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We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA)
suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of
variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations
to predefined categories, (2) gives factorial maps displaying observations and categories, and (3) optimally assigns observations
to categories. MUSUBADA handles cases with more variables than observations and can project portions of the data table (e.g.,
subtables, which can represent participants or ROIs) on the factorial maps. Therefore MUSUBADA can analyze datasets with
different voxel numbers per participant and, so does not require spatial normalization. MUSUBADA statistical inferences are
implemented with cross-validation techniques (e.g., jackknife and bootstrap), its performance is evaluated with confusion matrices
(for fixed and random models) and represented with prediction, tolerance, and confidence intervals. We present an example where
we predict the image categories (houses, shoes, chairs, and human, monkey, dog, faces,) of images watched by participants whose
brains were scanned. This example corresponds to a DA question in which the data table is made of subtables (one per subject)

and with more variables than observations.

1. Introduction

A standard problem in neuroimaging is to predict category
membership from a scan. Called “brain reading” by Cox
and Savoy [1], and more generally multi-voxel pattern anal-
ysis (MVPA, for a comprehensive review see, e.g., [2]), this
approach is used when we want to “guess” the type of cat-
egory of stimuli processed when a participant was scanned
and when we want to find the similarity structure of
these stimulus categories (for a review, see, e.g., [3]). For
datasets with the appropriate structure, this type of problem
is addressed in multivariate analysis with discriminant
analysis (DA). However, the structure of neuroimaging data

precludes, in general, the use of DA. First, neuroimaging
data often comprise more variables (e.g., voxels) than
observations (e.g., scans). In addition, in the MVPA frame-
work (see, e.g., the collection of articles reported in [2]),
fMR1 data are collected as multiple scans per category of
stimuli and the goal is to assign a particular scan to its
category. These fMRI data do not easily fit into the standard
framework of DA, because DA assumes that one row is one
observation (e.g., a scan or a participant) and one column
is a variable (e.g., voxel). This corresponds to designs in
which one participant is scanned multiple times or multiple
participants are scanned once (assuming that the data are
spatially normalized—e.g., put in Talairach space). These



designs can fit PET or SPECT experiments but do not fit
standard fMR1 experiments where, typically, multiple partic-
ipants are scanned multiple times. In particular, DA cannot
accommodate datasets with different numbers of variables
per participant (a case that occurs when we do not use spatial
normalization). Finally, statistical inference procedures of
DA are limited by unrealistic assumptions, such as normality
and homogeneity of variance and covariance.

In this paper, we present a new discriminant analy-
sis method called Multiple Subject Barycentric Discrim-
inant Analysis (MUSUBADA) which implements a DA-
like approach suitable for neuroimaging data. Like stan-
dard discriminant analysis, MUSUBADA is used to assign
observations to predefined categories and gives factorial
maps in which observations and categories are represented
as points, with observations being assigned to the closest
category. But, unlike DA, MUSUBADA can handle datasets
with multiple participants when each participant provides a
different number of variables (e.g., voxels). Each participant
is considered as a subtable of the whole data table and the
data of one participant can also be further subdivided into
more subtables which can constitute, for example, regions
of interest (ROIs). MUSUBADA processes these subtables by
projecting portions of the subtables on the factorial maps.
Consequently, MUSUBADA does not require spatial nor-
malization in order to handle “group analysis.” In addition,
MUSUBADA can handle datasets with a number of variables
(i.e., voxels) larger than the number of observations.

We illustrate MUSUBADA with an example in which
we predict the type of images that participants’ were
watching when they were scanned. For each participant, one
anatomical ROI was used in the analysis. Because the ROIs
were anatomically defined, the brain scans were not spatially
normalized and the corresponding number of voxels, as well
as their locations, were different for each participant.

We decided to use hand-drawn ROIs, we could also have
use functional localizers as these are still widely used (and
constitute a valid approach as long as the localizer is not
confounded with the experimental tasks). Hand drawing
these ROIs is obviously very time consuming and could
restrict the use of our technique to only small N studies
(or to very dedicated teams) and therefore could also make
studies harder to replicate. Fortunately, there are ways of
obtaining ROIs without drawing them by hand. Specifically,
as an alternative to manual tracing and functional localizers,
recent methods have been developed to choose ROIs for
each subject which are both automatic and a priori. These
methods take labels from a standard anatomical atlas such
as AAL [4], Tailarach [5], or Brodman [6] and warp
these labels to coordinates within each subject’s anatomical
space. The anatomical coordinates are then downsampled
to the subject’s functional space. These steps can either be
completely automated via extensions to standard software,
such as IBASPM [7] or by reusing built-in tools, such as
the linear FLIRT [8] and nonlinear FNIRT [9] of FSL.
Because standard single-subject atlases do not account for
between-subject variation [10], it may be preferable to use
probabilistic atlases determined on multiple subjects (e.g.,
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[11]). As an alternative to anatomical atlases entirely, stereo-
tactic coordinates can also be taken from a meta-analysis
and warped into coordinates within the subject’s functional
space. Although meta-analyses are generally performed for
the task at hand, methods exist for automating even meta-
analyses using keywords in published articles (see, e.g.,
NeuroSynth: [12]).

1.1. Overview of the Method. MUSUBADA comprises two
steps: (1) barycentric discriminant analysis (BADA) analyzes
a data table in which observations (i.e., scans) are rows and
in which variables (i.e., voxels) are columns and where each
participant is represented by a subset of the voxels (i.e., one
participant is a “subtable” of the whole data table), (2) and
projection of the subtables representing the participants on
the solution computed by BADA (this is the “MUSU” step
in MUSUBADA). In addition, the subtable representing one
participant could also be further subdivided into subtables
representing, for example, the participant’s ROIs (the ROIs
can differ with the participants).

