with respect to the Lebesgue measure) of the law of X1+···+Xn√

n
toward the function

1√
2π

e−x2/2. This kind of results goes under the name of local limit theorem: Prohorov [17] es-

tablished convergence in L1, Ranga Rao and Varadarajan [18] obtained point-wise convergence
while Gnedenko [8] studied uniform convergence. Barron [1] proved that the relative entropy (or
Kullback–Leibler divergence) of X1+···+Xn√

n
with respect to the standard Gaussian measure tends

to zero (monotonically along a certain subsequence). Infinite dimensional local limit theorems
were considered by Bloznelis [3], who provided a counterexample on the validity of Prohorov’s
theorem on general Hilbert spaces, and by Davydov [5] who suggested a variant of an infinite
dimensional local limit theorem.

The aim of the present note is to prove a local limit theorem for sequences of independent
and identically distributed random variables taking values on an abstract Wiener space. The main
novelty of our result consists in utilizing some notions and techniques from stochastic analysis as
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the infinite dimensional counterpart of the basic tools adopted to treat the finite dimensional case.
In fact, we show in Proposition 3.1 below that the Wick product and the Ornstein–Uhlenbeck
semigroup are the natural convolution product and scaling operator for densities in our infinite
dimensional Gaussian setting, respectively. Then, by means of the results obtained by Da Pelo et
al. [6] and the Nelson hyper-contractivity theorem we obtain under certain conditions the desired
local limit theorem with an explicit rate of convergence. As a by-product of our method, we
obtain a dimension independent Berry–Essen bound for a large class of multivariate probability
distributions.

The paper is organized as follows: Section 2 collects briefly notation and background material
from the analysis on infinite dimensional Gaussian spaces while in Section 3 after few prepara-
tory results and observations we state and prove our main theorem (see Theorem 3.3 below)
followed by a detailed inspection of the finite dimensional case.

2. Framework

The aim of this section is to collect the necessary background material and fix the notation. For
more details, the interested reader is referred to the books of Bogachev [4], Janson [10] and
Nualart [16].

Let (H,W,μ) be an abstract Wiener space, that means (H, 〈·, ·〉H ) is a separable Hilbert
space which is continuously and densely embedded in the Banach space (W,‖ · ‖W) and μ is a
Gaussian probability measure on the Borel sets B(W) of W such that

∫
W

ei〈w,w∗〉 dμ(w) = e−‖w∗‖2
H /2 for all w∗ ∈ W ∗. (2.1)

Here, W ∗ ⊂ H denotes the dual space of W , which is dense in H , and 〈·, ·〉 stands for the dual
pairing between W and W ∗. We will refer to H as the Cameron–Martin space of W . Set for
p ≥ 1

Lp(W,μ) :=
{
f : W →R such that ‖f ‖p :=

(∫
W

∣∣f (w)
∣∣p dμ(w)

)1/p

< +∞
}
.

It follows from (2.1) that the map

W ∗ → L2(W,μ),

w∗ �→ 〈
w,w∗〉

is an isometry; we can therefore define for μ-almost all w ∈ W the quantity 〈w,h〉 for h ∈ H as
an element of L2(W,μ). This element will be denoted by δ(h).

Recall that by the Wiener–Itô chaos decomposition theorem any element f in L2(W,μ) has
an infinite orthogonal expansion

f =
∑
n≥0

δn(hn),
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where hn ∈ H ⊗̂n, the space of symmetric elements of H⊗n, and δn(hn) stands for the multiple
Wiener–Itô integral of hn. For each n ≥ 0 denote by Jn the orthogonal projection onto the nth
Wiener chaos, that is, for f ∈ L2(W,μ) with chaos expansion

∑
n≥0 δn(hn), one has Jn(f ) =

δn(hn). It is worth to mention that for any p > 1 the operators Jn can be extended to continuous
linear operators from Lp(W,μ) into itself.

For any |λ| ≤ 1 define the operator �(λ) acting on L2(W,μ) as

�(λ)

(∑
n≥0

δn(hn)

)
:=

∑
n≥0

λnδn(hn).

