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Abstract

The paper proposes a fresh look at the concept of goal and advances that motivational attitudes like
desire, goal and intention are just facets of the broader notion of (acceptable) outcome. We propose to
encode the preferences of an agent as sequences of “alternative acceptable outcomes”. We then study
how the agent’s beliefs and norms can be used to filter the mental attitudes out of the sequences of
alternative acceptable outcomes. Finally, we formalise such intuitions in a novel Modal Defeasible
Logic and we prove that the resulting formalisation is computationally feasible.

KEYWORDS: agents, defeasible logic, desires, intentions, goals, obligations

1 Introduction and motivation

The core problem we address in this paper is how to formally describe a system operating
in an environment, with some objectives to achieve, and trying not to violate the norms
governing the domain in which the system operates.

To model such systems, we have to specify three types of information: (i) the environment
where the system is embedded, i.e., how the system perceives the world, (ii) the norms
regulating the application domain, and (iii) the system’s internal constraints and objectives.
A successful abstraction to represent a system operating in an environment where the

system itself must exhibit some kind of autonomy is that of BDI (Belief, Desire, Intention)
architecture [Rao and Georgeff, 1991] inspired by the work of Bratman [1987] on cognitive
agents. In the BDI architecture, desires and intentions model the agent’s mental attitudes
and are meant to capture the objectives, whereas beliefs describe the environment. More
precisely, the notions of belief, desire and intention represent respectively the informational,
motivational and deliberative states of an agent [Wooldridge and Jennings, 1995].

Over the years, several frameworks, either providing extensions of BDI or inspired by it,
were given with the aim of extending models for cognitive agents to also cover normative
aspects (see, among others, [Broersen et al., 2002, Thomason, 2000, Governatori and Rotolo,
2008]). (This is a way of developing normative agent systems, where norms are meant to
ensure global properties for them [Andrighetto et al., 2013].) In such extensions, the agent
behaviour is determined by the interplay of the cognitive component and the normative one
(such as obligations). In this way, it is possible to represent how much an agent is willing to



invest to reach some outcomes based on the states of the world (what we call beliefs) and
norms. Indeed, beliefs and norms are of the utmost importance in the decision process of
the agent. If the agent does not take beliefs into account, then she will not be able to plan
what she wants to achieve, and her planning process would be a mere wishful thinking. On
the other hand, if the agent does not respect the norms governing the environment she acts
in, then she may incur sanctions from other agents [Bratman, 1987].
The BDI approach is based on the following assumptions about the motivational and

deliberative components. The agent typically defines a priori her desires and intentions,
and only after this is done the system verifies their mutual consistency by using additional
axioms. Such entities are therefore not interrelated with one another since “the notion of
intention [. . . ] has equal status with the notions of belief and desire, and cannot be reduced
to these concepts” [Rao and Georgeff, 1991]. Moreover, the agent may consequently have
intentions which are contradictory with her beliefs and this may be verified only a posteriori.
Therefore, one of the main conceptual deficiencies of the BDI paradigm (and generally of
almost all classical approaches to model rational agents) is that the deliberation process is
bound to these mental attitudes which are independent and fixed a priori. Here, with the
term independent, we mean that none of them is fully definable in terms of the others.

Approaches like the BOID (Belief, Obligation, Intention, Desire) architecture [Broersen
et al., 2002] and Governatori and Rotolo [2008]’s system improve previous frameworks, for
instance, by structurally solving conflicts between beliefs and intentions (the former being
always stronger than any conflicting intention), while mental attitudes and obligations are
just meant to define which kinds of agent (social, realistic, selfish, and so on) are admissible.
Unlike the BDI perspective, this paper aims at proposing a fresh conceptual and logical

analysis of the motivational and deliberative components within a unified perspective.

Desideratum 1: A unified framework for agents’ motivational and deliberative components.
Goals, desires, and intentions are different facets of the same phenomenon, all of them being
goal-like attitudes. This reduction into a unified perspective is done by resorting to the basic
notion of outcome, which is simply something (typically, a state of affairs) that an agent
expects to achieve or that can possibly occur.

Even when considering the vast literature on goals of the past decade, most of the authors
studied the content of a goal (e.g., achievement or maintenance goals) and conditions under
which a goal has to be either pursued, or dropped. This kind of (a posteriori) analysis
results orthogonal to the one proposed hereafter, since we want to develop a framework
that computes the agent’s mental attitudes by combining her beliefs and the norms with her
desires.

As we shall argue, an advantage of the proposed analysis is that it allows agents to compute
different degrees of motivational attitudes, as well as different degrees of commitment that
take into account other, external, factors, such as beliefs and norms.

Desideratum 2: Agents’ motivations emerge from preference orderings among outcomes.
The motivational and deliberative components of agents are generated from preference
orderings among outcomes. As done in other research areas (e.g., rational choice theory),
we move with the idea that agents have preferences and choose the actions to bring about
according to such preferences. Preferences involve outcomes and are explicitly represented
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in the syntax of the language for reasoning about agents, thus following the logical paradigm
initially proposed in [Brewka et al., 2004, Governatori and Rotolo, 2006].

The combination of an agent’s mental attitudes with the factuality of the world defines her
deliberative process, i.e., the objectives she decides to pursue. The agent may give up some
of them to comply with the norms, if required. Indeed, many contexts may prevent the agent
from achieving all of her objectives; the agent must then understand which objectives are
mutually compatible with each other and choose which ones to attain the least of in given
situations by ranking them in a preference ordering.
The approach we are going to formalise can be summarised as follows. We distinguish

three phases an agent must pass through to bring about certain states of affairs: (i) The
agent first needs to understand the environment she acts in; (ii) The agent deploys such
information to deliberate which objectives to pursue; and (iii) The agent lastly decides how
to act to reach them.

In the first phase, the agent gives a formal declarative description of the environment (in
our case, a rule-based formalism). Rules allow the agent to represent relationships between
pre-conditions and actions, actions and their effects (post-conditions), relationships among
actions, which conditions trigger new obligations to come in force, and in which contexts
the agent is allowed to pursue new objectives.

In the second phase, the agent combines the formal description with an input describing a
particular state of affairs of the environment, and she determines which norms are actually
in force along with which objectives she decides to commit to (by understanding which ones
are attainable) and to which degree. The agent’s decision is based on logical derivations.
Since the agent’s knowledge is represented by rules, during the third and last phase, the

agent combines and exploits all such information obtained from the conclusions derived in
the second phase to select which activities to carry out in order to achieve the objectives.
(It is relevant to notice that a derivation can be understood as a virtual simulation of the
various activities involved.)

While different schemas for generating and filtering agents’ outcomes are possible, the
three phases described above suggest to adopt the following principles:

• When an agent faces alternative outcomes in a given context, these outcomes are
ranked in preference orderings;

• Mental attitudes are obtained from a single type of rule (outcome rule) whose
conclusions express the above mentioned preference orderings among outcomes;

• Beliefs prevail over conflicting motivational attitudes, thus avoiding various cases of
wishful thinking [Thomason, 2000, Broersen et al., 2002];
• Norms and obligations are used to filter social motivational states (social intentions)
and compliant agents [Broersen et al., 2002, Governatori and Rotolo, 2008];

• Goal-like attitudes can also be derived via a conversionmechanism using other mental
states, such as beliefs [Governatori and Rotolo, 2008]. For example, believing that
Madrid is in Spain may imply that the goal to go to Madrid implies the goal to go to
Spain.

Our effort is finally motivated by computational concerns. The logic for agents’ desires,
goals, and intentions is expected to be computationally efficient. In particular, we shall prove
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that computing agents’ motivational and deliberative components in the proposed unified
framework has linear complexity.

2 The intuition underneath the framework

When a cognitive agent deliberates about what her outcomes are in a particular situation,
she selects a set of preferred outcomes among a larger set, where each specific outcome has
various alternatives. It is natural to rank such alternatives in a preference ordering, from the
most preferred choice to the least objective she deems acceptable.
Consider, for instance, the following scenario. Alice is thinking what to do on Saturday

afternoon. She has three alternatives: (i) she can visit John; (ii) she can visit her parents
who live close to John’s place; or (iii) she can watch a movie at home. The alternative she
likes the most is visiting John, while watching a movie is the least preferred. If John is not
at home, there is no point for Alice to visit him. In this case, paying a visit to her parents
becomes the “next best” option. Also, if visiting her parents is not possible, she settles for
the last choice, that of staying home and watching a movie.
Alice also knows that if John is away, the alternative of going to his place makes no

sense. Suppose that Alice knows that John is actually away for the weekend. Since the most
preferred option is no longer available, she decides to opt for the now best option, namely
visiting her parents.

To represent the scenario above, we need to capture the preferences about her alternatives,
and her beliefs about the world. To model preferences among several options, we build
a sequence of alternatives A1, . . . , An that are preferred when the previous choices are
no longer feasible. Normally, each set of alternatives is the result of a specific context C
determining under which conditions (premises) such a sequence of alternatives A1, . . . , An

is considered.
Accordingly, we can represent Alice’s alternatives with the notation

If saturday then visit_John, visit_parents, watch_movie.

This intuition resembles the notion of contrary-to-duty obligations presented by Governatori
and Rotolo [2006], where a norm is represented by an obligation rule of the type

r1 : drive_car ⇒OBL ¬damage � compensate � foreclosure

where “⇒OBL” denotes that the conclusion of the rule will be treated as an obligation, and the
symbol “�” replaces the symbol “,” to separate the alternatives. In this case, each element
of the chain is the reparative obligation that shall come in force in case the immediate
predecessor in the chain has been violated. Thus, the meaning of rule r1 is that, if an agent
drives a car, then she has the obligation not to cause any damage to others; if this happens,
she is obliged to compensate; if she fails to compensate, there is an obligation of foreclosure.
Following this perspective, we shall now represent the previous scenario with a rule

introducing the outcome mode, that is an outcome rule:

r2 : saturday⇒OUT visit_John � visit_parents � watch_movie.

In both examples, the sequences express a preference ordering among alternatives. Accord-
ingly, watch_movie and foreclosure are the last (and least) acceptable situations.
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To model beliefs, we use belief rules, like

r3 : John_away⇒BEL ¬visit_John

meaning that if Alice has the belief that John is not home, then she adds to her beliefs that it
is not possible to visit him.

In the rest of the section, we shall illustrate the principles and intuitions relating sequences
of alternatives (that is, outcome rules), beliefs, obligations, and how to use them to
characterise different types of goal-like attitudes and degrees of commitment to outcomes:
desires, goals, intentions, and social intentions.

Desires as acceptable outcomes. Suppose that an agent is equipped with the following
outcome rules expressing two preference orderings:

r : a1, . . . , an ⇒OUT b1 � · · · � bm s : a′1, . . . , a
′
n ⇒OUT b′1 � · · · � b′k

and that the situations described by a1, . . . , an and a′1, . . . , a
′
n are mutually compatible but

b1 and b′1 are not, namely b1 = ¬b′1. In this case b1, . . . , bm, b′1, . . . , b
′
k
are all acceptable

outcomes, including the incompatible outcomes b1 and b′1.
Desires are acceptable outcomes, independently of whether they are compatible with

other expected or acceptable outcomes. Let us contextualise the previous example to better
explain the notion of desire by considering the following setting.

Example 1
F = {saturday, John_sick} R = {r2, r4 : John_sick ⇒OUT ¬visit_John � short_visit}.

The meaning of r4 is that Alice would not visit John if he is sick, but if she does so, then
the visit must be short.
Being the premises of r2 and of r4 the case, then both rules are activated, and the agent

has both visit_John and its opposite as acceptable outcomes. Eventually, she needs to make
up her mind. Notice that if a rule prevails over the other, then the elements of the weaker rule
with an incompatible counterpart in the stronger rule are not considered desires. Suppose
that Alice has not visited John for a long time and she has recently placed a visit to her
parents. Then, she prefers to see John instead of her parents despite John being sick. In this
setting, r2 prevails over r4 (r2 > r4 in notation). Given that she explicitly prefers r2 to r4,
her desire is to visit John (visit_John) and it would be irrational to conclude that she also
has the opposite desire (i.e., ¬visit_John).

Goals as preferred outcomes. We consider a goal as the preferred desire in a chain.
For rule r alone the preferred outcome is b1, and for rule s alone it is b′1. But if both rules

are applicable, then a state where both b1 and b′1 hold is not possible: the agent would not be
rational if she considers both b1 and ¬b1 as her preferred outcomes. Therefore, the agent
has to decide whether she prefers a state where b1 holds to a state where b′1 (i.e., ¬b1) does
(or the other way around). If the agent cannot make up her mind, i.e., she has no way to
decide which is the most suitable option for her, then neither the chain of r nor that of s can
produce preferred outcomes.

Consider now the scenario where the agent establishes that the second rule overrides the
first one (s > r). Accordingly, the preferred outcome is b′1 for the chain of outcomes defined
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by s, and b2 is the preferred outcome of r . b2 is the second best alternative according to rule
r: in fact b1 has been discarded as an acceptable outcome given that s prevails over r .
In the situation described by Example 1, visit_John is the goal according to r2, while

short_visit is the goal for r4.