BADA generalizes discriminant analysis and, like DA, it is
performed when measurements made on some observations
are combined to assign observations to a-priori defined
categories. BADA is, actually, a class of methods which all rely
on the same principle: each category of interest is represented
by the barycenter of its observations (i.e., the weighted
average; the barycenter is also called the center of gravity of
the observations of a given category), and, then, a generalized
principal component analysis (GPCA) is performed on the
category by variable matrix. This analysis gives a set of
discriminant factor scores for the categories and another set
of factor scores for the variables. The original observations
are then projected onto the category factor space, providing a
set of factor scores for the observations. The distance of each
observation to the set of categories is computed from the
factor scores and each observation is assigned to the closest
category.

The comparison between the a-priori and a-posteriori
category assignments is used to assess the quality of the
discriminant procedure. When the quality of the model is
evaluated for the observations used to build the model, we
have a fixed effect model. When we want to estimate the
performance of the model for new or future observations,
we have a random effect model. In order to estimate the
quality of the random effect model, the analysis is performed
on a subset of the observations called the training set and
the predictive performance is evaluated with a different set
of observations called the festing set. A specific case of
this approach is the “leave-one-out” technique (also called
jackknife) in which each observation is used, in turn, as
the testing set whereas the rest of the observations play
the role of the training set. This scheme has the advantage
of providing an approximately unbiased estimate of the
generalization performance of the model [13]. The quality
of the discrimination can also be evaluated with an R?-type
statistic which expresses the proportion of the data variance
explained by the model. Its significance can be evaluated with
standard permutation tests.
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The stability of the discriminant model can be assessed
by a resampling strategy such as the bootstrap (see [13,
14]). In this procedure, multiple sets of observations are
generated by sampling with replacement from the original set
of observations, and by computing new category barycenters,
which are then projected onto the original discriminant
factor scores. For convenience, the confidence intervals of
the barycenters can be represented graphically as a confidence
ellipsoid that encompasses a given proportion (say 95%)
of the barycenters. When two category ellipsoids do not
intersect, these groups are significantly different.

The problem of multiple tables corresponds to MUSUB-
ADA per se and it is implemented after the BADA step. In the
MUSUBADA step, each subtable is projected onto the factor
scores computed for the whole data table. These projections
are also barycentric as their average gives the factor scores
of the whole table. This last step integrates other multitable
techniques such as multiple factor analysis or STATIS [15-
19] which have also been used in brain imaging (see, e.g.,
for recent examples [20-22]). In addition to providing
subtable factor scores, MUSUBADA evaluates and represents
graphically the importance (often called the contribution) of
each subtable to the overall discrimination. A sketch of the
main steps of MUSUBADA is shown in Figure 1.

MUSUBADA incorporates BADA which, itself, is a
GPCA performed on the category barycenters and as such
MUSUBADA implements a discriminant analysis version
of different multivariate techniques such as correspondence
analysis, biplot analysis, Hellinger distance analysis, and
canonical variate analysis (see, e.g., [23-26]). In fact, for
each specific type of GPCA, there is a corresponding version
of BADA. For example, when the GPCA is correspondence
analysis, this gives the most well-known version of BADA:
discriminant correspondence analysis (DICA, sometimes
also called correspondence discriminant analysis; see [23,
27-31]).

2. Notations

Matrices are denoted with bold uppercase letters (i.e.,
X) with generic element denoted with the corresponding
lowercase italic letter (i.e., x). The identity matrix is denoted
I. Vectors are denoted with bold lowercase letter (i.e., b) with
generic element denoted with the corresponding lower case
italic (i.e., b).

The original data matrix is an N observation by ]
variables matrix denoted X. Prior to the analysis, the matrix
X can be preprocessed by centering (i.e., subtracting the
column mean from each column), by transforming each
column into a Z-score, or by normalizing each row so that
the sum of its elements or the sum of its squared elements
is equal to one (the rationale behind these different types
of normalization is discussed later on). The observations in
X are partitioned into I a-priori categories of interest with
N; being the number of observations of the ith category
(and so Z,I- N; = N). The columns of matrix X can be
arranged in K a priori subtables. The numbers of columns
of the kth subtable are denoted J; (and so ZkK]k = 7).

So, the matrix X can be decomposed into I by K blocks
as

1 k K
1 [Xi, - Xk XK |
X = (1)
1 X, 1 . Xi,k Xz K
I | X, -« Xk Xk |

2.1. Notations for the Categories (Rows). We denote by Y
the N by I design (aka dummy) matrix for the categories
describing the rows of X: y,; = 1 when row n belongs to
category and i, y,; = 0, otherwise. We denote by m the N
by 1 vector of masses for the rows of X and by M the N by
N diagonal matrix whose diagonal elements are the elements
of m (i.e., using the diag operator which transforms a vector
into a diagonal matrix, we have M = diag{m}). Masses are
positive numbers and it is convenient (but not necessary) to
have the sum of the masses equal to one. The default value
for the mass of each observation is often 1/N. We denote by
b the I by 1 vector of masses for the categories describing the
rows of X and by B the I by I diagonal matrix whose diagonal
elements are the elements of b.

2.2. Notations for the Subtables (Columns). We denote by Z
the J by K design matrix for the subtables from the columns
of X: zjx = 1if column j belongs to subtable k, zjx = 0,
otherwise. We denote by w the J by 1 vector of weights for
the columns of X and by W the J by J diagonal matrix
whose diagonal elements are the elements of w. We denote
by c the K by 1 vector of weights for the subtables of X and
by C the K by K diagonal matrix whose diagonal elements
are the elements of c. The default value for the weight of
each variable is 1/], a more general case requires only W
to be positive definite and this includes nondiagonal weight
matrices.

