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Abstract

This paper offers a semantic study in multi-relational semantics of quantified N-Monotonic
modal logics with varying domains with and without the identity symbol. We identify con-
ditions on frames to characterise Barcan and Ghilardi schemata and present some related
completeness results. The characterisation of Barcan schemata in multi-relational frames
with varying domains shows the independence of BF and CBF from well-known proposi-
tional modal schemata, an independence that does not hold with constant domains. This
fact was firstly suggested for classical modal systems by Stolpe (2003), but unfortunately
that work used only models and not frames.

1 Introduction

A number of significant contributions in the last four decades show that non-normal modal
logics (NMLs) can be fruitfully employed in several fields. One well-known domain is epis-
temic logic, where NMLs are a solution to alleviate the so-called omniscience problem that
affects stronger (normal) modal systems (Fagin et al., 1995). Deontic logic is another field
where NMLs have been traditionally proposed to avoid many drawbacks of standard deontic
logic (i.e., deontic KD), which does not tolerate deontic conflicts and gives rise to a num-
ber of paradoxes (Goble, 2005; Jones and Carmo, 2002). Other important applications are
those systems capturing different aspects of the concepts of action and agency: The modal
logic of agency (Elgesem, 1997; Governatori and Rotolo, 2005; Segerberg, 1992), concurrent
propositional dynamic logic (Goldblatt, 1992), game logic (Parikh, 1985), and coalition logic
(Pauly, 2002), among others, are all examples where some modal operators are axiomatized
in logics weaker than K.

Quantified modal logic has also a long and distinguished tradition (Garson, 2001; Fitting
and Mendelsohn, 1998), which is still lively and technically productive (see, among others,
Corsi, 2002; Brauner and Ghilardi, 2007; Gabbay et al., 2009; Goldblatt, 2011). Nevertheless,
almost all efforts have so far been devoted to the analysis of the normal case: Besides a
few significant exceptions (Arló-Costa and Pacuit, 2006; Arló-Costa, 2002; Stolpe, 2003;
Waagbø, 1992), which are based on neighbourhood semantics, the study of quantification

∗Partially supported the UNIBO project FARB 2012 Mortality Salience, Legal and Social Compliance, and
Economic Behaviour: Theoretical Models and Experimental Methods and by the EU H2020 research and innova-
tion programme under the Marie Sklodowska-Curie grant agreement No. 690974 for the project MIREL: MIning
and REasoning with Legal texts.
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in non-normal modal logics is still neglected. Despite that, quantified non-normal modal
logics (QNML henceforth) exhibit a different behaviour with respect to normal modal logics:
For instance the Barcan and the Converse Barcan schemata (i) are not characterised by
decreasing and increasing domains (ii) are tightly connected to the validity of propositional
modal axiom schemata.

This paper provides a semantic analysis of quantification in the system MN, i.e., a class
of non-normal modal logics called N-Monotonic (Calardo and Rotolo, 2014; Chellas, 1980).
This class is characterised by the inference rules RM and RN or, equivalently, by adding
to E (i.e., the minimal classical modal logic closed under logical equivalence) the axiom
schemata M and N1:

RM:= ⊢ A→ B ⇒ ⊢ ◻A→ ◻B
RN:= ⊢ A ⇒ ⊢ ◻A

RE:= ⊢ A↔ B ⇒ ⊢ ◻A↔ ◻B
M:= ◻(A ∧B)→ (◻A ∧ ◻B)
N:= ◻⊺

However, instead of working in the standard setting of neighborhood semantics (Chellas,
1980; Hansen, 2003; Montague, 1970; Scott, 1970; Segerberg, 1971), we shall focus on multi-
relational semantics. From the structural point of view, this setting looks like a direct
generalization of mono-relational (Kripke) semantics for normal modal logics. A multi-
relational model is a structure ⟨W,R, V ⟩ where W is a set of possible worlds, R is a (possibly
infinite) set of binary relations on W , and V is the usual evaluation function of Kripke
semantics. Starting from the works of Jennings and Schotch (1981a,b) and Goble (2001,
2003, 2004a), two different versions of it have been later identified in the literature (cf.
Calardo and Rotolo, 2014; Governatori and Rotolo, 2005), depending on how to evaluate
◻-formulae.