Two degrees of commitment: intentions and social intentions. The next issue is to clarify
which are the acceptable outcomes for an agent to commit to. Naturally, if the agent values
some outcomes more than others, she should strive for the best, in other words, for the most
preferred outcomes (goals).
We first consider the case where only rule r applies. Here, the agent should commit to

the outcome she values the most, that is b1. But what if the agent believes that b1 cannot
be achieved in the environment where she is currently situated in, or she knows that ¬b1
holds? Committing to b1 would result in a waste of the agent’s resources; rationally, she
should target the next best outcome b2. Accordingly, the agent derives b2 as her intention.
An intention is an acceptable outcome which does not conflict with the beliefs describing the
environment.
Suppose now that b2 is forbidden, and that the agent is social (a social agent is an agent

not knowingly committing to anything that is forbidden [Governatori and Rotolo, 2008]).
Once again, the agent has to lower her expectation and settle for b3, which is one of her
social intentions. A social intention is an intention which does not violate any norm.
To complete the analysis, consider the situation where both rules r and s apply and,

again, the agent prefers s to r. As we have seen before, ¬b1 (b′1) and b2 are the preferred
outcomes based on the preference of the agent over the two rules. This time we assume that
the agent knows she cannot achieve ¬b1 (or equivalently, b1 holds). If the agent is rational,
she cannot commit to ¬b1. Consequently, the best option for her is to commit to b′2 and b1
(both regarded as intentions and social intentions), where she is guaranteed to be successful.

This scenario reveals a key concept: there are situations where the agent’s best choice is
to commit herself to some outcomes that are not her preferred ones (or even to a choice
that she would consider not acceptable based only on her preferences) but such that they
influence her decision process, given that they represent relevant external factors (either her
beliefs or the norms that apply to her situation).

Example 2

F = {saturday, John_away, John_sick} R = {r2, r3, r4} > = {(r2, r4)}.

Today John is in rehab at the hospital. Even if Alice has the desire as well as the goal to visit
John, the facts of the situation lead her to form the intention to visit her parents.

Consider now the following theory

F = {saturday, John_home_confined, third_week}
R = {r2, r3, r4, r5 : John_home_confined, third_week ⇒OBL ¬visit_John}
> = {(r2, r4)}.

Unfortunately, John has a stream of bad luck. Now, he is not debilitated but has been home
convicted for a minor crime. The law of his country states that during the first two months
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of his home conviction, no visits to him are allowed. This time, even if Alice knows that
John is at home, norms forbid Alice to visit him. Again, Alice opts to visit her parents.

3 Logic

Defeasible Logic (DL) [Antoniou et al., 2001] is a simple, flexible, and efficient rule based
non-monotonic formalism. Its strength lies in its constructive proof theory, which has
an argumentation-like structure, and it allows us to draw meaningful conclusions from
(potentially) conflicting and incomplete knowledge bases. Being non-monotonic means
that more accurate conclusions can be obtained when more pieces of information are given
(where some previously derived conclusions no longer follow from the knowledge base).

The framework provided by the proof theory accounts for the possibility of extensions of
the logic, in particular extensions with modal operators. Several of such extensions have
been proposed, which then resulted in successful applications in the area of normative
reasoning [Governatori, 2005], modelling agents [Governatori and Rotolo, 2008, Kravari
et al., 2011, Governatori et al., 2009], and business process compliance [Governatori and
Sadiq, 2008]. A model theoretic possible world semantics for modal Defeasible Logic has
been proposed in [Governatori et al., 2012]. In addition, efficient implementations of the
logic (including the modal variants), able to handle very large knowledge bases, have been
advanced in [Lam and Governatori, 2009, Bassiliades et al., 2006, Tachmazidis et al., 2012].

Definition 1 (Language)
Let PROP be a set of propositional atoms, and MOD = {B,O,D,G, I,SI} the set of modal
operators, whose reading is B for belief, O for obligation, D for desire, G for goal, I
for intention and SI for social intention. Let Lab be a set of arbitrary labels. The set
Lit = PROP ∪ {¬p|p ∈ PROP} denotes the set of literals. The complement of a literal q is
denoted by ∼q; if q is a positive literal p, then ∼q is ¬p, and if q is a negative literal ¬p
then ∼q is p. The set of modal literals is ModLit = {Xl,¬Xl |l ∈ Lit, X ∈ {O,D,G, I,SI}}.
We assume that modal operator “X” for belief B is the empty modal operator. Accordingly,
a modal literal Bl is equivalent to literal l; the complement of B∼l and ¬Bl is l.

Definition 2 (Defeasible Theory)
A defeasible theory D is a structure (F, R, >), where (1) F ⊆ Lit ∪ModLit is a set of facts
or indisputable statements; (2) R contains three sets of rules: for beliefs, obligations, and
outcomes; (3) > ⊆ R × R is a binary superiority relation to determine the relative strength
of (possibly) conflicting rules. We use the infix notation r > s to mean that (r, s) ∈>. A
theory is finite if the set of facts and rules are so.

Belief rules are used to relate the factual knowledge of an agent, that is to say, her vision
of the environment she is situated in. Belief rules define the relationships between states of
the world; as such, provability for beliefs does not generate modal literals.
Obligation rules determine when and which obligations are in force. The conclusions

generated by obligation rules take the O modality.
Finally, outcome rules establish the possible outcomes of an agent depending on the

particular context. Apart from obligation rules, outcome rules are used to derive conclusions
for all modes representing goal-like attitudes: desires, goals, intentions, and social intentions.
Following ideas given in [Governatori and Rotolo, 2006], rules can gain more expres-
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siveness when a preference operator � is adopted. An expression like a � b means that if
a is possible, then a is the first choice, and b is the second one; if ¬a holds, then the first
choice is not attainable and b is the actual choice. This operator is used to build chains of
preferences, called �-expressions. The formation rules for �-expressions are:

1. every literal is an �-expression;
2. if A is an �-expression and b is a literal then A � b is an �-expression.

In addition, we stipulate that � obeys the following properties:

1. a � (b � c) = (a � b) � c (associativity);
2.
⊙n

i=1 ai = (
⊙k−1

i=1 ai ) � (
⊙n

i=k+1 ai ) where there exists j such that a j = ak and
j < k (duplication and contraction on the right).

Typically, �-expressions are given by the agent designer, or obtained through construction
rules based on the particular logic [Governatori and Rotolo, 2006].
In the present paper, we use the classical definition of defeasible rule in DL [Antoniou

et al., 2001], while strict rules and defeaters are omitted1.

Definition 3 (Defeasible rule)
A defeasible rule is an expression r : A(r) ⇒X C(r), where (1) r ∈ Lab is the name of the
rule; (2) A(r) = {a1, . . . , an }, the antecedent (or body) of the rule, is the set of the premises
of the rule. Each ai is either in Lit or in ModLit; (3) X ∈ {B,O,U} represents the mode
of the rule:⇒B,⇒O,⇒U denote respectively rules for beliefs, obligations, and outcomes.
From now on, we omit the subscript B in rules for beliefs, i.e.,⇒ is used as a shortcut for
⇒B; (4) C(r) is the consequent (or head) of the rule, which is a single literal if X = B, and
an �-expression otherwise2.

A defeasible rule is a rule that can be defeated by contrary evidence. The underlying idea
is that if we know that the premises of the rule are the case, then we may conclude that
the conclusion holds, unless there is evidence proving otherwise. Defeasible rules in our
framework introduce modal literals; for instance, if we have rule r : A(r) ⇒O c and the
premises denoted by A(r) are the case, then r can be used to prove Oc.

We use the following abbreviations on sets of rules: RX (RX [q]) denotes all rules of mode
X (with consequent q), and R[q] denotes the set

⋃
X ∈{B,O,U} RX [q]. With R[q, i] we denote

the set of rules whose head is �n
j=1cj and ci = q, with 1 ≤ i ≤ n.

Notice that labelling the rules of DL produces nothing more but a simple treatment of
the modalities, thus two interaction strategies between modal operators are analysed: rule
conversion and conflict resolution [Governatori and Rotolo, 2008].
In the remainder, we shall define a completely new inference machinery that takes this

into account by adding preferences and dealing with a larger set of modalised conclusions,

1 The restriction does not result in any loss of generality: (i) the superiority relation does not play any role in
proving definite conclusions, and (ii) for defeasible conclusions Antoniou et al. [2001] prove that it is always
possible to remove strict rules from the superiority relation and defeaters from the theory to obtain an equivalent
theory without defeaters and where the strict rules are not involved in the superiority relation.

2 It is worth noting that modal literals can occur only in the antecedent of rules: the reason is that the rules are
used to derive modal conclusions and we do not conceptually need to iterate modalities. The motivation of a
single literal as a consequent for belief rules is dictated by the intended reading of the belief rules, where these
rules are used to describe the environment.
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which are not necessarily obtained from the corresponding rules but also by using other rule
types. For instance, we argued in Section 2 that a goal can be viewed as a preferred outcome
and so the fact that a certain goal Gp is derived depends on whether we can obtain p as a
preferred outcome by using a rule for U.

Rule conversion. It is sometimes meaningful to use rules for a modality X as if they were
for another modality Y , i.e., to convert one type of conclusion into a different one.
Formally, we define an asymmetric binary relation Convert ⊆ MOD ×MOD such that

Convert(X,Y ) means “a rule of mode X can be used also to produce conclusions of mode
Y”. This intuitively corresponds to the following inference schema:

Y a1, . . . ,Y an a1, . . . , an ⇒X b
Y b

Convert(X,Y ).

In our framework obligations and goal-like attitudes cannot change what the agent believes
or how she perceives the world, we thus consider only conversion from beliefs to the other
modes (i.e., Convert(B, X ) with X ∈ MOD \ {B}). Accordingly, we enrich the notation with
RB,X for the set of belief rules that can be used for a conversion to mode X ∈ MOD \ {B}.
The antecedent of all such rules is not empty, and does not contain any modal literal.

Example 3

F = {saturday} R = {r2, r6 : visit_John⇒ chocolate_box}

where we stipulate that Convert(B,D) holds.
Alice desires to visit John. John is a passionate of chocolate and, usually, when Alice

goes to meet him at his place, she brings him a box of chocolate. Thus, we may state that
her desire of visiting John implies the desire to bring him a box of chocolate. This is the
case since we can use rule r6 to convert beliefs into desires.

Conflict-detection/resolution. It is crucial to identify criteria for detecting and solving
conflicts between different modalities. We define an asymmetric binary relation Conflict ⊆
MOD ×MOD such that Conflict(X,Y ) means “modes X and Y are in conflict and mode X
prevails over Y”. In our framework, we consider conflicts between (i) beliefs and intentions,
(ii) beliefs and social intentions, and (iii) obligations and social intentions. In other words,
the agents are characterised by:

• Conflict(B, I), Conflict(B,SI) meaning that agents are realistic [Broersen et al., 2002];
• Conflict(O,SI) meaning that agents are social [Governatori and Rotolo, 2008].

Consider the scenario of Example 2 with Conflict(B, I) and Conflict(O,SI). We recall that
rule r5 states the prohibition to visit John during the first month of his conviction. Thus,
Alice has the intention to visit John, but she does not have the social intention to do so. This
is due to rule r5 that prevents through conflict to prove SIvisit_John. At the end, it is up to
the agent (or the designer of the agent) whether to comply with the obligation, or not.

The superiority relation > among rules is used to define where one rule may override the
(opposite) conclusion of another one. There are two applications of the superiority relation:
the first considers rules of the same mode while the latter compares rules of different modes.
Given r ∈ RX and s ∈ RY , r > s iff r converts X into Y or s converts Y into X , i.e., the
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superiority relation is used when rules, each with a different mode, are used to produce
complementary conclusions of the same mode. Consider the following theory

F = {go_ to_Rome, parent_anniversary, August}
R = {r1 : go_ to_Rome⇒ go_ to_ Italy

r2 : parent_anniversary⇒U go_ to_Rome
r3 : August ⇒U ¬go_ to_ Italy}

> = {(r1, r3)}

where we stipulate that Convert(B,G) holds.
It is my parents’ anniversary and they are going to celebrate it this August in Rome, which

is the capital of Italy. Typically, I do not want to go to Italy in August since the weather is too
hot and Rome itself is too crowded. Nonetheless, I have the goal to go to Italy this summer
for my parents’ wedding anniversary, since I am a good son. Here, the superiority applies
because we use r1 through a conversion from belief to goal.

Aligning with [Cohen and Levesque, 1990], Conflict and superiority relations narrow and
regulate the intentionality of conclusions drawn by the Convert relation in such a way that
“agents need not intend all the expected side-effects of their intentions”. This also prevents
the ill-famed “dentist problem” which brings counterintuitive consequences, as also pointed
out by Kontopoulos et al. [2011]. If I want to go to the dentist, either I know that the pain is
a “necessary way” to get better, or I am a masochist. Either way, I intend to suffer some pain
for getting some ends.

Definition 4 (Proof)
A proof P of length n is a finite sequence P(1), . . . , P(n) of tagged literals of the type +∂Xq
and −∂Xq, where X ∈ MOD.

The proof conditions below define the logical meaning of such tagged literals. As a
conventional notation, P(1..i) denotes the initial part of the sequence P of length i. Given a
defeasible theory D, +∂Xq means that q is defeasibly provable in D with the mode X , and
−∂Xq that it has been proved in D that q is not defeasibly provable in D with the mode X .
Hereafter, the term refuted is a synonym of not provable and we use D ` ±∂X l iff there is a
proof P in D such that P(n) = ±∂X l for an index n.

In order to characterise the notions of provability/refutability for beliefs (±∂B), obligations
(±∂O), desires (±∂D), goals (±∂G), intentions (±∂I) and social intentions (±∂SI), it is essential
to define when a rule is applicable or discarded. To this end, the preliminary notions of
body-applicable and body-discarded must be introduced. A rule is body-applicable when
each literal in its body is proved with the appropriate modality; a rule is body-discarded if
(at least) one of its premises has been refuted.