Observe that �(λ) coincides with the Ornstein–Uhlenbeck semigroup

(Ptf )(w) :=
∫

W

f
(
e−tw +

√
1 − e−2t w̃

)
dμ(w̃), w ∈ W, t ≥ 0 (2.2)

(take λ = e−t ) and, therefore, it can be extended to a continuous linear operator on Lp(W,μ) for
every p ≥ 1. One of the crucial features of the operator �(λ) is the hyper-contractive property
proved in the celebrated Nelson theorem (Nelson [15]): for any 1 ≤ p ≤ q ≤ +∞ and |λ| ≤√

p−1
q−1 one has the inequality

∥∥�(λ)f
∥∥

q
≤ ‖f ‖p, f ∈ Lp(W,μ). (2.3)

We also mention the useful property �(λ2)�(λ1) = �(λ2 · λ1) which is equivalent to the semi-
group property of (2.2).

We now define the Wick product: for h, k ∈ H set

E(h) � E(k) := E(h+ k),

where

E(h) := exp
{
δ(h) − 1

2‖h‖2
H

}
.

This is called the Wick product of E(h) and E(k). Extend this operation by linearity to the linear
span of the E(h)’s (which is dense in all the Lp(W,μ)’s) to get a commutative, associative and
distributive (with respect to the sum) multiplication. The Wick product is easily seen to be an
unbounded bilinear form on the Lp(W,μ) spaces; nevertheless, by applying the operator �(λ)

one obtains
∥∥�(α)f � �(β)g

∥∥
p

≤ ‖f ‖p‖g‖p (2.4)

for all |α|, |β| ≤ 1 with α2 + β2 ≤ 1 (see Da Pelo et al. [6]).
If the Wick product f � g of f,g ∈ Lp(W,μ), p > 1 exists in Lp(W,μ), then for any h ∈ H

one has∫
W

(f � g)(w)E(h)(w)dμ(w) =
∫

W

f (w)E(h)(w)dμ(w) ·
∫

W

g(w)E(h)(w)dμ(w). (2.5)
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In particular, for h = 0 one gets∫
W

(f � g)(w)dμ(w) =
∫

W

f (w)dμ(w) ·
∫

W

g(w)dμ(w).

To conclude, we mention the useful functorial behavior of �(λ) with respect to the Wick prod-
uct �:

�(λ)(f � g) = �(λ)f � �(λ)g. (2.6)

For additional information on the Wick product, the reader is referred to the book of Holden et
al. [9], the papers Da Pelo et al. [6,7] and the references quoted there.

3. Main result

In this section, we are going to state and prove a local limit theorem for a sequence of independent
and identically distributed random variables taking values on an abstract Wiener space. The next
proposition tells that in Gaussian spaces the role of the convolution product between functions is
played by the Wick product. Similar results can be obtained for the chi-squared distribution (see
Lanconelli and Sportelli [11]) and the Poisson distribution (see Lanconelli and Stan [13]).

Proposition 3.1. Let X1, . . . ,Xn be independent random variables defined on a probability
space (�,F,P) and taking values on the abstract Wiener space (W,B(W),μ). Assume that
for each j ∈ {1, . . . , n} the law of Xj is absolutely continuous with respect to the measure μ and
denote its density by fj . Choose α1, . . . , αn ∈ [−1,1] such that

∑n
j=1 α2

j = 1. Then the law of

α1X1 + · · · + αnXn is also absolutely continuous with respect to μ with density given by

�(α1)f1 � · · · � �(αn)fn.

Proof. We start computing the Fourier transform of the law of α1X1 +· · ·+αnXn. Fix w∗ ∈ W ∗;
then from the assumption of independence we get

E
[
exp

{
i
〈
α1X1 + · · · + αnXn,w

∗〉}] = E
[
exp

{
i
〈
α1X1,w

∗〉} · · · exp
{
i
〈
αnXn,w

∗〉}]
= E

[
exp

{
i
〈
α1X1,w

∗〉}] · · ·E[
exp

{
i
〈
αnXn,w

∗〉}].
Observe that

E
[
exp

{
i
〈
αjXj ,w

∗〉}] =
∫

W

eiαj 〈w,w∗〉fj (w)dμ(w)

= e
−(α2

j /2)‖w∗‖2
H

∫
W

e
iαj 〈w,w∗〉+(α2

j /2)‖w∗‖2
H fj (w)dμ(w)