Here we shall only present a weak formulation of multi-relational semantics, namely the
one that simply extends the case of Kripke semantics (Goble, 2001, 2004b; Jennings and
Schotch, 1981a,b), since it requires that the Kripke-style evaluation clause for ◻-formulae is
satisfied for at at least one relation in the set of relations of the model. In other words:

w ⊧ ◻φ iff ∃Rj ∈R ∶ ∀w′(if wRjw′ then w′ ⊧ φ) (1)

It is plain that this evaluation clause directly generalizes the one for Kripke semantics,2

since it simply requires that the Kripke-style evaluation clause is satisfied for at least one
relation in the set of relations in the model.3

The aim of this paper is to study quantification within this semantic setting. We consider
frames with varying domains and formal languages with and without identity. Thus, we
address research issues not yet explored in the literature, while keeping the intuition behind
Kripke semantics although working with logics that are stronger than classical systems (E
and above), yet strictly weaker than K. On the other hand, working with varying domains
(i.e., with sets of individual existing in possible worlds that can vary from world to world)
technically amounts to studying the most general case of quantified modal logics, which is

1In Section 3 the reader can find two tables and a figure classifying the main systems and schemata.
2For this reason, throughout the paper we will use interchangeably the expressions “Kripke frame/model”,

“relational frame/model”, and “1-relational frame/model”.
3The strong version, on the other hand, is as follows (Governatori and Rotolo, 2005):

w ⊧ ◻φ iff ∃Rj ∈R ∶ ∀w′(wRjw′ iff w′ ⊧ φ) (2)

Things here are the same as in (1), except that φ is required to be true in w′ if and only if w′ is related
with w by any relation Rj . The technical motivation of this second choice is that the resulting semantics is
appropriate for any (non-normal) modal logics including the classical ones, i.e., the weakest ones that only
consist of RE, ⊢ A ≡ B/ ⊢ ◻A ≡ ◻B. On the contrary, the version with (1) validates, among others, RM, i.e.,
⊢ A→ B/ ⊢ ◻A→ ◻B, which opens the door to stronger logics below system K. However, multi-relational models
based on the clause (2) make the semantics different from Kripke’s, despite the structural similarity of how worlds
are connected in frames.
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mostly neglected in the literature on modal predicate logics weaker than K. Finally, the role
of the identity symbol in QNML is still entirely overlooked: Indeed, identity plays a central
technical role in ensuring completeness results.

Paper outline The layout of the paper is as follows.

Section 2 introduces the state of the art and some results concerning quantified non-normal
modal logics and neighborhood frames, as well as a first technical introduction to
Barcan formulae and the problems related to such schemata.

Section 3 provides some preliminary material and useful auxiliary results from (Calardo and
Rotolo, 2014);

Section 4 presents multi-relational first-order frames. We choose to analyse frames with
varying domains, which correspond to the most general case and allow for offering a
finer distinction between actual individuals and possibilia, namely, between the indi-
viduals that exist in each possible world and those that are only possible from that
viewpoint, though not actually existing there (Garson, 2001; Fitting and Mendelsohn,
1998). Also, this choice technically amounts to studying the most general case of
quantified modal logics.

Section 5 analyses alternative semantic characterisations for the Converse Barcan schema
(CBF). After comparing our results to the standard ones in Kripke semantics, we
shall see different ways to generalise the concept of increasing inner domains.

Section 6 provides Henkin-style completeness theorems for several systems, namely, the
smallest free quantified non-normal N-monotonic logic Q○

=.NM and some extensions,
including Q○

=.NM⊕CBF.

Section 7 offers a critical analysis and technical considerations on the Barcan schema BF.
This schema raises some interesting questions in the context of non-normal modal
logics and in multi-relational semantics.

Section 8 discusses the technical role of the identity relation. As we shall argue, the choice
of a language with identity does not only increase the expressive power of the logic, but
facilitates the construction of canonical models for CBF-frames, a potentially difficult
goal to be achieved without it.

To the best of our knowledge, this is the first study on quantification in multi-relational
semantics, the second one investigating the case of varying domains in non-normal modal
logics, and the first that provides a frame characterization of Barcan schemata with varying
domains with a language with identity.

2 Neighbourhood Semantics for QNML

Neighbourhood semantics—and the equivalent strong version of multi-relational semantics
(cf. Governatori and Rotolo, 2005)—is in our opinion the best tool to deal with classical sys-
tems and above. For this reason, it has always played a central role within non-normal logics.
Below we shall summarise the most influential results within this area. This approach will
be useful to carry out a comparison between neighbourhood structures and multi-relational
ones.

2.1 Syntax of Quantified Modal Logics

Let us extend the standard language L of propositional modal logic (Blackburn et al., 2001)
with the universal quantifier ∀, a countable set of individual constants Const:={a, b, c, . . .},
a set of individual variables, VAR:= {x, y, z, . . .}, the identity predicate =, and a set of
n-ary predicate symbols (where ω > n ≥ 1). A term is either a variable, or an individual
constant and t1, t2, . . . are meta-variables for terms.

Well formed formuale (wff) are defined as usual:
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(a) � is wff;

(b) If Pn is an n-ary predicate symbol and t1, . . . , tn are terms, then Pn(t1, . . . , tn) is a
wff;

(c) If A and B are wff, then A→ B, ◻A, and ∀xA are wff;

(d) Nothing else is a wff.