3. Barycentric Discriminant Analysis (BADA)

The first step of BADA is to compute the barycenter of each
of the I categories describing the rows. The barycenter of a
category is the weighted average of the rows in which the
weights are the masses rescaled such that the sum of the
weights for each category is equal to one. Specifically, the I
by J matrix of barycenters, denoted R, is computed as

R = diag{Y"M1} 'Y"MX, )

where 1 is an N by 1 vector of 1s and the diagonal matrix
diag{YMl}_1 rescales the masses of the rows such that their
sum is equal to one for each category.

3.1. Masses and Weights. The type of preprocessing and the
choice of the matrix of masses for the categories (B) and the
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FiGure 1: The different steps of BADA.

matrix of weights for the variables (W) is crucial because
these choices determine the type of GPCA used.

For example, discriminant correspondence analysis is
used when the data are counts. In this case, the preprocessing
is obtained by transforming the rows of R into relative
frequencies, and by using the relative frequencies of the
barycenters as the masses of the rows and the inverse of
the column frequencies as the weights of the variables.
Another example of GPCA, standard discriminant analysis,
is obtained when W is equal to the inverse of the within
group variance-covariance matrix (which can be computed
only when this matrix is full rank). Hellinger distance
analysis (also called “spherical factorial analysis”; [32-35]) is
obtained by taking the square root of the relative frequencies
for the rows of R and by using equal weights and masses for
the matrices W and M. Interestingly, the choice of weight
matrix W is equivalent to defining a generalized Euclidean
distance between J-dimensional vectors [32]. Specifically, if
X, and X, are two J-dimensional vectors, the generalized
Euclidean squared distance between these two vectors is

d\ZN(Xan’) = (Xn - Xn’)TW(Xn - Xn’)- (3)

3.2. GPCA of the Barycenter Matrix. Essentially, BADA boils
down to a GPCA of the barycenter matrix R under the con-
straints provided by the matrices B (for the I categories) and
W (for the columns). Specifically, the GPCA is implemented
by performing a generalized singular value decomposition of
matrix R [23, 26, 36, 37], which is expressed as

R =PAQ" withPTBP=Q"WQ =1, (4)

where A is the L by L diagonal matrix of the singular values
(with L being the number of nonzero singular values), and P

(resp., Q) being the I by L (resp., ] by L) matrix of the left
(resp., right) generalized singular vectors of R.

3.3. Factor Scores. The I by L matrix of factor scores for the
categories is obtained as

F = PA = RWQ. (5)

These factor scores are the projections of the categories
on the GPCA space and they provide the best separation
between the categories because they have the largest possible
variance. In order to show this property, recall that the
variance of the columns of F is given by the square of
the corresponding singular values (i.e., the “eigen-value”
denoted A) and are stored in the diagonal matrix A). This
can be shown by combining (4) and (5) to give

F'BF = APTBPA = A’ = A. (6)

Because the singular vectors of the SVD are ordered by
size, the first factor extracts the largest possible variance, the
second factor extracts the largest variance left after the first
factor has been extracted, and so forth.

3.3.1. Supplementary Elements. The N rows of matrix X can
be projected (as “supplementary” or “illustrative” elements)
onto the space defined by the factor scores of the barycenters.
Note that the matrix WQ from (5) is a projection matrix.
Therefore, the N by L matrix H of the factor scores for the
rows of X can be computed as

H = XWQ. (7)

These projections are barycentric, which means that the
weighted average of the factor scores of the rows of a category
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gives the factors scores of this category. This property is
shown by first computing the barycenters of the row factor
scores as (cf. (2)) as

H = diag{YM1} 'YMH, (8)

then plugging in (7) and developing. Taking this into
account, (5) gives

H = diag{YM1} 'YMXWQ = RWQ = F. 9)

3.4. Loadings. The loadings describe the variables of the
barycentric data matrix and are used to identify the variables
important for the separation between the categories. As for
standard PCA, there are several ways of defining the loadings.
The loadings can be defined as the correlation between the
columns of matrix R and the factor scores. They can also be
defined as the matrix Q or as variable “factor scores” which
are computed as

G = QA. (10)

(Note that Q and G differ only by a normalizing factor).

4. Quality of the Prediction

The performance, or quality of the prediction of a dis-
criminant analysis, is assessed by predicting the category
membership of the observations and by comparing the
predicted with the actual category membership. The pattern
of correct and incorrect classifications can be stored in a
confusion matrix in which the columns represent the actual
categories and in which the rows represent the predicted
categories. At the intersection of a row and a column is the
number of observations from the column category assigned
to the row category.

The performance of the model can be assessed for the
observations (e.g., scans or participants) actually used to
compute the categories (the set of observations used to
generate the model is sometimes called the training set). In
this case, the performance of the model corresponds to a fixed
effect model because this assumes that a replication of the
experiment would use the same observations (i.e., the same
participants and the same stimuli). In order to assess the
quality of the model for new observations, its performance,
however, needs to be evaluated using observations that
were not used to generate the model (the set of “new
observations” used to evaluate the model is sometimes called
the testing set). In this case, the performance of the model
corresponds to a random effect model because this assumes
that a replication of the experiment would use the different
observations (i.e., different participants and stimuli).