Definition 5 (Body applicable)
Let P be a proof and X ∈ {O,D,G, I,SI}. A rule r ∈ R is body-applicable (at P(n + 1)) iff
for all ai ∈ A(r): (1) if ai = Xl then +∂X l ∈ P(1..n), (2) if ai = ¬Xl then −∂X l ∈ P(1..n),
(3) if ai = l ∈ Lit then +∂Bl ∈ P(1..n).

Definition 6 (Body discarded)
Let P be a proof and X ∈ {O,D,G, I,SI}. A rule r ∈ R is body-discarded (at P(n + 1))
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iff there is ai ∈ A(r) such that (1) ai = Xl and −∂X l ∈ P(1..n), or (2) ai = ¬Xl and
+∂X l ∈ P(1..n), or (3) ai = l ∈ Lit and −∂Bl ∈ P(1..n).

As already stated, belief rules allow us to derive literals with different modalities through
the conversion mechanism. The applicability mechanism takes this constraint into account.

Definition 7 (Conv-applicable)
Let P be a proof. A rule r ∈ R is Conv-applicable (at P(n + 1)) for X iff (1) r ∈ RB,
(2) A(r) , ∅, (3) A(r) ∩ModLit = ∅ and (4) ∀a ∈ A(r), +∂Xa ∈ P(1..n).

Definition 8 (Conv-discarded)
Let P be a proof. A rule r ∈ R is Conv-discarded (at P(n + 1)) for X iff (1) r < RB, or
(2) A(r) = ∅, or (3) A(r) ∩ModLit , ∅, or (4) ∃a ∈ A(r) s.t. −∂Xa ∈ P(1..n).

Let us consider the following theory

F = {a, b, Oc} R = {r1 : a ⇒O b, r2 : b, c ⇒ d}.

Rule r1 is applicable while r2 is not, given that c is not proved as a belief. Instead, r2 is
Conv-applicable for O, since Oc is a fact and r1 gives Ob.

The notion of applicability gives guidelines on how to consider the next element in a given
chain. Given that a belief rule cannot generate reparative chains but only single literals, we
conclude that the applicability condition for belief collapses into body-applicability. When
considering obligations, each element before the current one must be a violated obligation.
Concerning desires, given that each element in an outcome chain represents a possible desire,
we only require the rule to be applicable either directly, or through the Convert relation. A
literal is a candidate to be a goal only if none of the previous elements in the chain has been
proved as such. An intention must pass the wishful thinking filter (that is, there is no factual
knowledge for the opposite conclusion), while social intention is also constrained not to
violate any norm.

Definition 9 (Applicable rule)
Given a proof P, r ∈ R[q, i] is applicable (at index i and P(n + 1)) for

1. B iff r ∈ RB and is body-applicable.
2. O iff either (2.1) (2.1.1) r ∈ RO and is body-applicable,

(2.1.2) ∀ck ∈ C(r), k < i, +∂Ock ∈ P(1..n) and −∂ck ∈ P(1..n), or
(2.2) r is Conv-applicable.

3. D iff either (3.1) r ∈ RU and is body-applicable, or
(3.2) Conv-applicable.

4. X ∈ {G, I,SI} iff either (4.1) (4.1.1) r ∈ RU and is body-applicable, and
(4.1.2) ∀ck ∈ C(r), k < i, +∂Y∼ck ∈ P(1..n) for some Y
such that Conflict(Y, X ) and −∂X ck ∈ P(1..n), or

(4.2) r is Conv-applicable.

For G there are no conflicts; for I we have Conflict(B, I), and for SI we have Conflict(B,SI)
and Conflict(O,SI).

Definition 10 (Discarded rule)
Given a proof P, r ∈ R[q, i] is discarded (at index i and P(n + 1)) for
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1. B iff r ∈ RB or is body-discarded.
2. O iff (2.1) (2.1.1) r < RO or is body-discarded, or

(2.1.2) ∃ck ∈ C(r), k < i, s.t. −∂Ock ∈ P(1..n) or +∂ck ∈ P(1..n), and
(2.2) r is Conv-discarded.

3. D iff (3.1) r < RU or is body-discarded, and
(3.2) r is Conv-discarded.

4. X ∈ {G, I,SI} iff (4.1) (4.1.1) r < RU or is body-discarded, or
(4.1.2) ∃ck ∈ C(r), k < i, s.t. −∂Y∼ck ∈ P(1..n) for all Y
such that Conflict(Y, X ) or +∂X ck ∈ P(1..n) and

(4.2) r is Conv-discarded.

For G there are no conflicts; for I we have Conflict(B, I), and for SI we have Conflict(B,SI)
and Conflict(O,SI).

Notice that the conditions of Definition 10 are the strong negation3 of those given in
Definition 9. The conditions to establish a rule being discarded correspond to the constructive
failure to prove that the same rule is applicable.
We are now ready to introduce the definitions of the proof conditions for the modal

operators given in this paper. We start with that for desire.

Definition 11 (Defeasible provability for desire)
The proof conditions of defeasible provability for desire are

+∂D: If P(n + 1) = +∂Dq then
(1) Dq ∈ F or
(2) (2.1) ¬Dq < F and

(2.2) ∃r ∈ R[q, i] s.t. r is applicable for D and
(2.3) ∀s ∈ R[∼q, j] either (2.3.1) s is discarded for D, or (2.3.2) s ≯ r .

The above conditions determine when we are able to assert that q is a desire. Specifically,
a desire is each element in a chain of an outcome rule for which there is no stronger argument
for the opposite desire.
The negative counterpart −∂Dq is obtained by the principle of strong negation.

Definition 12 (Defeasible refutability for desire)
The proof conditions of defeasible refutability for desire are

−∂D: If P(n + 1) = −∂Dq then
(1) Dq < F and
(2) (2.1) ¬Dq ∈ F, or

(2.2) ∀r ∈ R[q, i] either r is discarded for D, or
(2.3) ∃s ∈ R[∼q, j] s.t. (2.3.1) s is applicable for D and (2.3.2) s > r .

The proof conditions for +∂X , with X ∈ MOD \ {D} are as follows, provided that Y and
T represent two arbitrary modalities in MOD:

3 The strong negation principle is closely related to the function that simplifies a formula by moving all negations
to an innermost position in the resulting formula, and replaces the positive tags with the respective negative tags,
and the other way around. (See [Antoniou et al., 2000, Governatori et al., 2009].)
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Definition 13 (Defeasible provability for obligation, goal, intention and social intention)
The proof conditions of defeasible provability for X ∈ MOD \ {D} are
+∂X : If P(n + 1) = +∂Xq then
(1) Xq ∈ F or
(2) (2.1) ¬Xq < F and (Y∼q < F for Y = X or Conflict(Y, X )) and

(2.2) ∃r ∈ R[q, i] s.t. r is applicable for X and
(2.3) ∀s ∈ R[∼q, j] either

(2.3.1) ∀Y s.t. Y = X or Conflict(Y, X ), s is discarded for Y ; or
(2.3.2) ∃T, ∃t ∈ R[q, k] s.t. t is applicable for T , and either

(2.3.2.1) t > s if Y = T , Convert(Y,T ), or Convert(T,Y ); or
(2.3.2.2) Conflict(T,Y ).

To show that a literal q is defeasibly provable with the modality X we have two choices:
(1) the modal literal Xq is a fact; or (2) we need to argue using the defeasible part of D. For
(2), we require that (2.1) a complementary literal (of the same modality, or of a conflictual
modality) does not appear in the set of facts, and (2.2) there must be an applicable rule for X
and q. Moreover, each possible attack brought by a rule s for ∼q has to be either discarded
for the same modality of r and for all modalities in conflict with X (2.3.1), or successfully
counterattacked by another stronger rule t for q (2.3.2). We recall that the superiority relation
combines rules of the same mode, rules with different modes that produce complementary
conclusion of the same mode through conversion (both considered in clause (2.3.2.1)),
and rules with conflictual modalities (clause 2.3.2.2). Trivially, if X = B then the proof
conditions reduce to those of classical defeasible logic [Antoniou et al., 2001].
Again, conditions for −∂X are derived by the principle of strong negation from that for

+∂X and are as follows.

Definition 14 (Defeasible refutability for obligation, goal, intention and social intention)
The proof conditions of defeasible refutability for X ∈ {O,G, I,SI} are
−∂X : If P(n + 1) = −∂Xq then
(1) Xq < F and either
(2) (2.1) ¬Xq ∈ F or (Y∼q ∈ F for Y = X or Conflict(Y, X )) or

(2.2) ∀r ∈ R[q, i] either r is discarded for X or
(2.3) ∃s ∈ R[∼q, j] s.t.

(2.3.1) ∃Y s.t. (Y = X or Conflict(Y, X )) and s is applicable for Y , and
(2.3.2) ∀T,∀t ∈ R[q, k] either t is discarded for T , or

(2.3.2.1) t ≯ s if Y = T , Convert(Y,T ), or Convert(T,Y ); and
(2.3.2.2) not Conflict(T,Y ).

To better understand how applicability and proof conditions interact to define the
(defeasible) conclusions of a given theory, we consider the example below.

Example 4
Let D be the following modal theory

F = {a1, a2, ¬b1, O¬b2} R = {r : a1 ⇒U b1 � b2 � b3 � b4, s : a2 ⇒U b4}.

Here, r is trivially applicable for D and +∂Dbi holds, for 1 ≤ i ≤ 4. Moreover, we have
+∂Gb1 and r is discarded for G after b1. Due to +∂¬b1, it follows that −∂Ib1 holds (as well
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as −∂SIb1); the rule is applicable for I and b2, and we are able to prove +∂Ib2; the rule is thus
discarded for I and b3 as well as b4. Due to O¬b2 being a fact, r is discarded for SI and b2
resulting in −∂SIb2, which in turn makes the rule applicable for SI and b3, proving +∂SIb3.
As we have argued before, this makes r discarded for b4. Even if r is discarded for SI and
b4, we nonetheless have D ` +∂SIb4 due to s; specifically, D ` +∂X b4 with X ∈ {D,G, I,SI}
given that s is trivially applicable for X .

For further illustrations of how the machinery works, the reader is referred to Appendix A.

The next definition extends the concept of complement for modal literals and is used to
establish the logical connection among proved and refuted literals in our framework.

Definition 15 (Complement set)
The complement set of a given modal literal l, denoted by l̃, is defined as follows: (1) if
l = Dm, then l̃ = {¬Dm}; (2) if l = Xm, then l̃ = {¬Xm, X∼m}, with X ∈ {O,G, I,SI}; (3) if
l = ¬Xm, then l̃ = {Xm}.

The logic resulting from the above proof conditions enjoys properties describing the
appropriate behaviour of the modal operators for consistent theories.

Definition 16 (Consistent defeasible theory)
A defeasible theory D = (F, R, >) is consistent iff > is acyclic and F does not contain pairs
of complementary literals, that is if F does not contain pairs like (i) l and ∼l, (ii) Xl and
¬Xl with X ∈ MOD, and (iii) Xl and X∼l with X ∈ {G, I,SI}.

Proposition 1
Let D be a consistent, finite defeasible theory. For any literal l, it is not possible to have both

1. D ` +∂X l and D ` −∂X l with X ∈ MOD;
2. D ` +∂X l and D ` +∂X∼l with X ∈ MOD \ {D}.

All proofs of propositions, lemmas and theorems are reported in Appendix B and
Appendix C. The meaning of the above proposition is that, for instance, it is not possible for
an agent to obey something that is obligatory and forbidden (obligatory not) at the same
time. On the other hand, an agent may have opposite desires given different situations, but
then she will be able to plan for only one between the two alternatives.
Proposition 2 below governs the interactions between different modalities and the

relationships between proved literals and refuted complementary literals of the same
modality. Proposition 3 proves that certain (likely-expected) implications do no hold.

Proposition 2
Let D be a consistent defeasible theory. For any literal l, the following statements hold:

1. if D ` +∂X l, then D ` −∂X∼l with X ∈ MOD \ {D};
2. if D ` +∂l, then D ` −∂I∼l;
3. if D ` +∂l or D ` +∂Ol, then D ` −∂SI∼l;
4. if D ` +∂Gl, then D ` +∂Dl;
5. if D ` −∂Dl, then D ` −∂Gl.

Proposition 3
Let D be a consistent defeasible theory. For any literal l, the following statements do not
hold:
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6. if D ` +∂Dl, then D ` +∂X l with X ∈ {G, I,SI};
7. if D ` +∂Gl, then D ` +∂X l with X ∈ {I,SI};
8. if D ` +∂X l, then D ` +∂Y l with X = {I,SI} and Y = {D,G};
9. if D ` −∂Y l, then D ` −∂X l with Y ∈ {D,G} and X ∈ {I,SI}.

Parts 6. and 7. directly follow by Definitions from 9 to 14 and rely on the intuitions
presented in Section 2. Parts from 7. to 9. reveal the true nature of expressing outcomes in a
preference order: it may be the case that the agent desires something (may it be even her
preferred outcome) but if the factuality of the environment makes this outcome impossible
to reach, then she should not pursue such an outcome, and instead commit herself on the
next option available. The statements of Proposition 3 exhibit a common feature which can
be illustrated by the idiom: “What’s your plan B?”, meaning: even if you are willing for an
option, if such an option is not feasible you need to strive for the plan B.