Both boolean operators, and the existential quantifier ∃ are defined as usual: ∃xA ↔
¬∀x¬A. Moreover A(t/s) is the formula obtained by replacing in A(s) all the free occur-
rences of s with t (cf. Corsi, 2002, 1484).

2.2 Neighbourhood Models

Neighbourhood semantics for quantified modal logics was introduced a long time ago (see
Gabbay, 1976). Nevertheless, it received very little attention until the beginning of the
1990s (cf. Waagbø, 1992). The study of QNML became then the subject of a few works
(cf., for instance, Arló-Costa, 2002; Arló-Costa and Pacuit, 2006; Stolpe, 2003). While
Waagbø (1992), Arló-Costa (2002), and Arló-Costa and Pacuit (2006) study the case of
structures with constant domains, Stolpe (2003) developed a preliminary investigation of
varying domains. In this section we summarise their main results.

Let us consider the case of constant domains.

Definition 2.1 (Constant domain neighbourhood frames and models) A constant
domain neighbourhood frame F is a structure ⟨W,N ,D⟩ where

- W is a non-empty set of possible worlds;

- N is a function from w to 22W ;

- D is a non-empty set of individuals (the domain of the frame).

For any w ∈W , a w-assignment σ is a function σ ∶ V ar(L)↦D.
An x-variant τ of a w-assignment σ is a w-assignment which may differ from σ for the value
assigned to x.

A constant domain neighbourhood modelM is a structure ⟨W,N ,D, I⟩ where ⟨W,N ,D⟩
is a constant domain neighbourhood frame and I is an interpretation function such that, for
any assignment σ and world w:

- Iσw(x) ∈D (global interpretation of variables/terms);

- ∀w, v ∈W,Iσw(x) = Iσv (x) (rigidity of variables/terms);

- Iσw(P (x1, . . . , xn)) ⊆Dn.

Notice that the notion of truth set has to take into account that the truth or falsity of
open formulae depends on particular interpretations.

Definition 2.2 Let M be a model with interpretation I, σ an assignment, w any world,
and A any formula. The truth set of A with respect to to M and Iσ, ∥A∥σI is thus defined:4

∥A∥σI ∶= {w ∈W ∶M ⊧σw A} .

The valuation conditions are as follows:

- M ⊧σw P (x1, . . . , xn) iff ⟨Iσw(x1), . . . , Iσw(xn)⟩ ∈ Iw(P );
- Standard valuation conditions for negation and boolean connectives;

- M ⊧σw ◻A iff ∥A∥σI ∈ N (w);
- M ⊧σw ∀xA(x) iff, for every x-variant τ of σ, M ⊧τw A(x).

Let us consider the Barcan and the Converse Barcan schemata

4When clear form the context, we also omit the reference to the model. The truth set of a closed formula
does not depend on any interpretation and assignment.
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BF:= ∀x ◻A→ ◻∀xA CBF:= ◻∀xA→ ∀x ◻A.

The choice of constant domains (i.e., that the resulting modal logics are extensions of
standard First Order Logic, FOL henceforth), does not correspond to the validity of BF and
CBF:

Theorem 2.3 (Arló-Costa and Pacuit, 2006) The class of all constant domain neighbour-
hood frames is sound and complete for FOL⊕ E.

BF and CBF were characterised in (Waagbø, 1992), but such results have been later
made more precise in (Arló-Costa, 2002; Arló-Costa and Pacuit, 2006).

Let us consider the following frame properties (Arló-Costa, 2002; Arló-Costa and Pacuit,
2006):

Definition 2.4 (Frame properties) A frame is consistent iff ∀w ∈ W ∶ N (w) /= ∅ and
{∅} /∈ N (w).

A frame is closed under ≤ κ intersections (where κ is a cardinal) iff

∀w ∈W, ∀X = {Xi∣i ∈ I} where ∣I ∣ ≤ κ, ⋂
i∈I
Xi ∈ N (w).

A frame is trivial iff ∣D∣ = 1, otherwise it is non-trivial.

A frame is supplemented iff ∀w ∈W,X ∩ Y ∈ N (w)⇒X ∈ N (w) and Y ∈ N (w).

Theorem 2.5 (Arló-Costa (2002)) BF is valid in the class of frames that are either
(i) trivial, or (ii) closed under finite intersection, if D is finite, or (iii) closed under ≤ κ
intersections, if D is infinite and ∣D∣ = κ.

Theorem 2.6 (Waagbø (1992); Arló-Costa and Pacuit (2006)) CBF is valid in the
class of frames that are either supplemented or trivial.

Provided that frames are not trivial, Theorem 2.6 establishes a strong relationship be-
tween M and CBF, since supplementation characterises M. Hence, for constant non-trivial
domain neighbourhood frames CBF is valid whenever M is. Also, under the same non-
triviality assumption, since the closure under ≤ κ intersections implies the closure under
intersection, it is not possible to falsify C when BF is valid. However, from the above theo-
rem we can build a countermodel for BF given C (Waagbø, 1992), although this is possible
only for infinite frames (Arló-Costa, 2002).