= e
−(α2

j /2)‖w∗‖2
H

∫
W

�(αj )
(
ei〈w,w∗〉+‖w∗‖2

H /2)fj (w)dμ(w)

= e−(α2
1/2)‖w∗‖2

H

∫
W

ei〈w,w∗〉+‖w∗‖2
H /2(�(αj )fj

)
(w)dμ(w).
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Here, we used the identity �(λ)E(h) = E(λh) and the self-adjointness of �(λ). Therefore,

E
[
exp

{
i
〈
α1X1 + · · · + αnXn,w

∗〉}]
= E

[
exp

{
i
〈
α1X1,w

∗〉}] · · ·E[
exp

{
i
〈
αnXn,w

∗〉}]

=
n∏

j=1

e
−(α2

j /2)‖w∗‖2
H

∫
W

ei〈w,w∗〉+‖w∗‖2
H /2(�(αj )fj

)
(w)dμ(w)

= e−‖w∗‖2
H /2

n∏
j=1

∫
W

ei〈w,w∗〉+‖w∗‖2
H /2(�(αj )fj

)
(w)dμ(w)

= e−‖w∗‖2
H /2

∫
W

ei〈w,w∗〉+‖w∗‖2
H /2(�(α1)f1 � · · · � �(αn)fn

)
(w)dμ(w)

=
∫

W

ei〈w,w∗〉(�(α1)f1 � · · · � �(αn)fn

)
(w)dμ(w),

where in the third equality we used the assumption
∑n

j=1 α2
j = 1 while in the fourth equality

we utilized the characterizing property of the Wick product (2.5). To sum up, we obtained the
identity

E
[
exp

{
i
〈
α1X1 + · · · + αnXn,w

∗〉}] =
∫

W

ei〈w,w∗〉(�(α1)f1 � · · · � �(αn)fn

)
(w)dμ(w)

which is precisely what we wanted to prove. �

We are now ready to treat our local limit theorem. We begin by providing a necessary condition
which corresponds, from the point of view of the chaos decomposition, to the usual assumption of
the classic central limit theorem. To illustrate this point, consider the following simple situation:

Suppose that the law ν of a real valued random variable X is absolutely continuous with
respect to the one-dimensional standard Gaussian measure μ. Denote by f the density of ν with
respect to μ and assume that f ∈ L2(R,μ). It is well known that the monic Hermite polynomials
{hn}n≥0 constitute an orthogonal basis for L2(R,μ); one can therefore write

f (x) =
∑
n≥0

anhn(x), an ∈R.

Since h0(x) = 1, h1(x) = x and h2(x) = x2 − 1, if X has mean zero and unit variance, one
deduces that

a0 =
∫
R

f (x)dμ(x) =
∫
R

dν(x) = 1,

a1 =
∫
R

xf (x)dμ(x) =
∫
R

x dν(x) = E[X] = 0,

a2 = 1

2

∫
R

(
x2 − 1

)
f (x)dμ(x) = 1

2

(∫
R

x2 dν(x) − 1

)
= 1

2

(
Var(X) − 1

) = 0.
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Therefore, the assumptions of the central limit theorem, that is, mean zero and unit variance,
imply that f has to take the form

f (x) = 1 +
∑
n≥3

anhn(x).

Proposition 3.2. Let {Xn}n≥1 be a sequence of independent and identically distributed random
variables defined on a probability space (�,F,P) and taking values on the abstract Wiener
space (W,B(W),μ). Suppose that the common law of the Xn’s is absolutely continuous with
respect to the measure μ and denote its density by f . Assume that f ∈ Lp(W,μ) for some
p > 1.

If the density of X1+···+Xn√
n

converges to 1 in L1(W,μ) as n tends to infinity, then f must be

orthogonal to the first and second chaoses, that is, J1f = 0 and J2f = 0.

Proof. According to Proposition 3.1 the density of X1+···+Xn√
n

is given by

�

(
1√
n

)
f � · · · � �

(
1√
n

)
f =

(
�

(
1√
n

)
f

)�n

.

Assume that

lim
n→+∞

∥∥∥∥
(

�

(
1√
n

)
f

)�n

− 1

∥∥∥∥
1
= 0.