4.1. Fixed Effect Model. The observations in the fixed effect
model are used to compute the barycenters of the categories.
In order to assign an observation to a category, the first
step is to compute the distance between this observation
and all I categories. Then, the observation is assigned to the
closest category. Several possible distances can be chosen, but

a natural choice is the Euclidean distance computed in the
factor space. If we denote by h,, the vector of factor scores for
the nth observation, and by f; the vector of factor scores for
the ith category, then the squared Euclidean distance between
the nth observation and the ith category is computed as

d*(hy, £) = (h, — £)" (h, — ). (11)

Obviously, other distances are possible (e.g., Mahalanobis
distance), but the Euclidean distance has the advantage of
being “directly read” on the map.

4.1.1. Tolerance Intervals. The quality of the category assign-
ment of the actual observations can be displayed using
tolerance intervals. A tolerance interval encompasses a given
proportion of a sample or a population. When displayed in
two dimensions, these intervals have the shape of an ellipse
and are called tolerance ellipsoids. For BADA, a category
tolerance ellipsoid is plotted on the category factor score
map. This ellipsoid is obtained by fitting an ellipse which
includes a given percentage (e.g., 95%) of the observations.
Tolerance ellipsoids are centered on their categories. The
overlap of the tolerance ellipsoids of two categories reflects
the proportion of misclassifications between these two
categories for the fixed effect model.

4.2. Random Effect Model. The observations of the random
effect model are not used to compute the barycenters but
are used only to evaluate the quality of the assignment of
new observations to categories. A convenient variation of
this approach is “leave-one-out” (aka jackknife) approach:
Each observation is taken out from the dataset and, in turn,
is then projected onto the factor space of the remaining
observations in order to predict its category membership.
For the estimation to be unbiased, the left-out observation
should not be used in any way in the analysis. In particular,
if the data matrix is preprocessed, the left-out observation
should not be used in the preprocessing. So, for example, if
the columns of the data matrix are transformed into Z scores,
the left-out observation should not be used to compute the
means and standard deviations of the columns of the matrix
to be analyzed, but these means and standard deviations will
be used to compute the Z-score for the left-out observation.

The assignment of a new observation to a category
follows the same procedure as for an observation from the
fixed effect model. The observation is projected onto the
original category factor scores and is assigned to the closest
category. Specifically, we denote by X_, the data matrix
without the nth observation, and by x, the 1 by J row vector
representing the nth observation. If X_,, is preprocessed (e.g.,
centered and normalized), the preprocessing parameters
will be estimated without x, (e.g., the mean and standard
deviation of X_, are computed without x,) and x, will be
preprocessed with the parameters estimated for X_, (e.g.,
x, will be centered and normalized using the means and
standard deviations of the columns of X _,). Then, the



matrix of barycenters R_, is computed and its generalized
eigendecomposition is obtained as (cf. (4))

R,=-P,A,Q", withP" W ,P,-Q ,B,Q,=1
(12)

(with B_,, and W_,, being the mass and weight matrices for
R_,). The matrix of factor scores denoted F_,, is obtained as

(cf. (5))
F,=P,A, =R ,W_,Q_,. (13)

The projection of the nth observation, considered as the

“testing” or “new observation,” is denoted h, and it is
obtained as (cf. (7))

lNln =x,W_,Q-,. (14)

Distances between this nth observation and the I categories
can be computed from the factor scores (cf. (11)). The
observation is then assigned to the closest category. In
addition, the jackknife approach can provide an (unbiased)
estimate of the position barycenters as well as their standard
error (see, e.g., [38], for this approach).

Often in fMRI experiments, observations are structured
in blocks in which observations are not independent of each
others (this is the case in most “block designs”). In such
cases, a standard leave-one-out approach will overestimate
the quality of prediction and should be replaced by a “leave
one block out” procedure.

4.2.1. Prediction Intervals. In order to display the quality
of the prediction for new observations, we use prediction
intervals. Recall that a “leave one out” or jackknife (or
“leave one block out”) procedure is used to predict each
observation from the other observations. In order to com-
pute prediction intervals, the first step is to project the left-
out observations onto the original complete factor space.
There are several ways to project a left-out observation
onto the factor score space. Here, we propose a two-
step procedure. First, the observation is projected onto the
factor space of the remaining observations. This provides
factor scores for the left-out observation and these factor
scores are used to reconstructed the observation from its
projection (in general, the left-out observation is imperfectly
reconstructed and the difference between the observation
and its reconstruction reflects the lack of fit of the model).
Then, the reconstructed observation, denoted X,,, is projected
onto the full factor score solution. Specifically, a left-out
observation is reconstructed from its factor scores as (cf. (4)
and (14))

%, = h,Q",. (15)

The projection of the left-out observation is denoted h, and
is obtained by projecting X, as a supplementary element in

the original solution. Specifically, h, is computed as
hy = X,WQ (cf. (5)
=h,Q7,WQ (cf. (15)) (16)
=%, W_,Q_,Q ,WQ (cf. (14)).

Computational and Mathematical Methods in Medicine

Prediction ellipsoids are not necessarily centered on their
categories (the distance between the center of the ellipse
and the category represents the estimation bias). Overlap of
two predictions intervals directly reflects the proportion of
misclassifications for the new observations.