4 Algorithmic results

We now present procedures and algorithms to compute the extension of a finite defeasible
theory (Subsection 4.2), in order to ascertain the complexity of the logic introduced in the
previous sections. The algorithms are inspired to ideas proposed in [Maher, 2001, Lam and
Governatori, 2011].

4.1 Notation for the algorithms

From now on, � denotes a generic modality in MOD, ^ a generic modality in MOD \ {B},
and � a fixed modality chosen in �. Moreover, whenever � = B we shall treat literals �l
and l as synonyms. To accommodate the Convert relation to the algorithms, we recall that
RB,^ denotes the set of belief rules that can be used for a conversion to modality ^. The
antecedent of all such rules is not empty, and does not contain any modal literal.

Furthermore, for each literal l, l� is the set (initially empty) such that ±� ∈ l� iff D ` ±∂�l.
Given a modal defeasible theory D, a set of rules R, and a rule r ∈ R�[l], we expand the
superiority relation > by incorporating the Conflict relation into it:

>=> ∪ {(r, s) |r ∈ R�[l], s ∈ R�[∼l],Conflict(�,�)}.

We also define:

1. rsup = {s ∈ R : (s, r) ∈>} and rin f = {s ∈ R : (r, s) ∈>} for any r ∈ R;
2. HBD as the set of literals such that the literal or its complement appears in D, i.e.,

such that it is a sub-formula of a modal literal occurring in D;
3. the modal Herbrand Base of D as HB = {�l | � ∈ MOD, l ∈ HBD }.

Accordingly, the extension of a defeasible theory is defined as follows.

Definition 17 (Defeasible extension)
Given a defeasible theory D, the defeasible extension of D is defined as

E(D) = (+∂�,−∂�),

where ±∂� = {l ∈ HBD : D ` ±∂�l} with � ∈ MOD. Two defeasible theories D and D′ are
equivalent whenever they have the same extensions, i.e., E(D) = E(D′).
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We introduce two operations that modify the consequent of rules used by the algorithms.

Definition 18 (Truncation and removal)
Let c1 = a1 � · · · � ai−1 and c2 = ai+1 � · · · � an be two (possibly empty) �-expressions
such that ai does not occur in neither of them, and c = c1 � ai � c2 is an �-expression. Let
r be a rule with form A(r) ⇒^ c. We define the truncation of the consequent c at ai as:

A(r) ⇒^ c!ai = A(r) ⇒^ c1 � ai,

and the removal of ai from the consequent c as:

A(r) ⇒^ c 	 ai = A(r) ⇒^ c1 � c2.

Notice that removal may lead to rules with empty consequent which strictly would not be
rules according to the definition of the language. Nevertheless, we accept such expressions
within the description of the algorithms but then such rules will not be in any R[q, i] for any
q and i. In such cases, the operation de facto removes the rules.
Given � ∈ MOD, the sets +∂� and −∂� denote, respectively, the global sets of positive

and negative defeasible conclusions (i.e., the set of literals for which condition +∂� or −∂�
holds), while ∂+� and ∂−� are the corresponding temporary sets, that is the set computed at
each iteration of the main algorithm. Moreover, to simplify the computation, we do not
operate on outcome rules: for each rule r ∈ RU we create instead a new rule for desire, goal,
intention, and social intention (respectively, rD, rG, r I, and rSI). Accordingly, for the sake
of simplicity, in the present section we shall use expressions like “the intention rule” as a
shortcut for “the clone of the outcome rule used to derive intentions”.

4.2 Algorithms

The idea of all the algorithms is to use the operations of truncation and elimination to
obtain, step after step, a simpler but equivalent theory. In fact, proving a literal does not give
local information regarding the element itself only, but rather reveals which rules should
be discarded, or reduced, in their head or body. Let us assume that, at a given step, the
algorithm proves literal l. At the next step,

1. the applicability of any rule r with l ∈ A(r) does not depend on l any longer. Hence,
we can safely remove l from A(r).

2. Any rule s with l̃ ∩ A(s) , ∅ is discarded. Consequently, any superiority tuple
involving s is now useless and can be removed from the superiority relation.

3. We can shorten chains by exploiting conditions of Definitions 9 and 10. For instance,
if l = Om, we can truncate chains for obligation rules at ∼m and eliminate it as well.

Algorithm 1 DefeasibleExtension is the core algorithm to compute the extension of a
defeasible theory. The first part of the algorithm (lines 1–5) sets up the data structure needed
for the computation. Lines 6–9 are to handle facts as immediately provable literals.

The main idea of the algorithm is to check whether there are rules with empty body: such
rules are clearly applicable and they can produce conclusions with the right mode. However,
before asserting that the first element for the appropriate modality of the conclusion is
provable, we need to check whether there are rules for the complement with the appropriate
mode; if so, such rules must be weaker than the applicable rules. The information about
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Algorithm 1 DefeasibleExtension
1: +∂�, ∂+� ← ∅; −∂�, ∂−� ← ∅
2: R ← R ∪ {r� : A(r ) ⇒� C (r ) |r ∈ RU }, with � ∈ {D, G, I, SI}
3: R ← R \ RU

4: RB,^ ← {r^ : A(r ) ↪→ C (r ) |r ∈ RB, A(r ) , ∅, A(r ) ⊆ Lit}
5: >←> ∪{(r^, s^ ) |r^, s^ ∈ RB,^, r > s } ∪ {(r, s) |r ∈ R� ∪ RB,�, s ∈ R^ ∪ RB,^, Conflict(�, ^) }
6: for l ∈ F do
7: if l = �m then Proved(m, �)
8: if l = ¬�m ∧ � , D then Refuted(m, �)
9: end for
10: +∂� ← +∂� ∪ ∂+� ; −∂� ← −∂� ∪ ∂−�
11: Rinfd ← ∅
12: repeat
13: ∂+� ← ∅; ∂−� ← ∅
14: for �l ∈ HB do
15: if R�[l] ∪ RB,�[l] = ∅ then Refuted(l, �)
16: end for
17: for r ∈ R� ∪ RB,� do
18: if A(r ) = ∅ then
19: rin f ← {r ∈ R : (r, s) ∈>, s ∈ R }; rsup ← {s ∈ R : (s, r ) ∈> }
20: Rinfd ← Rinfd ∪ rin f

21: Let l be the first literal ofC (r ) in HB
22: if rsup = ∅ then
23: if � = D then
24: Proved(m, D)
25: else
26: Refuted(∼l, �)
27: Refuted(∼l, ^) for ^ s.t. Conflict(�, ^)
28: if R�[∼l] ∪ RB,�[∼l] ∪ R�[∼l] \ Rinfd ⊆ rin f , for � s.t. Conflict(�, �) then
29: Proved(m, �)
30: end if
31: end if
32: end if
33: end if
34: end for
35: ∂+� ← ∂+� \ +∂�; ∂−� ← ∂−� \ −∂�
36: +∂� ← +∂� ∪ ∂+� ; −∂� ← −∂� ∪ ∂−�
37: until ∂+� = ∅ and ∂−� = ∅
38: return (+∂�, −∂�)

which rules are weaker than the applicable ones is stored in the support set Rinfd. When a
literal is evaluated to be provable, the algorithm calls procedure Proved; when a literal is
rejected, procedure Refuted is invoked. These two procedures apply transformations to
reduce the complexity of the theory.
A step-by-step description of the algorithm would be redundant once the concepts

expressed before are understood. Accordingly, in the rest of the section we provide in depth
descriptions of the key passage.
For every outcome rule, the algorithm makes a copy of the same rule for each mode

corresponding to a goal-like attitude (line 2). At line 4, the algorithm creates a support set
to handle conversions from a belief rule through a different mode. Consequently, the new
^ rules have to inherit the superiority relation (if any) from the belief rules they derive
from (line 5). Notice that we also augment the superiority relation by incorporating the rules
involved in the Conflict relation. Given that facts are immediately proved literals, Proved
is invoked for positively proved modal literals (those proved with +∂�), and Refuted for
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rejected literals (i.e., those proved with −∂�). The aim of the for loop at lines 14–16 is to
discard any modal literal in HB for which there are no rules that can prove it (either directly
or through conversion).
We now iterate on every rule that can fire (i.e., on rules with empty body, loop for at

lines 17–34 and if condition at line 18) and we collect the weaker rules in the set Rinfd (line
20). Since a consequent can be an �-expression, the literal we are interested in is the first
element of the �-expression (line 21). If no rule stronger than the current one exists, then
the complementary conclusion is refuted by condition (2.3) of Definition 14 (line 26). An
additional consequence is that literal l is also refutable in D for any modality conflicting
with � (line 27). Notice that this reasoning does not hold for desires: since the logic allows
to have Dl and D∼l at the same time, when � = D and the guard at line 22 is satisfied, the
algorithm invokes procedure 2 Proved (line 24) due to condition (2.3) of Definition 11.
The next step is to check whether there are rules for the complement literal of the same

modality, or of a conflicting modality. The rules for the complement should not be defeated
by applicable rules: such rules thus cannot be in Rinfd. If all these rules are defeated by r
(line 28), then conditions for deriving +∂� are satisfied, and Algorithm 2 Proved is invoked.

Algorithm 2 Proved
1: procedure Proved(l ∈ Lit, � ∈ MOD)
2: ∂+� ← ∂+� ∪ {l }; l� ← l� ∪ {+�}
3: HB ← HB \ {�l }
4: if � , D then Refuted(∼l, �)
5: if � = B then Refuted(∼l, I)
6: if � ∈ {B, O} then Refuted(∼l, SI)
7: R ← {r : A(r ) \ {�l, ¬�∼l } ↪→ C (r ) | r ∈ R, A(r ) ∩ �̃l = ∅}
8: RB,� ← {r : A(r ) \ {l } ↪→ C (r ) |r ∈ RB,�, ∼l < A(r ) }
9: >←> \{(r, s), (s, r ) ∈> | A(r ) ∩ �̃l , ∅}
10: switch (�)
11: case B:
12: RX ← {A(r ) ⇒X C (r )!l | r ∈ RX [l, n]} with X ∈ {O, I}
13: if +O ∈ ∼l� then RO ← {A(r ) ⇒O C (r ) 	 ∼l | r ∈ RO[∼l, n]}
14: if −O ∈ ∼l� then RSI ← {A(r ) ⇒SI C (r )!l | r ∈ RSI[l, n]}
15: case O:
16: RO ← {A(r ) ⇒O C (r )!∼l 	 ∼l | r ∈ RO[∼l, n]}
17: if −B ∈ l� then RO ← {A(r ) ⇒O C (r ) 	 l | r ∈ RO[l, n]}
18: if −B ∈ ∼l� then RSI ← {A(r ) ⇒SI C (r )!l | r ∈ RSI[l, n]}
19: case D:
20: if +D ∈ ∼l� then
21: RG ← {A(r ) ⇒G C (r )!l 	 l | r ∈ RG[l, n]}
22: RG ← {A(r ) ⇒G C (r )!∼l 	 ∼l | r ∈ RG[∼l, n]}
23: end if
24: otherwise:
25: R� ← {A(r ) ⇒� C (r )!l | r ∈ R�[l, n]}
26: R� ← {A(r ) ⇒� C (r ) 	 ∼l | r ∈ R�[∼l, n]}
27: end switch
28: end procedure

Algorithm 2 Proved is invoked when literal l is proved with modality �, the key to which
simplifications on rules can be done. The computation starts by updating the relative positive
extension set for modality � and, symmetrically, the local information on literal l (line 2); l
is then removed from HB at line 3. Parts 1.–3. of Proposition 2 identifies the modalities
literal ∼l is refuted with, when �l is proved (if conditions at lines 4–6). Lines 7 to 9 modify
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the superiority relation and the sets of rules R and RB,� accordingly to the intuitions given
at the beginning of Section 4.2.

Depending on the modality � of l, we perform specific operations on the chains (condition
switch at lines 10–27). A detailed description of each case would be redundant without
giving more information than the one expressed by conditions of Definitions 9 and 10.
Therefore, we propose one significative example by considering the scenario where l has
been proved as a belief (case at lines 11–14). First, conditions of Definitions 10 and 14
ensure that ∼l may be neither an intention, nor a social intention. Algorithm 3 Refuted is
thus invoked at lines 5 and 6 which, in turn, eliminates ∼l from every chain of intention
and social intention rules (line 18 of Algorithm 3 Refuted). Second, chains of obligation
(resp. intention) rules can be truncated at l since condition (2.1.2) (resp. condition (4.1.2))
of Definition 10 makes such rules discarded for all elements following l in the chain (line
12). Third, if +∂O∼l has been already proved, then we eliminate ∼l in chains of obligation
rules since it represents a violated obligation (if condition at lines 13). Fourth, if −∂O∼l is
the case, then each element after l cannot be proved as a social intention (if condition at line
14). Consequently, we truncate chains of social intention rules at l.