This implies that for any w∗ ∈ W ∗

lim
n→+∞

∫
W

(
�

(
1√
n

)
f

)�n

(w) exp

{
i
〈
w,w∗〉 + 1

2

∥∥w∗∥∥2
H

}
dμ(w)

=
∫

W

exp

{
i
〈
w,w∗〉 + 1

2

∥∥w∗∥∥2
H

}
dμ(w)

= 1.

On the other hand,

∫
W

(
�

(
1√
n

)
f

)�n

(w) exp

{
i
〈
w,w∗〉 + 1

2

∥∥w∗∥∥2
H

}
dμ(w)

=
(∫

W

�

(
1√
n

)
f (w) exp

{
i
〈
w,w∗〉 + 1

2

∥∥w∗∥∥2
H

}
dμ(w)

)n

=
(∫

W

�

(√
γ√
n

)(
�

(
1√
γ

)
f

)
(w) exp

{
i
〈
w,w∗〉 + 1

2

∥∥w∗∥∥2
H

}
dμ(w)

)n

=
(

1 + i

√
γ√
n

〈
h1,w

∗〉
H

− γ

n

〈
h2,

(
w∗)⊗2〉

H⊗2 + o

(
1

n

))n

,
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where the hk’s are the kernels in the Wiener–Itô chaos expansion of �( 1√
γ
)f and γ ≥ 1 is chosen

big enough to guarantee that �( 1√
γ
)f ∈ L2(W,μ) (this can be done via inequality (2.3)). The

limit of the last expression is 1, for all w∗ ∈ W ∗, provided that h1 = 0 and h2 = 0 which in turn
implies the same condition on the kernels of f . �

The following is the main result of the present paper. It reverses under an additional smooth-
ness condition the implication of the previous proposition.

Theorem 3.3. Let {Xn}n≥1 be a sequence of independent and identically distributed random
variables defined on a probability space (�,F,P) and taking values on the abstract Wiener
space (W,B(W),μ). Suppose that the common law of the Xn’s is absolutely continuous with
respect to the measure μ and with a density of the form �(

√
α)f where f is a non-negative

element of Lp(W,μ) for some p > 1 and α ∈]0,1[.
If the density of the Xn’s is orthogonal to the first and the second Wiener chaoses, then the

density of

X1 + · · · + Xn√
n

(3.1)

converges in L1(W,μ) to 1 as n tends to infinity with rate of convergence of order 1√
n

.

Remark 3.4. The function f in the statement of the previous theorem is itself a density function:
it is by assumption non-negative and its integral over the whole space is, due to the identity

∫
W

(
�(

√
α)f

)
(w)dμ(w) =

∫
W

f (w)dμ(w),

equal to one.

Remark 3.5. The assumption that Xn has a density of the form �(
√

α)f in the statement of
Theorem 3.3 has a clear probabilistic meaning; in fact, using Proposition 3.1 and the identity

�(
√

α)f = �(
√

α)f � �(
√

1 − α)1

we deduce that Xn has a density of the form �(
√

α)f if and only if the law of Xn is equal to the
one of

√
αX + √

1 − αZ where the density of X is f and Z is an independent Gaussian random
variable with law μ (and hence unit density). This smoothness condition corresponds with the
one required by Linnik [14] in proving a finite dimensional information-theoretic central limit
theorem.

Proof of Theorem 3.3. From Proposition 3.1, the density of X1+···+Xn√
n

is given by

�

(√
α√
n

)
f � · · · � �

(√
α√
n

)
f =

(
�

(√
α√
n

)
f

)�n

.
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Observe that in view of (2.6) we can write without ambiguity the right-hand side of the previous

equation as �(
√

α√
n
)f �n.

Our aim is to prove that

lim
n→+∞

∥∥∥∥�

(√
α√
n

)
f �n − 1

∥∥∥∥
1
= 0.

First of all, exploiting the associativity and distributivity of the Wick product we write

�

(√
α√
n

)
f �n − 1 =

n∑
j=1

�

(√
α√
n

)
f �j − �

(√
α√
n

)
f �j−1

=
n∑

j=1

�

(√
α√
n

)
f �j−1 �

(
�

(√
α√
n

)
f − 1

)
.