5. Quality of the Category Separation

5.1. Explained Inertia (R*) and Permutation Test. In order
to evaluate the quality of the discriminant model, we use a
coefficient inspired by the coefficient of correlation. Because
BADA is a barycentric technique, the total inertia (i.e., the
“variance”) of the observations to the grand barycenter (i.e.,
the barycenter of all categories) can be decomposed into two
additive quantities: (1) the inertia of the observations relative
to the barycenter of their own category, and (2) the inertia of
the category barycenters to the grand barycenter. Specifically,
if we denote by f the vector of the coordinates of the grand
barycenter (i.e., each component of this vector is the average
of the corresponding components of the barycenters), the
total inertia, denoted Jtotl, is computed as the sum of the
squared distances of the observations to the grand barycenter
(cf. (11)):

otal = imndz(hn,f) - im(h ~1)"(h,~£). (7)

The inertia of the observations relative to the barycenter of
their own category is abbreviated as the “inertia within.” It is
denoted Jwithin and computed as

1
Jwithin = Z Z myd*(hy, ;)
i nin category i

1 (18)
=S Y muh, - £)T(h, - ).

i nin category i

The inertia of the barycenters to the grand barycenter is
abbreviated as the “inertia between.” It is denoted {petween
and computed as

1Between = ib; X d2 (f,,f) = ibz X d2 (fnf)

(19)
i

= Zb’ X <f, —f)T<fi —f)
i
So the additive decomposition of the inertia can be expressed
as

lTotal = «1Within + lBetween- (20)

This decomposition is similar to the familiar decomposition
of the sum of squares in the analysis of variance. This suggests
that the intensity of the discriminant model can be tested by
the ratio of between inertia by the total inertia, as is done in
analysis of variance and regression. This ratio is denoted R*
and it is computed as

Rz _ lBetween _ lBetween

lTotal lBetween + 1Within

(21)
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The R? ratio takes values between 0 and 1, the closer to one,
the better the model. The significance of R? can be assessed by
permutation tests and confidence intervals can be computed
using cross-validation techniques such as the jackknife (see
(19]).

5.2. Confidence Intervals. The stability of the position of
the categories can be displayed using confidence intervals. A
confidence interval reflects the variability of a population
parameter or its estimate. In two dimensions, this interval
becomes a confidence ellipsoid. The problem of estimating
the variability of the position of the categories cannot, in gen-
eral, be solved analytically and cross-validation techniques
need to be used. Specifically, the variability of the position
of the categories is estimated by generating bootstrapped
samples from the sample of observations. A bootstrapped
sample is obtained by sampling with replacement from
the observations. The “bootstrapped barycenters” obtained
from these samples are then projected onto the original
discriminant factor space and, finally, an ellipse is plotted
such that it comprises a given percentage (e.g., 95%) of these
bootstrapped barycenters. When the confidence intervals
of two categories do not overlap, these two categories are
“significantly different” at the corresponding alpha level (e.g.,
a =.05).

It is important to take into account the structure of
the design when implementing a bootstrap scheme because
the bootstrap provides an unbiased estimate only when the
bootstrapped observations are independent [39]. Therefore,
when the observations are structured into subtables, these
subtables should be bootstrapped in addition to the obser-
vations. Conversely, the fixed part of a design should be kept
fixed. So, for example, when scans are organized into blocks,
the block structure should be considered as fixed [40].

5.2.1. Interpreting Overlapping Multidimensional Confidence
Intervals. When a confidence interval involves only one
dimension (e.g., when using a confidence interval to compare
the mean of two categories), the relationship between
hypothesis testing and confidence intervals is straightfor-
ward. If two confidence intervals do not overlap, then the null
hypothesis is rejected. Conversely, if two confidence intervals
overlap, then the null hypothesis cannot be rejected. The
same simple relationship holds with a 2-dimensional display
as long as all the variance of the data can be described with
only two dimensions. If two confidence ellipses (i.e., the 2-
dimensional expression of an interval) do not overlap, then
the null hypothesis is rejected, whereas if the ellipses overlap,
then the null hypothesis cannot be rejected.

In most multivariate analyses (such as BADA), however,
the 2-dimensional maps used to display the data represent
only part of the variance of the data and these displays
can potentially be misleading because the position of a
confidence ellipse in a 2-dimensional map gives only an
approximation of the real position of the intervals in the
complete space. Now, if two confidence ellipses do not
overlap in at least one display, then the two corresponding
categories do not overlap in the whole space (and the null

hypothesis can be rejected). However, when two confidence
ellipses overlap in a given display, then the two categories
may or may not overlap in the whole space (because the
overlap may be due to a projection artifact). In this case, the
null hypothesis may or may not be rejected depending upon
the relative position of the ellipses in the other dimensions
of the space. Strictly speaking, when analyzing data laying in
a multidimensional space, the interpretations of confidence
intervals are correct only when performed in the whole
space and the 2-dimensional representations give only an
approximation. As a palliative, it is important to examine
additional graphs obtained from other dimensions than the
first two.

5.2.2. Confidence Intervals: The Multiple Comparison Problem.
As mentioned earlier, a confidence interval generalizes a null
hypothesis test. And, just like a standard test, the a-level
chosen is correct only when there are only two categories to
be compared because the problem of the inflation of Type
I error occurs when there are more than two categories. A
possible solution to this problem is to use a Bonferonni or
a Sidak correction (see, [41] for more details). Specifically,
for I categories, a Bonferonni-corrected confidence interval
at the overall (1 — «)-level is obtained as

B 2a
I(I-1)

(22)

Along the same lines, a Sidak-corrected confidence level for
all pairs of comparisons is expressed as

(1 _ “)(1/2)1(171)' (23)

6. Multiple Subject Barycentric Discriminant
Analysis (MUSUBADA)

In a multitable analysis, the subtables can be analyzed by
projecting the categories and the observations for each
subtable. As was the case for the categories, these projections
are barycentric because the barycenter of the all the subtables
gives the coordinates of the whole table.

6.1. Partial Projection. Each subtable can be projected in the
common solution. The procedure starts by rewriting (4) as

R =PAQ" =PA[Q,,...,Qk,...,Qk] T, (24)

where Qy is the kth subtable (comprising the Jx columns of
Q corresponding to the Ji columns of the kth block). Then,
to get the projection for the kth subtable, (5) is rewritten as

Fr = KXk Wi Qx, (25)

where Wy is the weight matrix for the J; columns of the kth
block.