Algorithm 3 Refuted
1: procedure Refuted(l ∈ Lit, � ∈ MOD)
2: ∂−� ← ∂−� ∪ {l }; l� ← l� ∪ {−�}
3: HB ← HB \ {�l }
4: R ← {r : A(r ) \ {¬�l } ↪→ C (r ) | r ∈ R, �l < A(r ) }
5: RB,� ← RB,� \ {r ∈ RB,� : l ∈ A(r ) }
6: >←> \{(r, s), (s, r ) ∈> |�l ∈ A(r ) }
7: switch (�)
8: case B:
9: RI ← {A(r ) ⇒I C (r )!∼l |r ∈ RI[∼l, n]}
10: if +O ∈ l� then RO ← {A(r ) ⇒O C (r ) 	 l |r ∈ RO[l, n]}
11: if −O ∈ l� then RSI ← {A(r ) ⇒SI C (r )!∼l |r ∈ RSI[∼l, n]}
12: case O:
13: RO ← {A(r ) ⇒O C (r )!l 	 l |r ∈ RO[l, n]}
14: if −B ∈ l� then RSI ← {A(r ) ⇒SI C (r )!∼l |r ∈ RSI[∼l, n]}
15: case D:
16: RX ← {A(r ) ⇒X C (r ) 	 l |r ∈ RX [l, n]} with X ∈ {D, G}
17: otherwise:
18: R� ← {A(r ) ⇒� C (r ) 	 l |r ∈ R�[l, n]}
19: end switch
20: end procedure

Algorithm 3 Refuted performs all necessary operations to refute literal l with modality
�. The initialisation steps at lines 2–6 follow the same schema exploited at lines 2–9 of
Algorithm 2 Proved. Again, the operations on chains vary according to the current mode �
(switch at lines 7–19). For instance, if � = B (case at lines 8–11), then condition (4.1.2)
for I of Definition 10 is satisfied for any literal after ∼l in chains for intentions, and such
chains can be truncated at ∼l. Furthermore, if the algorithm has already proven +∂Ol, then
the obligation of l has been violated. Thus, l can be removed from all chains for obligations
(line 10). If instead −∂Ol holds, then the elements after ∼l in chains for social intentions
satisfy condition (4.1.2) of Definition 10, and the algorithm removes them (line 11).
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4.3 Computational Results

We now present the computational properties of the algorithms previously described.
Since Algorithms 2 Proved and 3 Refuted are sub-routines of the main one, we shall
exhibit the correctness and completeness results of these algorithms inside theorems
for Algorithm 1 DefeasibleExtension. In order to properly demonstrate results on the
complexity of the algorithms, we need the following definition.

Definition 19 (Size of a theory)
Given a finite defeasible theory D, the size S of D is the number of occurrences of literals
plus the number of the rules in D.

For instance, the size of the theory

F = {a, Ob} R = {r1 : a ⇒O c, r2 : a,Ob⇒ d}

is equal to nine, since literal a occurs three times.
We also report some key ideas and intuitions behind our implementation.

1. Each operation on global sets ±∂� and ∂±� requires linear time, as we manipulate finite
sets of literals;

2. For each literal �l ∈ HB, we implement a hash table with pointers to the rules where
the literal occurs in; thus, retrieving the set of rules containing a given literal requires
constant time;

3. The superiority relation can also be implemented by means of hash tables; once again,
the information required to modify a given tuple can be accessed in constant time.

In Section 4 we discussed the main intuitions behind the operations performed by the
algorithms, and we explained that each operation corresponds to a reduction that transforms
a theory in an equivalent smaller theory. Appendix Appendix C exhibits a series of lemmas
stating the conditions under which an operation that removes either rules or literals form
either the head or rules or from the body results in an equivalent smaller theory. The Lemmas
proved by induction on the length of derivations.

Theorem 4
Given a finite defeasible theory D with size S, Algorithms 2 Proved and 3 Refuted
terminate and their computational complexity is O(S).

Theorem 5
Given a finite defeasible theory D with size S, Algorithm 1DefeasibleExtension terminates
and its computational complexity is O(S).

Theorem 6
Algorithm 1 DefeasibleExtension is sound and complete.

5 Summary and Related Work

This article provided a new proposal for extending DL to model cognitive agents interacting
with obligations. We distinguished concepts of desire, goal, intention and social intention,
but we started from the shared notion of outcome. Therefore, such concepts spring from
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a single notion that becomes distinct based on the particular relationship with beliefs and
norms. This reflects a more natural notion of mental attitude and can express the well-known
notion of Plan B. When we consider the single chain itself, this justifies that from a single
concept of outcome we can derive all the other mental attitudes. Otherwise we would
need as many additional rules as the elements in the chain; this, in turn, would require the
introduction of additional notions to establish the relationships with beliefs and norms. This
adds to our framework an economy of concepts.
Moreover, since the preferences allow us to determine what preferred outcomes are

adopted by an agent (in a specific scenario) when previous elements in sequences are
no longer feasible, our logic provides an abstract semantics for several types of goal and
intention reconsideration.

A drawback of our approach perhaps lies in the difficulty of translating a natural language
description into a logic formalisation. This is a notoriously hard task. Even if the obstacle
seems very difficult, the payoff is worthwhile. The first reason is due to the efficiency of the
computation of the positive extension once the formalisation has been done (polynomial
time against the majority of the current frameworks in the literature which typically work
in exponential time). The second reason is that the use of rules (such as business rules) to
describe complex systems is extremely common [Knolmayer et al., 2000]. Future lines of
research will then focus on developing such methods, by giving tools which may help the
(business) analyst in writing such (business) rules from the declarative description.

The logic presented in this paper, as the vast majority of approaches to model autonomous
agents, is propositional. The algorithms to compute the extension of theory relies on the
theory being finite, thus the first assumption for possible first-order extensions would be to
work on finite domains of individuals. Given this assumption, the algorithms can be still be
used once a theory has been grounded. This means that the size of theory is in function of the
size of the grounding. We expect that the size of the grounding depends on the cardinality of
the domain of individuals and the length of the vector obtained by the join of the predicates
occurring in the theory.

Our contribution has strong connections with those by Dastani et al. [2005], Governatori
and Rotolo [2008], Governatori et al. [2009], but it completely rebuilds the logical treatment
of agents’ motivational attitudes by presenting significant innovations in at least two respects.
First, while in [Dastani et al., 2005, Governatori and Rotolo, 2008, Governatori et al.,

2009] the agent deliberation is simply the result of the derivation of mental states from
precisely the corresponding rules of the logic—besides conversions, intentions are derived
using only intention rules, goals using goal rules, etc.—here, the proof theory is much more
aligned with the BDI intuition, according to which intentions and goals are the results of the
manipulation of desires. The conceptual result of the current paper is that this idea can be
entirely encoded within a logical language and a proof theory, by exploiting the different
interaction patterns between the basic mental states, as well as the derived ones. In this
perspective, our framework is significantly richer than the one in BOID [Broersen et al.,
2002], which uses different rules to derive the corresponding mental states and proposes
simple criteria to solve conflicts between rule types.

Second, the framework proposes a rich language expressing two orthogonal concepts of
preference among motivational attitudes. One is encoded within � sequences, which state
(reparative) orders among homogeneous mental states or motivations. The second type of
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preference is encoded via the superiority relation between rules: the superiority can work
locally between single rules of the same or different types, or can work systematically by
stating via Conflict(X,Y ) that two different motivations X and Y collide, and X always
overrides Y . The interplay between these two preference mechanisms can help us in isolating
different and complex ways for deriving mental states, but the resulting logical machinery is
still computationally tractable, as the algorithmic analysis proved.

Lastly, since the preferences allow us to determine what preferred outcomes are adopted
by an agent when previous elements in �-sequences are not (or no longer) feasible, our logic
in fact provides an abstract semantics for several types of goal and intention reconsideration.
Intention reconsideration was expected to play a crucial role in the BDI paradigm [Bratman,
1987, Cohen and Levesque, 1990] since intentions obey the law of inertia and resist
retraction or revision, but they can be reconsidered when new relevant information comes in
[Bratman, 1987]. Despite that, the problem of revising intentions in BDI frameworks has
received little attention. A very sophisticated exception is that of van der Hoek et al. [2007],
where revisiting intentions mainly depends on the dynamics of beliefs but the process is
incorporated in a very complex framework for reasoning about mental states. Recently,
Shapiro et al. [2012] discussed how to revise the commitments to planned activities because
of mutually conflicting intentions, a contribution that interestingly has connections with our
work. How to employ our logic to give a semantics for intention reconsideration is not the
main goal of the paper and is left to future work.
Our framework shares the motivation with that of Winikoff et al. [2002], where the

authors provide a logic to describe both the declarative and procedural nature of goals. The
nature of the two approaches lead to conceptually different solutions. For instance, they
require goals, as in [Hindriks et al., 2000], “not to be entailed by beliefs, i.e., that they be
unachieved”, while our beliefs can be seen as ways to achieve goals. Other requirements
such as persistence or dropping a goal when reached cannot be taken into account.

Shapiro et al. [2007] and Shapiro and Brewka [2007] deal with goal change. The authors
consider the case where an agent readopts goals that were previously believed to be impossible
to achieve up to revision of her beliefs. They model goals through an accessibility relation
over possible worlds. This is similar to our framework where different worlds are different
assignments to the set of facts. Similarly to us, they prioritise goals as a preorder ≤; an agent
adopts a new goal unless another incompatible goal prior in the ordering exists. This is in
line with our framework where if we change the set of facts, the algorithms compute a new
extension of the theory where two opposite literals can be proved as D but only one as I.
Notice also that the ordering used in their work is unique and fixed at design time, while in
our framework chains of outcome rules are built trough a context-dependent partial order
which, in our opinion, models more realistic scenarios.

Dastani et al. [2006] present three types of declarative goals: perform, achievement, and
maintenance goals. In particular, they define planning rules which relate configurations of
the world as seen by the agent (i.e., her beliefs). A planning rule is considered correct only
if the plan associated to the rule itself allows the agent to reach a configuration where her
goal is satisfied. This is strongly connected to our idea of belief rules, which define a path
to follow in order to reach an agent outcome. Notice that this kind of research based on
temporal aspects is orthogonal to ours.
The unifying framework proposed by van Riemsdijk et al. [2008] and Dastani et al.
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[2011] specifies different facets of the concept of goal. However, several aspects make a
comparative analysis between the two frameworks unfeasible. Their analysis is indeed merely
taxonomical, and it does not address how goals are used in agent logics, as we precisely do
here.

van Riemsdijk et al. [2009] share our aim to formalise goals in a logic-based representation
of conflicting goals and propose two different semantics to represent conditional and
unconditional goals. Their central thesis, supported by Prakken [2006], is that only by
adopting a credulous interpretation is it possible to have conflicting goals. However, we
believe that a credulous interpretation is not suitable if an agent has to deliberate what
her primary goals are in a given situation. We opted to have a sceptical interpretation of
the concepts we call goals, intentions, and social intentions, while we adopt a credulous
interpretation for desires. Moreover, they do not take into account the distinction between
goals and related motivational attitudes (as in [van Riemsdijk et al., 2008, Dastani et al.,
2011, 2006]). The characteristic property of intentions in these logics is that an agent may not
drop intentions for arbitrary reasons, which means that intentions have a certain persistence.
As such, their analysis results orthogonal to ours.

Vasconcelos et al. [2009] propose mechanisms for the detection and resolution of
normative conflicts. They resolve conflicts by manipulating the constraints associated to the
norms’ variables, as well as through curtailment, that is reducing the scope of the norm.
In other works, we dealt with the same problems in defeasible deontic logic [Governatori
et al., 2013a]. We found three problems in their solution: (i) the curtailing relationship ω is
rather less intuitive than our preference relation >, (ii) their approach seems too convoluted
in solving exceptions (and they do not provide any mechanism to handle reparative chains of
obligations), and (iii) the space complexity of their adoptNorm algorithm is exponential.
The present framework is meant to be seen as the first step within a more general

perspective of providing the business analyst with tools that allow the creation of a business
process in a fully declarative manner [Olivieri et al., 2013]. Another issue comes from
the fact that, typically, systems implemented by business rules involve thousands of such
rules. Again, our choice of Defeasible Logic allows to drastically reduce the number of
rules involved in the process of creating, for example, a business process thanks to its
exception handling mechanism. This is peculiarly interesting when dealing with the problem
of visualising such rules. When dealing with a system with thousands of rules, understanding
what they represent or what a group of rules stand for, may be a serious challenge. On the
contrary, the model presented by Olivieri et al. [2013], once an input is given, allows for the
identification of whether the whole process is compliant against a normative system and
a set of goals (and if not, where it fails). To the best of our knowledge, no other system is
capable of checking whether a process can start with its input requisites and reaches its final
objectives in a way that is compliant with a given set of norms.
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Appendix A Inferential mechanism example

This appendix is meant to offer more details for illustrating the inference mechanism
proposed in this paper, and to consider Definition 13 more carefully. Therefore, first we
report in Table A 1 the most interesting scenarios, where a rule r proves +∂SIq when attacked
by an applicable rule s, which in turn is successfully counterattacked by an applicable rule t.
Lastly, we end this appendix by reporting an example. The situation described there starts
from a natural language description and then shows how it can be formalised with the logic
we proposed.

For the sake of clarity, notation B,� (with � ∈ {O,SI}) represents belief rules which are
Conv-applicable for mode �.
For instance, the sixth row of the table denotes situations like the following:

F = {a, b, Oc}

R = {r : a ⇒U q,

s : b⇒O ¬q,

t : c ⇒ q}

> = {(t, s)}.
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The outcome rule r for q is applicable for SI according to Definition 9. Since in our
framework we have Conflict(O,SI), the rule s for ¬q (which is applicable for O) does
not satisfy condition (2.3.1) of Definition 13. As a result, s represents a valid attack to r.
However, since we have Convert(B,O), rule t is Conv-applicable for O by Definition 7, with
t > s by construction. Thus, t satisfies condition (2.3.2.1) of Definition 13 and successfully
counterattacks s. Consequently, r is able to conclude +∂SIq.

Mode of r Mode of s Mode of t +∂SIq because. . .