Now take the L1(W,μ)-norm and use the triangle inequality:

∥∥∥∥�

(√
α√
n

)
f �n − 1

∥∥∥∥
1

=
∥∥∥∥∥

n∑
j=1

�

(√
α√
n

)
f �j−1 �

(
�

(√
α√
n

)
f − 1

)∥∥∥∥∥
1

≤
n∑

j=1

∥∥∥∥�

(√
α√
n

)
f �j−1 �

(
�

(√
α√
n

)
f − 1

)∥∥∥∥
1
.

Apply inequality (2.4) (actually we need only the L1-form of the inequality which was proven
before in the paper Lanconelli and Stan [12]) to get

∥∥∥∥�

(√
α√
n

)
f �n − 1

∥∥∥∥
1

≤
n∑

j=1

∥∥∥∥�

(√
α√
n

)
f �j−1 �

(
�

(√
α√
n

)
f − 1

)∥∥∥∥
1

≤
n∑

j=1

∥∥∥∥�

(
1√
n

)
f �j−1

∥∥∥∥
1
·
∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1

=
∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1
·

n∑
j=1

∥∥∥∥�

(
1√
n

)
f �j−1

∥∥∥∥
1
.

Observe that employing once again inequality (2.4) we can bound the last sum as

n∑
j=1

∥∥∥∥�

(
1√
n

)
f �j−1

∥∥∥∥
1

≤
n∑

j=1

∥∥∥∥�

(√
j − 1√

n

)
f

∥∥∥∥
j−1

1

≤
n∑

j=1

‖f ‖j−1
1

= n.
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Here, we are using the fact that f is a density function (in particular is non-negative and with
integral with respect to μ equal to one). Therefore,

∥∥∥∥�

(√
α√
n

)
f �n − 1

∥∥∥∥
1

≤
∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1
·

n∑
j=1

∥∥∥∥�

(
1√
n

)
f �j−1

∥∥∥∥
1

(3.2)

≤ n ·
∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1
.

Since we are assuming f to be in Lp(W,μ) for some p > 1, by the Nelson hyper-contractive
property (2.3) there exists a γ ≥ 1 such that �( 1√

γ
)f ∈ L2(W,μ). Hence, choosing n big enough

to ensure that αγ
(1−α)n

≤ 1 we can write

∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1

=
∥∥∥∥�

( √
αγ√

(1 − α)n

)
�

(
1√
γ

)
f − 1

∥∥∥∥
1

≤
∥∥∥∥�

( √
αγ√

(1 − α)n

)
�

(
1√
γ

)
f − 1

∥∥∥∥
2

=
(∑

k≥3

k!
(

αγ

(1 − α)n

)k

‖hk‖2
H⊗k

)1/2

,

where the hk’s are the kernels in the Wiener–Itô chaos decomposition of �( 1√
γ
)f . Recall that

the assumptions on the densities of the random variables Xk’s and properties of the Ornstein–
Uhlenbeck semigroup imply that the chaos expansion of �( 1√

γ
)f does not contain chaoses of

the first and second orders.
Inserting the last estimate in (3.2), we get

∥∥∥∥�

(√
α√
n

)
f �n − 1

∥∥∥∥
1

≤ n ·
∥∥∥∥�

( √
α√

(1 − α)n

)
f − 1

∥∥∥∥
1

≤ n ·
(∑

k≥3

k!
(

αγ

(1 − α)n

)k

‖hk‖2
H⊗k

)1/2

(3.3)

≤ n

(
αγ

(1 − α)n

)3/2(∑
k≥3

k!‖hk‖2
H⊗k

)1/2

= 1√
n

(
αγ

1 − α

)3/2(∑
k≥3

k!‖hk‖2
H⊗k

)1/2

(recall that we are assuming n ≥ αγ
1−α

). The last series, being equal to ‖�( 1√
γ
)f ‖2

2 − 1, is con-
vergent; we can therefore pass to the limit as n tends to infinity and obtain the desired result. �
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3.1. The finite dimensional case: A dimension independent Berry–Esseen
bound

Our main result, Theorem 3.3, provides a local limit theorem for independent and identically
distributed random variables taking values on an abstract Wiener space (W,H,μ). Observe that
for any d ∈ N the Euclidean space R

d together with a standard d-dimensional Gaussian mea-
sure μ is an example of such a space (in this case W = H = R

d ); therefore, the conclusion of
Theorem 3.3 remains valid in this finite dimensional framework.