Equation (25) can also be used to project supplementary
rows corresponding to a specific subtable. Specifically, if
xSTup,k is a Ji row vector of a supplementary element to be
projected according to the kth subtable, its factor scores are



computed as (Xsup,k is supposed to have been preprocessed as
X)

fsup,k = szup,kaQk- (26)

6.2. Inertia of a Subtable. Recall from (6) that, for a given
dimension, the variance of the factor scores of all the J
columns of matrix R is equal to the eigenvalue of this
dimension. Each subtable comprises a set of columns, and
the contribution of a subtable to a dimension is defined as the
sum of this dimension squared factor scores of the columns
comprising this subtable. Precisely, the inertia for the kth
table and the £th dimension is computed as

Lok = Z ijé’z,j' (27)

jeJk

Note that the sum of the inertia of the blocks gives back the
total inertia:

he= 3t 9
k

6.2.1. Finding the Important Subtables. The subtables that
contribute to the discrimination between the classes are
identified from their partial contributions to the inertia (see

(27)).

6.3. Subtable Normalization and Relationship with Other
Approaches. In the current example, the subtables are simply
considered as sets of variables. Therefore, the influence of
a given subtable reflects not only its number of variables,
but also its factorial structure because, everything else being
equal, a subtable with a large first eigenvalue will have a
large influence on the first factor of the whole table. By
contrast, a subtable with a small first eigenvalue will have a
small effect on the first factor of the whole table. In order
to eliminate such discrepancies, the multiple factor analysis
approach [15, 17, 36] normalizes each subtable by dividing
each element of a subtable by its first singular value.

An alternative normalization can be derived from the
STATIS approach [16, 18, 19, 42, 43]. In this framework,
each subtable is normalized from an analysis of the K by K
matrix of the between-subtable Ry matrix (recall that the
Ry coefficient plays a role analogous to the coefficient of
correlation for semipositive definite matrices, see [41, 44,
45]). In this framework, subtables are normalized in order
to reflect how much information they share with the other
subtables.

In the context of MUSUBADA, these normalization
schemes can be performed on the subtables of the matrix X,
but their effects are easier to analyze if it is performed on the
barycentric matrix R. These two normalizing schemes can
also be combined with the subtables being first normalized
according the multiple factor analysis approach and then
using the STATIS approach.

6.4. Programs. MATLAB and R programs are available
from the home page of the first author (at http://www
.utdallas.edu/~herve/).
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6.5. MUSUBADA and Other Classifiers. MUSUBADA is a
linear classifier that can handle multiple participants when
these participants are represented by different numbers of
voxels or ROIs. As such, its performance is likely to be
closely related to the performance of other linear classifiers
(see [46] for a general presentation in the context of MVPA
models) such as (linear) support vector machines (SVM,
see, e.g., [47] for an application of SVM to fMmri data) or
linear discriminant analysis (in general performed on the
components of a PCA, see [48]). When the structure of the
data (i.e., spatial normalization) allows the use of different
linear techniques, these techniques will likely perform simi-
larly (numerical simulations performed with some examples
confirm this conjecture). However, as indicated previously,
most of these techniques will not be able to handle the
integration of participants with different number of voxels or
ROIs. Canonical STATIS (CANOSTATIS [49]) can integrate
discriminant analysis problems obtained with a different
number of variables, but in its current implementation, it
requires that the data of each participant be full rank, a
restriction that makes difficult for this technique to be used
with large brain imaging datasets. It has been suggested [19]
to use approaches such as ridge or regularization techniques
(see, e.g., [50], for a review) to make CANOSTATIS able
to handle multicolinearity, and such a development could
be of interest for brain imaging. However, CANOSTATIS
works on Mahanalobis distance matrices between categories
and does not have—in its current implementation—ways
of predicting membership of scans to categories and cannot
identify the voxels important for the discrimination between
categories.

The closest statistical technique to MUSUBADA is prob-
ably mean centered partial least-square correlation (MC-
PLSC, see [51-53], for presentations and reviews), which
is widely used in brain imaging. In fact, when the data
are spatially normalized, MUSUBADA and MC-PLSC will
analyze (i.e., compute the singular value decomposition of)
the same matrix of barycenters. MUSUBADA adds to MC-
PLSC the possibility of handling different numbers of voxels
per participant, ROI analysis, and also an explicit prediction
of group categories which is lacking from the standard
implementation of MC-PLSC. So, MUSUBADA can be seen
as a generalization of MC-PLSC that can handle multiple
ROIs, different numbers of voxels per participant, and can
predict category membership.

7. An Example

Asan illustration, we are using the dataset originally collected
by Connolly et al. [54]. In this experiment, 10 participants
performed a one-back recognition memory task on visual
stimuli from seven different categories: female faces, male
faces, monkey faces, dog faces, houses, chairs, and shoes. The
stimuli were presented in 8 runs of 7 blocks—one block per
category per run. A block consisted of 16 image presentations
from a given category with each image presented for a
duration of 500 ms separated by a 2 s interstimulus interval
(2.5s stimulus onset asynchrony) for a total block duration
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of 40s. Full brain scans were acquired every 2s (TR =
2000 ms). Blocks were separated by 12 s intervals of fixation.
A different random ordering of category blocks was assigned
to each run, and each subject saw the same set of runs (i.e.,
the same set of random category block orderings), however,
each subject saw the runs in a different randomly assigned
run order. For analysis, the runs for each subject were
reordered to a canonical run order so that a single set of time-
point labels could be used for all subjects. Time-point labels
were coded such that the first four TRs of each block were
discarded so that only the maximal evoked BOLD response
was coded for each category block. The time-course for each
run was thus coded with 16 consecutive full-brain scans
(covering 32 sec starting 8 secs after the onset of the block)
assigned to each stimulus block. No regression analyses were
performed to estimate the average BOLD response for the
stimulus categories; rather, each brain image (16 per stimulus
block) contributed to a unique row in the data matrix.