U applicable for SI U applicable for SI U applicable for SI t > s
U applicable for SI U applicable for SI O Conflict(O,SI)
U applicable for SI U applicable for SI B,SI t > s
U applicable for SI U applicable for SI B,O Conflict(O,SI)
U applicable for SI O O t > s
U applicable for SI O B,O t > s
U applicable for SI B,SI U applicable for SI t > s
U applicable for SI B,SI O Conflict(O,SI)
U applicable for SI B,SI B,SI t > s
U applicable for SI B,SI B,O Conflict(O,SI)
U applicable for SI B,O B,O t > s

B,SI U applicable for SI U applicable for SI t > s
B,SI U applicable for SI O Conflict(O,SI)
B,SI U applicable for SI B,SI t > s
B,SI U applicable for SI B,O Conflict(O,SI)
B,SI O O t > s
B,SI O B,O t > s
B,SI B,SI U applicable for SI t > s
B,SI B,SI O Conflict(O,SI)
B,SI B,SI B,SI t > s
B,SI B,SI B,O Conflict(O,SI)
B,SI B,O B,O t > s

Table A 1. Definition 13: Attacks and counterattacks for social intention

Example 5
PeoplEyes is an eyeglasses manufacturer. Naturally, its final goal is to produce cool and
perfectly assembled eyeglasses. The final steps of the production process are to shape the
lenses to glasses, and mount them on the frames. To shape the lenses, PeoplEyes uses a very
innovative and expensive laser machine, while for the final mounting phase two different
machines can be used. Although both machines work well, the first and newer one is more
precise and faster than the other one; PeoplEyes thus prefers to use the first machine as much
as possible. Unfortunately, a new norm comes in force stating that no laser technology can
be used, unless human staff wears laser-protective goggles.

If PeoplEyes has both human resources and raw material, and the three machines are
fully working, but it has not yet bought any laser-protective goggles, all its goals would be
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achieved but it would fail to comply with the applicable regulations, since the norm for the
no-usage of laser technology is violated and not compensated.
If PeoplEyes buys the laser-protective goggles, their entire production process also

becomes norm compliant. If, at some time, the more precise mounting machine breaks, but
the second one is still working, PeoplEyes can still reach some of its objectives since the
usage of the second machine leads to a state of the world where the objective of mounting the
glasses on the frames is accomplished. Again, if PeoplEyes has no protective laser goggles
and both the mounting machines are out of order, PeoplEyes’ production process is neither
norm, nor outcome compliant.
The following theory is the formalisation into our logic of the above scenario.

F = {lenses, frames, new_safety_regulation}
R = {r1 :⇒U eye_Glasses

r2 :⇒ laser

r3 : lenses, laser ⇒ glasses

r4 :⇒ mounting_machine1
r5 :⇒ mounting_machine2
r6 : mounting_mach1⇒ ¬mounting_machine2
r7 : frames, glasses,mounting_machine1⇒ eye_Glasses
r8 : frames, glasses,mounting_machine2⇒ eye_Glasses
r9 : new_safety_regulation⇒O ¬laser ⊗ goggles

r10 :⇒U mounting_machine1 ⊕ mounting_machine2}
>sm = {r6 > r5}.

We assume PeoplEye has enough resources to start the process by setting lenses and frames
as facts. Rule r1 states that producing eye_Glasses is the main objective (+∂Ieye_Glasses,
we choose intention as the mental attitude to comply with/attain to); rules r2, r4 and
r5 describe that we can use, respectively, the laser and the two mounting machineries.
Rule r3 is to represent that, if we have lenses and a laser machinery available, then we
can shape glasses; in the same way, rules r7 and r8 describe that whenever we have
glasses and one of the mounting machinery is available, then we obtain the final product.
Therefore, the positive extension for belief +∂ contains laser, glasses, mounting_machine1
and eye_Glasses. In that occasion, rule r6 along with > prevent the using of both machineries
at the same time and thus −∂mounting_machine2 (we assumed, for illustrative purpose
even if unrealistically, that a parallel execution is not possible). When a new safety
regulation comes in force (r9), the usage of the laser machinery is forbidden, unless
protective goggles are worn (+∂O¬laser and +∂O¬goggles). Finally, rule r10 is to describe
the preference of using mounting_machine1 instead of mounting_machine2 (hence we have
+∂Imounting_machine1 and −∂Imounting_machine2).

Since there exists no rule for goggles, the theory is outcome compliant (that is, it reaches
some set of objectives), but not norm compliant (given that it fails to meet some obligation
rules without compensating them). If we add goggles to the facts and we substitute r2 with

r ′2 : Ogoggles⇒ laser
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then we are both norm and outcome compliant, as well as if we add

r11 : mounting_machine1_broken⇒ ¬mounting_machine1

to R and mounting_machine1_broken to F. Notice that, with respect to laser, we are
intention compliant but not social intention compliant (given O¬lenses). This is a key
characteristic of our logic: The system is informed that the process is compliant but some
violations have occurred.

Appendix B Proofs of Propositions in Section 3

Proposition 1
Let D be a consistent, finite defeasible theory. For any literal l, it is not possible to have both

1. D ` +∂X l and D ` −∂X l with X ∈ MOD;
2. D ` +∂X l and D ` +∂X∼l with X ∈ MOD \ {D}.

Proof
1. (Coherence of the logic) The negative proof tags are the strong negation of the positive
ones, and so are the conditions of a rule being discarded (Definition 10) for a rule being
applicable (Definition 9). Hence, when the conditions for +∂X hold, those for −∂X do not.
2. (Consistency of the logic)We split the proof into two cases: (i) at least one of Xl and

X∼l is in F, and (ii) neither of them is in F. For (i) the proposition immediately follows by
the assumption of consistency. In fact, suppose that Xl ∈ F. Then clause (1) of +∂X holds
for l. By consistency X∼l < F, thus clause (1) of Definition 13 does not hold for ∼l. Since
Xl ∈ F, also clause (2.1) is always falsified for ∼l, and the thesis is proved.
For (ii), let us assume that both +∂X l and +∂X∼l hold in D. A straightforward assumption

derived by Definitions 9 and 10 is that no rule can be at the same time applicable and
discarded for X and l for any literal l and its complement. Thus, we have that there are
applicable rules for X and l, as well as for X and ∼l. This means that clause (2.3.2) of
Definition 13 holds for both l and ∼l. Therefore, for every applicable rule for l there is an
applicable rule for ∼l stronger than the rule for l. Symmetrically, for every applicable rule
for ∼l there is an applicable rule for l stronger than the rule for ∼l. Since the set of rules in
D is finite by construction, this situation is possible only if there is a cycle in the transitive
closure of the superiority relation, which is in contradiction with the hypothesis of D being
consistent.

Proposition 2
Let D be a consistent defeasible theory. For any literal l, the following statements hold:

1. if D ` +∂X l, then D ` −∂X∼l with X ∈ MOD \ {D};
2. if D ` +∂l, then D ` −∂I∼l;
3. if D ` +∂l or D ` +∂Ol, then D ` −∂SI∼l;
4. if D ` +∂Gl, then D ` +∂Dl;
5. if D ` −∂Dl, then D ` −∂Gl.

Proof
For part 1., let D be a consistent defeasible theory, and D ` +∂X l. Literal ∼l can be in
only one of the following, mutually exclusive situations: (i) D ` +∂X∼l; (ii) D ` −∂X∼l;
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(iii) D 0 ±∂X∼l. Part 2 of Proposition 1 allows us to exclude case (i), since D ` +∂X l by
hypothesis. Case (iii) denotes situations where there are loops in the theory involving literal
∼l,4 but inevitably this would affect also the provability of Xl, i.e., we would not be able to
give a proof for +∂X l as well. This is in contradiction with the hypothesis. Consequently,
situation (ii) must be the case.

Parts 2. and 3. directly follow by Definitions 9 and 10, while Definitions 9 and 13 justify
part 4., given that G is not involved in any conflict relation.

Part 5. Trivially, from part 4.

Proposition 3
Let D be a consistent defeasible theory. For any literal l, the following statements do not
hold:

6. if D ` +∂Dl, then D ` +∂X l with X ∈ {G, I,SI};
7. if D ` +∂Gl, then D ` +∂X l with X ∈ {I,SI};
8. if D ` +∂X l, then D ` +∂Y l with X = {I,SI} and Y = {D,G};
9. if D ` −∂Y l, then D ` −∂X l with Y ∈ {D,G} and X ∈ {I,SI}.

Proof
Example 2 in the extended version offers counterexamples showing the reason why the
above statements do not hold.

F = {saturday, John_away, John_sick}
R = {r2 : saturday⇒U visit_John � visit_parents � watch_movie

r3 : John_away⇒B ¬visit_John
r4 : John_sick ⇒U ¬visit_John � short_visit}
r7 : John_away⇒B ¬short_visit}

> = {(r2, r4)}.

Given that r2 > r4, Alice has the desire to visit_John, and this is also her preferred outcome.
Nonetheless, being John_away a fact, this is not her intention, while so are ¬visit_John and
visit_parents.

Appendix C Correctness and Completeness of DefeasibleExtension

In this appendix we give proofs of the lemmas used by Theorem 6 for the soundness and
completeness of the algorithms proposed.
We recall that the algorithms in Section 4 are based on a series of transformations that

reduce a given theory into an equivalent, simpler one. Here, equivalent means that the two
theories have the same extension, and simpler means that the size of the target theory is
smaller than that of the original one. Remember that the size of a theory is the number
of instances of literals occurring in the theory plus the number of rules in the theory.
Accordingly, each transformation either removes some rules or some literals from rules

4 For example, situations like X∼l ⇒X ∼l , where the proof conditions generate a loop without introducing a
proof.
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(specifically, rules or literals we know are no longer useful to produce new conclusions).
There is an exception. At the beginning of the computation, the algorithm creates four rules
(one for each type of goal-like attitude) for each outcome rule (and the outcome rule is then
eliminated). The purpose of this operation is to simplify the transformation operations and
the bookkeeping of which rules have been used and which rules are still able to produce
new conclusions (and the type of conclusions). Alternatively, one could implement flags to
achieve the same result, but in a more convoluted way. A consequence of this operation is
that we no longer have outcome rules. This implies that we have (i) to adjust the proof theory,
and (ii) to show that the adjusted proof theory and the theory with the various goal-like rules
are equivalent to the original theory and original proof conditions.
The adjustment required to handle the replacement of each outcome rule with a set of

rules of goal-like modes (where each new rule has the same body and consequent of the
outcome rule it replaces) is to modify the definition of being applicable (Definition 9) and
being discarded (Definition 10). Specifically, we have to replace

• r ∈ RU in clause 3 of Definition 9 with r ∈ RD;
• r < RU in clause 3 of Definition 10 with r < RD;
• r ∈ RU in clause 4.1.1 of Definition 9 with r ∈ RX ; and
• r < RU in clause 4.1.1 of Definition 10 with r < RX .

Given a theory D with goal-like rules instead of outcome rules we will use E3(D) to refer to
the extension of D computed using the proof theory obtained from the proof theory defined
in Section 3 with the modified versions of the notions of applicable and discarded just given.

Lemma 7
Let D = (F, R, >) be a defeasible theory. Let D′ = (F, R′, >′) be the defeasible theory
obtained from D as follows:

R′ = RB ∪ RO ∪ {rX : A(r) ↪→X C(r) |r : A(r) ↪→U C(r) ∈ R, X ∈ {D,G, I,SI}}
>′= {(r, s) |(r, s) ∈ >, s, r ∈ RB ∪ RO} ∪ {(rX, sY ) |(r, s) ∈ >, r, s ∈ RU} ∪

{(rX, s) |(r, s) ∈ >, r ∈ RU, s ∈ RB ∪ RO} ∪ {(r, sX ) |(r, s) ∈ >, r ∈ RB ∪ RO, s ∈ RU}

Then, E(D) = E3(D′).

Proof
The differences between D and D′ are that each outcome-rule in D corresponds to four
rules in D′ each for a different mode and all with the same antecedent and consequent of the
rule in D. Moreover, every time a rule r in D is stronger than a rule s in D, then any rule
corresponding to r in D′ is stronger than any rule corresponding to s in D′.

The differences in the proof theory for D and that for D′ is in the definitions of applicable
for X and discarded for X . It is immediate to verify that every time a rule r is applicable (at
index n) for X , then rX is applicable (at index n) for X (and the other way around).

Given the functional nature of the transformations involved in the algorithms, we shall
refer to the rules in the target theory with the same labels as the rules in the source theory.
Thus, given a rule r ∈ D, we will refer to the rule corresponding to it in D′ (if it exists) with
the same label, namely r .
In the algorithms, belief rules may convert to another mode ^ only through the support
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set RB,^. Definition 7 requires RB,^ to be initialised with a modal version of each belief
rule with non-empty antecedent, such that every literal a in the antecedent is replaced by the
corresponding modal literal ^a.

In this manner, rules in RB,^ satisfy clauses 1 and 2 of Definitions 7 and 8 by construction,
while clauses 3 of both definitions are satisfied iff these new rules for ^ are body-applicable
(resp. body-discarded). Therefore, conditions for rules in RB,^ to be applicable/discarded
collapse into those of Definition 5 and 6, and accordingly these rules are applicable for
mode ^ only if they satisfy clauses clauses (2.1.1), (3.1), or (4.1.1) of Definitions 9 and 10,
based on how ^ is instantiated. That is to say, during the execution of the algorithms, we
can empty the body of the rules in RB,^ by iteratively proving all the modal literals in the
antecedent to decide which rules are applicable at a given step.
Before proceeding with the demonstrations of the lemmas, we recall that in the formali-

sation of the logic in Section 3, we referred to modes with capital roman letters (X , Y , T)
while the notation of the algorithms in Section 4 proposes the variant with �, � and ^ since
it was needed to fix a given modality for the iterations and pass the correct input for each call
of a subroutine. Therefore, being that the hypotheses of the lemmas refer to the operations
performed by the algorithms, while the proofs refer to the notation of Definitions 5–15, in
the following the former ones use the symbol � for a mode, the latter ones the capital roman
letters notation.