We now want to analyze this particular case in some detail. Let {Xn}n≥1 be a sequence of inde-
pendent and identically distributed d-dimensional random vectors. Assume that the common law
of the Xn’s is absolutely continuous with respect to μ with a density g belonging to L2(Rd ,μ)

(as before we can replace the exponent 2 with p > 1 and use Nelson’s estimate). In Theorem 3.3,
we assumed that:

(i) g is of the form �(
√

α)f for some α ∈]0,1[ and a non-negative f in L2(Rd,μ);
(ii) g is orthogonal to the first and second Wiener chaoses.

These two conditions are equivalent, respectively, to:

(i′) g is of the form

g(x) =
∫
Rd

f (
√

αx + √
1 − αy)dμ(y), x ∈ R

d

for some α ∈]0,1[ and a non-negative f in L2(Rd ,μ);
(ii′) E[Xn] = 0 and the covariance matrix of the vector Xn is the identity matrix.

The equivalence between (i) and (i′) is known in the literature as the Mehler’s formula (e.g., see
Janson [10]). Concerning the second equivalence, observe that the sets of functions

{
hj (x) = xj , j = 1, . . . , d

}
and

{
lij (x) = xixj − δij , i, j = 1, . . . , n

}
constitute an orthogonal basis for the first and second homogeneous chaoses, respectively. There-
fore, if g satisfies (ii) then

E
[
Xi

n

] =
∫
Rd

xig(x) dμ(x)

= 0 for all i = 1, . . . , d

and

Cov
(
Xi

n,X
j
n

) = E
[
Xi

nX
j
n

] − E
[
Xi

n

]
E

[
X

j
n

]

=
∫
Rd

xixjg(x) dμ(x)

=
∫
Rd

δij g(x) dμ(x)

= δij for all i, j = 1, . . . , d
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which corresponds to (ii′) (the converse is clearly also true).
Recall in addition that the total variation distance between two probability measures on R

d ,
say ν1 and ν2, is defined by

dTV(ν1, ν2) := sup
A∈B(Rd )

∣∣ν1(A) − ν2(A)
∣∣;

moreover, if ν1 and ν2 are absolutely continuous with respect to μ with densities f1 and f2,
respectively, then one has

dTV(ν1, ν2) = 1

2

∫
Rd

∣∣f1(x) − f2(x)
∣∣dμ(x).

With this notation at hand and following the preceding discussion, we can reformulate Theo-
rem 3.3 as follows.

Corollary 3.6. Let {Xn}n≥1 be a sequence of independent and identically distributed d-
dimensional random vectors. Assume that the common law of the Xn’s is absolutely continuous
with respect to μ with a density g belonging to L2(Rd ,μ). If conditions (i′) and (ii′) from above
are satisfied, then for n ≥ α

1−α
one has

dTV(νSn,μ) ≤ 1

2

1√
n

(
α

1 − α

)3/2(‖f ‖2
2 − 1

)1/2
, (3.4)

where νSn denotes the law of Sn := X1+···+Xn√
n

.

Proof. Inequality (3.4) follows from (3.3) where we can take γ = 1 since f ∈ L2(Rd ,μ). �

Inequality (3.4) provides a Berry–Esseen type bound which depends on α, on the second
moment of the density f but not on the dimension d . This is in contrast to a series of known
results where the right-hand side of (3.4) depends on d . More precisely, Bentkus [2] (see also the
references quoted there for earlier results) proves under the assumption (ii′) from above and the
finiteness of β := E[‖Xn‖3] (here ‖ · ‖ is the d-dimensional Euclidean norm) the inequality

sup
A∈C

∣∣νSn(A) − μ(A)
∣∣ ≤ 400 · β · d1/4

√
n

, (3.5)

where C is the class of convex sets. The bound in (3.5) contains the best known dependence on
the dimension under those assumptions. Our Corollary 3.6 requires more stringent conditions,
namely (i′), but has the advantage of being dimension independent.
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