7.1. Data Acquisition. BOLD fMRI images were acquired
with gradient echoplanar imaging using a Siemens Allegra
head only 3T scanner. The fMRI images consisted of thirty-
two 3 mm thick axial images (TR = 2000, TE = 30 ms, flip
angle = 90, 64 X 64 matrix, FOV = 192 X 192mm) and
included all of the occipital and temporal lobes and the dorsal
parts of the frontal and parietal lobes. High-resolution T1-
weighted structural images were also acquired.

7.2. Imaging Preprocessing. Preprocessing of the fMr1 data
included slice timing correction, volume registration to
correct for minor head movements, correction of extreme
values, and mean correction for each run. No spatial
normalization or coregistration was performed.

7.3. Region of Interest. For each participant, a mask was hand
drawn based on anatomical landmarks obtained from the
structural scan. The mask was used to identify one ROI the
Ventrotemporal (VT) area ROI which included the inferior
temporal, fusiform, and parahippocampal gyri. Because the
ROI was anatomically defined, its size (in number of voxels)
differed from participant to participant (from 2791 to 4815).
The total number of voxels (for all 10 participants) was equal
to 39,163.

7.4. Statistical Preprocessing. Prior to the analysis, the data
were centered by removing the average scan. In addition, a
subtable normalization was performed on each participant.
For each participant, a singular value decomposition (SVD)
was performed and all the voxels of a given participant were
divided by the first singular value obtained from this SVD. In
addition, each row of the data table was normalized such that
the sum of the squares of its elements was equal to one.

7.5. Final Data Matrices. The data matrix, X, is a 896 X
39,163 matrix. The rows of X correspond to the 896 scans
which were organized in 8 blocks of 7 stimulus categories
comprising 16 brain images each. Therefore, each of the
seven stimulus groups was represented by 16 x 8 = 128

brain images. The 39,163 columns of X represented the voxel
activations of all the participants and are organized in 10
subtables (one per participant; the data could be fitted in
such a simple format because both the scan block orders
were constant for all participants). The design matrix Y was a
896 X 7 matrix coding for the categories. A schematic of the
data matrix is shown in Figure 2.

7.6. Goal: Finding the Categories. The goal of the analysis was
to find out if it was possible to discriminate between scans
coming from the different categories of images. To do this,
each category in X was summed to create the 7 X 39,163
barycentric matrix R (see (2)). We then computed the BADA
on the R matrix which provided the map shown in Figure 3.
The first dimension of this map shows a clear opposition
of faces (i.e., female, male, and dog faces) and objects
(i.e., houses, chairs, and shoes). This dimension can be
interpreted as a semantic dimension: faces versus nonfaces.
The second dimension, in contrast, separates the smaller
from the larger objects (i.e., chairs and shoes versus houses)
and also reflects variation among the faces, as it separates
monkey from human faces (with dog faces in-between). It
is also possible that dimension 2 reflects a combination of
features (e.g., low level visual features). In order to support
this interpretation, we ran a BADA on the stimuli (see, e.g.,
[55] for a similar idea) and obtained a set of factor scores for
the picture groups. We then projected the picture categories,
as supplementary elements, onto the factor space obtained
from the fmr1 data. We used the procedure described in
Abdi [56] after rescaling the picture factor scores so that the
factor scores for the first dimension have the same variance
(i.e., eigenvalue) as the first factor scores of the analysis
performed on the participants. The results are shown in
Figure 4. In agreement with our interpretation, we found
that the categories obtained from the pictures lined up with
dimension 2 and had very little variance on dimension 1.

7.7. Stability of the Discriminant Model

7.7.1. Fixed Effect Model. To examine the reliability of the
fixed effect model, we looked at the fixed effect confusion
matrix and the tolerance intervals. The fixed effect confusion
matrix is shown in Table 1. We see that, for the fixed effect
model, classification was very good: the model correctly
classified 126/128 female faces, 127/128 male faces, all 128
monkey faces, 127/128 houses, all 128 chairs, 124/128 shoes,
and all 128 dog faces.

To answer the question of separability, we looked at the
tolerance intervals (shown in Figure 5(a)). The tolerance
intervals include 95% of the projections of the observations
centered around their respective categories. Recall that
tolerance intervals reflect the accuracy of the assignment
of scans to categories. Therefore, when two categories
do not overlap for at least one dimension, they can be
considered as separable (note, that, again all dimensions
need to be considered and that a two-dimensional display is
accurate only when all the variance of the projections is two
dimensional). We show here the tolerance intervals only for
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FIGURE 2: Design and data matrix for the MUSUBADA example. A row represents one image belonging to one of seven categories of images
(female faces, male faces, monkey faces, dog faces, houses, chairs, and shoes). A column represents one voxel belonging to one of the ten
participants. At the intersection of a row and a column we find the value of the activation of one voxel of one participant (i.e., column) when
this participant was watching a given image (i.e., row) Note that the participants’ ROI was drawn anatomically for each participant, so the
number of voxels differs between participants (i.e., the scans are nof morphed into a standardized space).
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FIGURE 3: BADA on the scans: Category barycenters. (a) Barycenters, and (b) Barycenters with observations. Dimension 1 (on the horizontal)
separates the faces from the objects. Dimension 2 (on the vertical) separates the large and the small objects.

TaBLE 1: Fixed effect confusion matrix.

. Actual group

Assigned group .