Lemma 8
Let D = (F, R, >) be a defeasible theory such that D ` +∂�l and D′ = (F, R′, >′) be the
theory obtained from D where

R′ ={r : A(r) \ {�l,¬�∼l} ↪→ C(r) | r ∈ R, A(r) ∩ �̃l = ∅}

R′B,� ={r : A(r) \ {�l} ↪→ C(r) |r ∈ RB,�, A(r) ∩ �̃l = ∅}

>′= > \{(r, s), (s, r) ∈ > | A(r) ∩ �̃l , ∅}.

Then D ≡ D′.

Proof
The proof is by induction on the length of a derivation P. For the inductive base, we consider
all possible derivations for a literal q in the theory.

P(1) = +∂Xq, with X ∈ MOD \ {D}. This is possible in two cases: (1) Xq ∈ F, or (2)
Ỹ q ∩ F = ∅, for Y = X or Conflict(Y, X ), and ∃r ∈ RX [q, i] that is applicable in D for X at
i and P(1), and every rule s ∈ RY [∼q, j] is either (a) discarded for X at j and P(1), or (b)
defeated by a stronger rule t ∈ RT [q, k] applicable for T at k and P(1) (T may conflict with
Y ).

Concerning (1), by construction of D′, Xq ∈ F iff Xq ∈ F′, thus if +∂Xq is provable in D
then is provable in D′, and vice versa.
Regarding (2), again by construction of D′, Ỹ q ∩ F = ∅ iff Ỹ q ∩ F′ = ∅. Moreover, r

is applicable at P(1) iff i = 1 (since lemma’s operations do not modify the tail of the
rules) and A(r) = ∅. Therefore, if A(r) = ∅ in D then A(r) = ∅ in D′. This means that if
a rule is applicable in D at P(1) then is applicable in D′ at P(1). In the other direction,
if r is applicable in D′ at P(1), then either (i) A(r) = ∅ in D, or (ii) A(r) = {�l}, or
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A(r) = {¬�∼l}. For (i), r is straightforwardly applicable in D, as well as for (ii) since
D ` +∂�l by hypothesis.
When we consider possible attacks to rule r, namely s ∈ RY [∼q, j], we have to analyse

cases (a) and (b) above.
(a) Since we reason about P(1), it must be the case that no such rule s exists in R, and

thus s cannot be in R′ either. In the other direction, the difference between D and D′ is that
in R we have rules with �̃l in the antecedent, and such rules are not in R′. Since D ` +∂�l
by hypothesis, all rules in R for which there is no counterpart in R′ are discarded in D.
(b) We modify the superiority relation by only withdrawing instances where one of the

rules is discarded in D. But only when t is applicable then is active in the clauses of the
proof conditions where the superiority relation is involved, i.e., (2.3.2) of Definition 13. We
have just proved that if a rule is applicable in D then is applicable in D′ as well, and if is
discarded in D then is discarded in D′. If s is not discarded in D for Y at 1 and P(1), then
there exists an applicable rule t in D for q stronger than s. Therefore t is applicable in D′

for T and t >′ s if T = Y , or Conflict(T,Y ). Accordingly, D′ ` +∂Xq. The same reasoning
applies in the other direction. Consequently, if we have a derivation of length 1 of +∂q in
D′, then we have a derivation of length 1 of +∂q in D as well.
Notice that in the inductive base by their own nature rules in RB,^, even if can be modified

or erased, cannot be used in a proof of length one.

P(1) = +∂Dq. The proof is essentially identical to the inductive base for +∂Xq, with
some slight modifications dictated by the different proof conditions for +∂D: (1) Dq ∈ F,
or (2) ¬Dq < F, and ∃r ∈ RD[q, i] that is applicable for D at 1 and P(1) and every rule
s ∈ RD[∼q, j] is either (a) discarded for D at 1 and P(1), or (b) s is not stronger than r .

P(1) = −∂Xq with X ∈ MOD. Clearly conditions (1) and (2.1) of Definition 14 hold in
D iff they do in D′, given that F = F′. The analysis for clause (2.2) is the same of case (a)
of P(1) = +∂Xq, while for clause (2.3.1) the reader is referred to case (2), where in both
cases r and s change their role. For condition (2.3.2) if X = D, then s > r . Otherwise, either
there is no t ∈ RT [q, k] in D (we recall that at P(1), t cannot be discarded in D because that
would imply a previous step in the proof), or t ≯ s and not Conflict(T,Y ). Therefore s ∈ R′

by construction, and conditions on the superiority relation between s and t are preserved.
Hence, D′ ` −∂Xq. For the other direction, we have to consider the case of a rule s in R but
not in R′. As we have proved above, all rules discarded in D′ are discarded in D, and all
rules in R for which there is no corresponding rule in R′ are discarded in D as well, and we
can process this case with the same reasoning as above.

For the inductive step, the property equivalence between D and D′ is assumed up to the
n-th step of a generic proof for a given literal p.

P(n+ 1) = +∂Xq, with X ∈ MOD. Clauses (1) and (2.1) follow the same conditions treated
in the inductive base for +∂Xq. As regards clause (2.2), we distinguish if X = B, or not. In
the former case, if there exists a rule r ∈ R[q, i] applicable for B in D, then clauses 1.–3.
of Definition 5 are all satisfied. By inductive hypothesis, we conclude that the clauses are
satisfied by r in D′ as well no matter whether �l ∈ A(r), or not.
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Otherwise, there exists a rule r applicable in D for X at P(n + 1) such that r is either in
RX [q, i], or RB,X [q, 1]. By inductive hypothesis, we can conclude that: (i) if r ∈ RX [q, i]
then r is body-applicable and the clauses of Definition 5 are satisfied by r in D′ as well;
(ii) if r ∈ RB,X [q, 1] then r is Conv-applicable and the clauses of Definition 7 are satisfied
by r in D′ as well. As regards conditions (2.1.2) or (4.1.2), the provability/refutability of
the elements in the chain prior to q is given by inductive hypothesis. The direction from
rule applicability in D′ to rule applicability in D follows the same reasoning and so is
straightforward.

Condition (2.3.1) states that every rule s ∈ RY [∼q, j] ∪ RB,Y [∼q, 1] is discarded in D for
X at P(n + 1). This means that there exists an a ∈ A(s) satisfying one of the clauses of
Definition 6 if s ∈ RB,Y [∼q, 1], or Definition 10 if s ∈ RY [∼q, j]. Two possible situations
arise. If a ∈ �̃l, then s < R′; otherwise, by inductive hypothesis, either a satisfies Definition 6
or 8 in D′ depending on s ∈ RY [∼q, j] or s ∈ RB,Y [∼q, 1]. Hence, s is discarded in D′ as
well. The same reasoning applies for the other direction. The difference between D and D′

is that in R we have rules with elements of �̃l in the antecedent, and these rules are not in
R′. Consequently, if s is discarded in D′, then is discarded in D and all rules in R for which
there is no corresponding rule in R′ are discarded in D since D ` +∂�l by hypothesis.

If X , D, then condition (2.3.2) can be treated as case (b) of the corresponding inductive
base except clause (2.3.2.1) where if t > s then either: (i) Y = T , (ii) s ∈ RB,T [∼q] and
t ∈ RT [q] (Convert(Y,T )), or (iii) s ∈ RY [∼q] and t ∈ RB,Y [q] (Convert(T,Y )). Instead if
X = D, no modifications are needed.

P(n + 1) = −∂Xq, with X ∈ MOD. The analysis is a combination of the inductive base for
−∂Xq and inductive step for +∂Xq where we have already proved that a rule is applicable
(discarded) in D iff is so in D′ (or it is not contained in R′). Even condition (2.3.2.1) is just
the strong negation of the reason in the above paragraph.

Lemma 9
Let D = (F, R, >) be a defeasible theory such that D ` −∂�l and D′ = (F, R′, >′) be the
theory obtained from D where

R′ ={r : A(r) \ {¬�l} ↪→ C(r) | r ∈ R, �l < A(r)}

R′B,� ={r ∈ RB,� | �l < A(r)}

>′= > \{(r, s), (s, r) ∈ > | �l ∈ A(r)}.

Then D ≡ D′.

Proof
We split the proof in two cases, depending on if � , D, or � = D.

As regards the former case, since Proposition 2 states that +∂Xm implies −∂X∼m then
modifications on R′, R′B,�, and >′ represent a particular case of Lemma 8 where m = ∼l.
We now analyse the case when � = D. The analysis is identical to the one shown for the

inductive base of Lemma 8 but for what follows.

P(1) = +∂Xq. Case (2)–(ii): A(r) = {¬�l} and since D ` −∂�l by hypothesis, then if r is
applicable in D′ at P(1) then is applicable in D at P(1) as well.
Case (2)–(a): the difference between D and D′ is that in R we have rules with �l in the
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antecedent, and such rules are not in R′. Since D ` −∂�l by hypothesis, all rules in R for
which there is no counterpart in R′ are discarded in D.

The same modification happens in the inductive step P(n + 1) = +∂Xq, where also the
sentence ‘If a ∈ �̃l, then s < R′’ becomes ‘If a = �l, then s < R′’.
Finally, the inductive base and inductive step for the negative proof tags are identical to

ones of the previous lemma.

Hereafter we consider theories obtained by the transformations of Lemma 8. This means
that all applicable rules are such because their antecedents are empty and every rule in R
appears also in R′ and vice versa, and there are no modifications in the antecedent of rules.

Lemma 10
Let D = (F, R, >) be a defeasible theory such that D ` +∂l and D′ = (F, R′, >) be the theory
obtained from D where

R′O ={A(r) ⇒O C(r)!l | r ∈ RO[l, n]} (C1)
R′I ={A(r) ⇒I C(r)!l | r ∈ RI[l, n]} ∪

{A(r) ⇒I C(r) 	 ∼l | r ∈ RI[∼l, n]} (C2)
R′SI ={A(r) ⇒SI C(r) 	 ∼l | r ∈ RSI[∼l, n]}. (C3)

Moreover,

• if D ` +∂O∼l, then instead of (C1)

R′O ={A(r) ⇒O C(r)!l | r ∈ RO[l, n]} ∪
{A(r) ⇒O C(r) 	 ∼l | r ∈ RO[∼l, n]}. (C1)

• if D ` −∂O∼l, then instead of (C3)

R′SI ={A(r) ⇒SI C(r) 	 ∼l | r ∈ RSI[∼l, n]} ∪
{A(r) ⇒SI C(r)!l | r ∈ RSI[l, n]}. (C3)

Then D ≡ D′.

Proof
The demonstration follows the inductive base and inductive step of Lemma 8 where we
consider the particular case � = B. Since here operations to obtain D′ modify only the
consequent of rules, verifying conditions when a given rule is applicable/discarded reduces
to clauses (2.1.2) and (4.1.2) of Definitions 9–10, while conditions for a rule being body-
applicable/discarded are trivially treated. Moreover, the analysis is narrowed to modalities
O, I, and SI since rules for the other modalities are not affected by the operations of the
lemma. Finally, notice that the operations of the lemma do not erase rules from R to R′ but
it may be the case that, given a rule r , if removal or truncation operate on an element ck in
C(r), then r ∈ R[l] while r < R′[l] for a given literal l (removal of l or truncation at ck ).

P(1) = +∂Xq, with X ∈ {O, I,SI}. We start by considering condition (2.2) of Definition 13
where a rule r ∈ RX [q, i] is applicable in D at i = 1 and P(1). In both cases when q = l or
q , l, q is the first element of C(r) since either we truncate chains at l, or we remove ∼l
from them. Therefore, r is applicable in D′ as well. In the other direction, if r is applicable
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in D′ at 1 and P(1), then r ∈ R has either q as the first element, or only ∼l precedes q. In
the first case r is trivially applicable, while in the second case the applicability of r follows
from the hypothesis that D ` +∂l and D ` +∂O∼l if r ∈ RO, or D ` +∂l and D ` −∂O∼l if
r ∈ RSI.

Concerning condition (2.3.1) of Definition 13 there is no such rule s in R, hence s cannot
be in R′ (we recall that at P(1), s cannot be discarded in D because that would imply a
previous step in the proof). Regarding the other direction, we have to consider the situation
where there is a rule s ∈ RY [∼q, j] which is not in R′Y [∼q]. This is the case when the
truncation has operated on s ∈ RY [∼q, j] since l preceded ∼q in C(s), making s discarded
in D as well (either when (i) Y = O or Y = I, or (ii) D ` −∂O∼l and Y = SI).

For (2.3.2) the reasoning is the same of the equivalent case in Lemma 8 with the additional
condition that rule t may be applicable in D′ at P(1) but q appears at index 2 in C(t) in D.