Female face Male face Monkey House Chair Shoe Dog
Female face 126 1 0 0 0 0 0
Male face 0 127 0 0 0 0 0
Monkey 0 0 128 0 0 0 0
House 0 0 0 127 0 0 0
Chair 0 0 0 0 128 0 0
Shoe 0 0 0 0 124 0
Dog 2 0 0 0 0 4 128
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TaBLE 2: Random effect confusion matrix.

Assigned group Actual group )

Female face Male face Monkey House Chair Shoe Dog
Female face 35 59 14 1 1 3 35
Male face 52 40 15 0 0 8 8
Monkey 11 6 63 13 5 6 23
House 14 90 14 6 0
Chair 2 6 80 27
Shoe 5 5 2 12 28 55 11
Dog 22 17 18 6 0 23 50

T1 = 360;)

b

%

FiGure 4: BADA on the pictures used as stimuli projected as
supplementary elements on the solution obtained from the fMrI
scans. Picture categories are shown in circles and fMr1 groups in
squares. The picture category line on up the second dimension but
not on the first.

dimensions 1 and 2, but we based our interpretation on the
whole space.

Large differences were found between houses and female
faces, between houses and male faces, between houses and
dog faces, between chairs and female faces, between chairs
and male faces, between chairs and monkey faces, and
between chairs and dog faces. The variance of the projection
of the individual scans (as represented by the area of the
ellipsoids) varies with the categories with monkey faces and
shoes displaying the largest variance and with human faces
showing the smallest variance.

Interestingly, the female and male faces are close to each
other and overlap on most dimensions, this pattern suggests
that the scans from these categories were very similar.

7.7.2. Random Effect Model. The random effect model evalu-
ates the performance of the model for new observations. The
current experiment used a block design, and the scans within
a block are generally not independent because of the large
time correlation typical of fMRI experiments, whereas scans
between blocks can be considered independent (because of
the resting interval between blocks). Therefore, in order to
compute the random effect confusion matrix, we used a
“leave-one-block-out” procedure in which we left the whole

block out in order to avoid confounding prediction with
time correlation (see [38]). This resulted in the confusion
matrix shown in Table2. As expected, classification for
the random effect model was not as good as that for the
fixed effect model, with 47/128 female faces, 34/128 male
faces, 53/128 monkey faces, 81/128 houses, 96/128 chairs,
45/128 shoes, and 53/128 dog faces correctly classified. So,
overall the categories are well separated in the random effect
model. However, the human females and male faces were
not separated and seem to constitute a single category (with
female faces showing more variability the male faces).

Like the fixed effect model, we can examine the stability
of the random effect model. The prediction intervals include
95% of the bootstrap sample projections. Note that predic-
tion intervals may not be centered around the category mean,
because new observations are unlikely to have the exact
same mean as the old observations. Recall that prediction
intervals reflect the accuracy of assignment of new scans
to categories and represent where observations would fall
in the population. The prediction intervals for the example
are shown in Figure 5(b). Note that the large overlap of
the categories ellipsoids suggests that some scans of a given
categories can be misclassified for scans from any other
category.

7.8. Quality of Category Separation

7.8.1. R? and the Permutation Test. The quality of the model
was also evaluated by computing the percentage of variance
explained by the model. This gave a value of R* = .72 with
a probability of P < .00001 (by permutation test) which
confirms the quality of the model.

7.8.2. Confidence Intervals. To test whether category discrim-
ination was significant, we used 95% confidence intervals.
Figure 6 shows the 95% confidence ellipses for each category
on the maps made from Dimensions 1-2 and 3-4. The
configuration of the ellipses indicates that all categories are
reliably separated, but the separation of some categories is
stronger than some others. Specifically, the male and female
faces are separated only on the 3-4 map and their distance
is relatively small, and this indicates that their separation—
even if significant—is small.
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FIGURE 5: BADA on the scans: (a) tolerance ellipses, and (b) prediction ellipses.
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FIGURE 6: BADA on the scans confidence ellipses: (a) dimensions 1 and 2, and (b) dimensions 3 and 4.

7.9. Subtable Projections

7.9.1. Partial Inertias of the Participants. The respective
importance of the participants is expressed by the partial
inertia (cf. (27)) of their groups of voxels (i.e., the subtable
associated to each subject). The partial inertias are plotted in
Figure 7. We can see that there is some difference between the
participants in the way they express the effect. For example,
participant 7 shows the least overall separation between
categories, participant 9 shows the clearest overall separation
between categories.

7.9.2. Projecting the Subtables as Supplementary Elements.
Interestingly, the overall factorial configuration is very
similar for all participants, but some participants exhibit
clearer configurations. In order to illustrate this point, in
Figure 8, we show the map of participant 7 who shows the

least overall separation between categories, participant 9 who
shows the clearest overall separation between categories, and
participant 6 who shows the clearest separation between
categories on dimension 1 (see Figure 7).

8. Conclusion

Multiple subject barycentric discriminant analysis is par-
ticularly well suited for the analysis of neuroimaging data
because it does not require brains to be spatially normalized.
In addition, MUSUBADA can handle very large data sets
(with more variables than observations). Even though we did
not illustrate this property here, with MUSUBADA, we can
also plot (i.e., with “glass brains”) the voxels important for
discriminating between categories. Therefore, MUSUBADA
can be used to study the similarity structure of the categories
as well as that of the voxels. In addition, MUSUBADA could
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FIGURE 7: Partial inertias of the participants subtables. The size of a square is proportional to the overall contribution of the participant.
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FiGure 8: Three interesting participants (a) participant 7, (b) participant 9, and (c) participant 6 (cf. Figure 7). All participants show the

same overall configuration, but some participants display a clearer effect.
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