P(n + 1) = +∂Xq, with X ∈ {O, I,SI}. Again, let us suppose r ∈ R[q, i] to be applicable in
D for X at i and P(n + 1). By hypothesis and clauses (2.1.2) or (4.1.2) of Definition 9, we
conclude that ck , l and q , ∼l (Conflict(B, I) and Conflict(B,SI)). Thus, r is applicable in
D′ by inductive hypothesis. The other direction sees r ∈ R′[q, i] applicable in D′ and either
∼l preceded q in C(r) in D, or not. Since in the first case, the corresponding operation of
the lemma is the removal of ∼l from C(r), while in the latter case no operations on the
consequent are done, the applicability of r in D at P(n + 1) is straightforward.
For condition (2.3.1), the only difference between the inductive base is when there is a

rule s in RY [∼q, j] but s < R′Y [∼q, k]. This means that l precedes ∼q in C(s) in D, and
thus by hypothesis s is discarded in D. Notice that if q = l, then R′Y [∼l, k] = ∅ for any k by
the removal operation of the lemma, and thus condition (2.3.1) is vacuously true.

P(1) = −∂Xq and P(n + 1) = −∂Xq, with X ∈ MOD. They trivially follow from the
inductive base and inductive step.

Lemma 11
Let D = (F, R, >) be a defeasible theory such that D ` −∂l and D′ = (F, R′, >) be the theory
obtained from D where

R′I ={A(r) ⇒I C(r)!∼l | r ∈ RI[∼l, n]}.

Moreover,

• if D ` +∂Ol, then

R′O ={A(r) ⇒O C(r) 	 l | r ∈ RO[l, n]};

• if D ` −∂Ol, then

R′SI ={A(r) ⇒SI C(r)!∼l | r ∈ RSI[∼l, n]}.

Then D ≡ D′.

Proof
The demonstration is a mere variant of that of Lemma 10 since: (i) Proposition 2 states that
+∂Xm implies −∂X∼m (mode D is not involved), and (ii) operations of the lemma are a
subset of those of Lemma 10 where we switch l with ∼l, and the other way around.

36



Lemma 12
Let D = (F, R, >) be a defeasible theory such that D ` +∂Ol and D′ = (F, R′, >) be the
theory obtained from D where

R′O ={A(r) ⇒O C(r)!∼l 	 ∼l | r ∈ RO[∼l, n]} (C1)
R′SI ={A(r) ⇒SI C(r) 	 ∼l | r ∈ RSI[∼l, n]}. (C2)

Moreover,

• if D ` −∂l, then instead of (C1)

R′O ={A(r) ⇒O C(r)!∼l 	 ∼l | r ∈ RO[∼l, n]} ∪
{A(r) ⇒O C(r) 	 l | r ∈ RO[l, n]}; (C1)

• if D ` −∂∼l, then instead of (C2)

R′SI ={A(r) ⇒SI C(r) 	 ∼l | r ∈ RSI[∼l, n]} ∪
{A(r) ⇒SI C(r)!l | r ∈ RSI[l, n]}. (C2)

Then D ≡ D′.

Proof
Again, the proof is a variant of that of Lemma 10 that differs only when truncation and
removal operate on a consequent at the same time.
A CTD is relevant whenever its elements are proved as obligations. Consequently, if

D proves Ol, then O∼l cannot hold. If this is the case, then O∼l cannot be violated and
elements following ∼l in obligation rules cannot be triggered. Nonetheless, the inductive
base and inductive step do not significantly differ from those of Lemma 10. In fact, even
operation (1) involving truncation and removal of ∼l does not affect the equivalence of
conditions for being applicable/discarded between D and D′.

Proofs for Lemmas 13–17 are not reported. As stated for Lemma 12, they are variants of
that for Lemma 10 where the modifications concern the set of rules on which we operate.
The underlying motivation is that truncation and removal operations affect when a rule
is applicable/discarded as shown before where we have proved that, given a rule s and a
literal ∼q, it may be the case that ∼q < C(s) in R′ while the opposite holds in R. Such
modifications reflect only the nature of the operations of truncation and removal while they
do not depend on the mode of the rule involved.

Lemma 13
Let D = (F, R, >) be a defeasible theory such that D ` −∂Ol and D′ = (F, R′, >) be the
theory obtained from D where

R′O ={A(r) ⇒O C(r)!l 	 l | r ∈ RO[l, n]}.

Moreover,

• if D ` −∂l, then

R′SI ={A(r) ⇒SI C(r)!∼l | r ∈ RSI[∼l, n]}.

Then D ≡ D′.
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Lemma 14
Let D = (F, R, >) be a defeasible theory such that D ` +∂Dl, D ` +∂D∼l, and D′ = (F, R′, >)
be the theory obtained from D where

R′G ={A(r) ⇒G C(r)!l 	 l | r ∈ RG[l, n]} ∪
{A(r) ⇒G C(r)!∼l 	 ∼l | r ∈ RG[∼l, n]}.

Then D ≡ D′.

Lemma 15
Let D = (F, R, >) be a defeasible theory such that D ` −∂Dl and D′ = (F, R′, >) be the
theory obtained from D where

R′D ={A(r) ⇒D C(r) 	 l | r ∈ RD[l, n]}
R′G ={A(r) ⇒G C(r) 	 l | r ∈ RG[l, n]}.

Then D ≡ D′.

Lemma 16
Let D = (F, R, >) be a defeasible theory such that D ` +∂X l, with X ∈ {G, I,SI}, and
D′ = (F, R′, >) be the theory obtained from D where

R′X ={A(r) ⇒X C(r)!l | r ∈ RX [l, n]} ∪
{A(r) ⇒X C(r) 	 ∼l | r ∈ RX [∼l, n]}.

Then D ≡ D′.

Lemma 17
Let D = (F, R, >) be a defeasible theory such that D ` −∂X l, with X ∈ {G, I,SI}, and
D′ = (F, R′, >) be the theory obtained from D where

R′X ={A(r) ⇒X C(r) 	 l | r ∈ RX [l, n]}.

Then D ≡ D′.

Lemma 18
Let D = (F, R, >) be a defeasible theory and l ∈ Lit such that (i) Xl < F, (ii) ¬Xl < F and
Y∼l < F with Y = X or Conflict(Y, X ), (iii) ∃r ∈ RX [l, 1] ∪ RB,X [l, 1], (iv) A(r) = ∅, and
(v) RX [∼l] ∪ RB,X [∼l] ∪ RY [∼l] \ Rin f d ⊆ rin f , with X ∈ MOD \ {D}. Then D ` +∂X l.

Proof
To prove Xl, Definition 13 must be taken into consideration: since hypothesis (i) falsifies
clause (1), then clause (2) must be the case. Let r be a rule that meets the conditions
of the lemma. Hypotheses (iii) and (iv) state that r is applicable for X . In particular, if
r = s^ ∈ RB,X then s is Conv-applicable. Finally, for clause (2.3) we have that all rules for
∼l are inferiorly defeated by an appropriate rule with empty antecedent for l, but a rule with
empty body is applicable. Consequently, all clauses for proving +∂X are satisfied. Thus,
D ` +∂X l.

Lemma 19
Let D = (F, R, >) be a defeasible theory and l ∈ Lit such that (i) Dl < F, (ii) ¬Dl < F, (iii)
∃r ∈ RD[l, 1] ∪ RB,D[l, 1], (iv) A(r) = ∅, and (v) rsup = ∅. Then D ` +∂Dl.
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Proof
The demonstration is analogous to that for Lemma 18 since all lemma’s hypotheses meet
clause (2) of Definition 11.

Lemma 20
Let D = (F, R, >) be a defeasible theory and l ∈ Lit such that l, Xl < F and RX [l]∪RB,X [l] =
∅, with X ∈ MOD. Then D ` −∂X l.

Proof
Conditions (1) and (2.2) of Definitions 12 and 14 are vacuously satisfied with the same
comment for RB,X in Lemma 18.

Lemma 21
Let D = (F, R, >) be a defeasible theory and l ∈ Lit such that (i) X∼l < F, (ii) ¬X∼l < F
and Yl < F with Y = X or Conflict(Y, X ), (iii) ∃r ∈ RX [l, 1] ∪ RB,X [l, 1], (iv) A(r) = ∅,
and (v) rsup = ∅, with X ∈ MOD. Then D ` −∂X∼l.

Proof
Let r be a rule in a theory D for which the conditions of the lemma hold. It is easy to verify
that clauses (1) and (2.3) of Definitions 12 and 14 are satisfied for ∼l.

Theorem 4
Given a finite defeasible theory D with size S, Algorithms 2 Proved and 3 Refuted
terminate and their computational complexity is O(S).

Proof
Every time Algorithms 2 Proved or 3 Refuted are invoked, they both modify a subset of
the set of rules R, which is finite by hypothesis. Consequently, we have their termination.
Moreover, since |R| ∈ O(S) and each rule can be accessed in constant time, we obtain that
their computational complexity is O(S).

Theorem 5
Given a finite defeasible theory D with size S, Algorithm 1DefeasibleExtension terminates
and its computational complexity is O(S).

Proof
The most important part to analyse concerning termination of Algorithm 1 DefeasibleEx-
tension is the repeat/until cycle at lines 12–37. Once an instance of the cycle has been
performed, we are in one of the following, mutually exclusive situations:

1. No modification of the extension has occurred. In this case, line 37 ensures the
termination of the algorithm;

2. The theory has been modified with respect to a literal in HB. Notice that the algorithm
takes care of removing the literal from HB once the suitable operations have been
performed (specifically, at line 3 of Algorithm 2 Proved and 3 Refuted). Since
this set is finite, the process described above eventually empties HB and, at the next
iteration of the cycle, the extension of the theory cannot be modified. In this case, the
algorithm ends its execution as well.

Moreover, Lemma 4 proved the termination of its internal sub-routines.
In order to analyse complexity of the algorithm, it is of the utmost importance to
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correctly comprehend Definition 19. Remember that the size of a theory is the number of
all occurrences of each literal in every rule plus the number of the rules. The first term is
usually (much) bigger than the latter. Let us examine a theory with x literals and whose
size is S, and consider the scenario when an algorithm A, looping over all x literals of
the theory, invokes an inner procedure P which selectively deletes a literal given as input
from all the rules of the theory (no matter to what end). A rough computational complexity
would be O(S2), given that, when one of the x ∈ O(S) literal is selected, P removes all its
occurrences from every rule, again O(S).
However, a more fined-grained analysis shows that the complexity of A is lower. The

mistake being to consider the complexity of P separately from the complexity of the external
loop, while instead they are strictly dependent. Indeed, the overall number of operations
made by the sum of all loop iterations cannot outrun the number of occurrences of the
literals, O(S), because the operations in the inner procedure directly decrease, iteration after
iteration, the number of the remaining repetitions of the outmost loop, and the other way
around. Therefore, the overall complexity is not bound by O(S) · O(S) = O(S2), but by
O(S) +O(S) = O(S).
We can now contextualise the above reasoning to Algorithm 1 DefeasibleExtension,

where D is the theory with size S. The initialisation steps (lines 1–5 and 10–11) add an
O(S) factor to the overall complexity. The main cycle at lines 12–37 is iterated over HB,
whose cardinality is in O(S). The analysis of the preceding paragraph implies that invoking
Algorithm 2 Proved at lines 7 and 29 as well as invoking Algorithm 3 Refuted at lines 8, 15,
26 and 27 represent an additive factor O(S) to the complexity of repeat/until loop and for
cycle at lines 6–9 as well. Finally, all operations on the set of rules and the superiority relation
require constant time, given the implementation of data structures proposed. Therefore, we
can state that the complexity of the algorithm is O(S).

Theorem 6
Algorithm 1 DefeasibleExtension is sound and complete.

Proof
As already argued at the beginning of the section, the aimofAlgorithm1DefeasibleExtension
is to compute the defeasible extension of a given defeasible theory D through successive
transformations on the set of facts and rules, and on the superiority relation: at each step,
they compute a simpler theory while retaining the same extension. Again, we remark that the
word ‘simpler’ is used to denote a theory with fewer elements in it. Since we have already
proved the termination of the algorithm, it eventually comes to a fixed-point theory where
no more operations can be made.

In order to demonstrate the soundness of Algorithm 1 DefeasibleExtension, we show in
the list below that all the operations performed by the algorithm are justified by Proposition
2 and described in Lemmas 7–21, where we prove the soundness of each operation involved.

1. Algorithm 1 DefeasibleExtension:

• Lines 2–3 and 5: Lemma 7;
• Line 7: item 2. below;
• Line 8: item 3. below;
• Line 15: Lemma 20 and item 3. below;
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• Line 24: Lemma 19 and item 2. below;
• Lines 26–27: Lemma 21 and item 3. below;
• Line 29: Lemma 18 and item 2. below;

2. Algorithm 2 Proved:

• Line 4: Lemma 21 and item 3. below;
• Line 5: Part 2. of Proposition 2 and item 3. below;
• Line 6: Part 3. of Proposition 2 and item 3. below;
• Lines 7–9: Lemma 8;
• Case B at lines 11–14: Lemma 10;
• Case O at lines 15–18: Lemma 12;
• Case D at lines 19–23: Lemma 14;
• Otherwise at lines 24–26: Lemma 16;

3. Algorithm 3 Refuted:

• Lines 4–6: Lemma 9;
• Case B at lines 8–11: Lemma 11;
• Case O at lines 12–14: Lemma 13;
• Case D at lines 15–16: Lemma 15;
• Otherwise at lines 17–18: Lemma 17;

The result of these lemmas is that whether a literal is defeasibly proved or not in the initial
theory, so it will be in the final theory. This proves the soundness of the algorithm.
Moreover, since (i) all lemmas show the equivalence of the two theories, and (ii) the

equivalence relation is a bijection, this also demonstrates the completeness of Algorithm 1
DefeasibleExtension.
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