An open problem of this semantics is that the system FOL⊕E⊕CBF is strongly complete
with respect to the class of frames that are either trivial, or supplemented: Arló-Costa (2011)
conjectured that M is thus derivable by adding in the logic a schema expressing non-triviality
but no result is available.

Let us now move to the case of varying domains, which was explored in QNML only by
Stolpe (2003). The peculiarity of Stolpe (2003)’s analysis is that it works only with models
and not with frames. Models are standardly defined as follows:

Definition 2.7 (Varying domain neighbourhood models) A varying domain neigh-
bourhood frame M is a structure ⟨W,N ,D,Σ, I⟩ where

- W , N , D, and I are like in Definition 2.1 and

- Σ is a function assigning to each world w ∈W a set Dw of elements of D.

The valuation condition for ∀-formulae is now as follows:

M ⊧σw ∀xA(x) iff M ⊧τw A(x) for every x-variant τ of σ such that τ(x) ∈Dw.

Stolpe (2003) defines two classes of varying neighbourhood models that characterize BF
and CBF:

5



Theorem 2.8 (BF and CUPI models) A varying neighbourhood model M =
⟨W,N ,D, I,Σ⟩ is a CUPI model iff for any world w ∈ W , if ∥P (x)∥σI ∈ N (w) for
every σ such that σ(x) ∈Dw, then ∥∀xP (x)∥I ∈ N (w).

BF is valid in the class of CUPI models.

Theorem 2.9 (CBF and CUPO models) A varying neighbourhood model M =
⟨W,N ,D, I,Σ⟩ is a CUPO model iff for any world w ∈ W , if ∥∀xP (x)∥I ∈ N (w), then
∥P (x)∥σI ∈ N (w) for every σ such that σ(x) ∈Dw.

CBF is valid in the class of CUPO models.

CUPI and CUPO models impose properties that trivially reflect the evaluation of BF and
CBF. The main limit of this approach is that it does not appeal to frames. Thus, Arló-
Costa (2011) rightly argues that Stolpe (2003) leaves open many questions, including the
general characterization of BF and CBF. In this paper, we address this very problem in
quantified N-Monotonic logics with varying domains.

3 Preliminaries: Multi-relational Semantics for the Proposi-
tional Case

In this section, we present some basic notions and results by Calardo and Rotolo (2014)
for non-normal propositional modal logics and multi-relational semantics. The alphabet of
the language includes as usual a countable set of propositional letters, modal and Boolean
operators.

Inference Rules:
RE:= ⊢ A↔ B ⇒ ⊢ ◻A↔ ◻B
RM:= ⊢ A→ B ⇒ ⊢ ◻A→ ◻B
RN:= ⊢ A ⇒ ⊢ ◻A
RR:= ⊢ A ∧B → C ⇒ ⊢ ◻A ∧ ◻B → ◻C
RK:= ⊢ A1 ∧ . . . ∧An → B ⇒ ⊢ ◻A1 ∧ . . . ∧ ◻An → ◻B n ≥ 0

Axiom Schemata:
EFQ:= A ∧ ¬A→ B
M:= ◻(A ∧B)→ (◻A ∧ ◻B)
C:= (◻A ∧ ◻B)→ ◻(A ∧B)
K:= ◻(A→ B)→ (◻A→ ◻B)
N:= ◻⊺
CON:= ¬ ◻ �
D:= ◻A→ ¬ ◻ ¬A
T:= ◻A→ A
4:= ◻A→ ◻ ◻A
B:= A→ ◻◇A
DEX:= ◻A ∧ ◻¬A→ ◻B.

There are different systems of propositional modal logics built to model various situa-
tions. In the following table we list some simple systems which may be considered as a base
for more complex systems (for further details, see Chellas, 1980).

Rules Axioms

E classical RE

M monotonic RM E ⊕M

MN N-monotonic RM⊕RN E ⊕M⊕N

R regular RR E ⊕M⊕C

K normal RK E ⊕K⊕N
E⊕M⊕C⊕N
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Figure 1: The lattice of non-normal propositional systems (cf. Chellas, 1980, 237).

The lattice depicted in Figure 1 illustrates the inclusion relations in non-normal systems.

In this paper we shall work with predicate extensions of N-monotonic modal ones. For
this class of logics, multi-relational semantics is as follows.

Definition 3.1 A multi-relational frame is a structure F ∶= ⟨W,R⟩ where W is a non empty
set and R is a set at most countable of accessibility relations.

As usual, a model is obtained by adding an evaluation function V to any frame.

Truth conditions. The truth conditions for all Boolean operations are standard. Given a
multi-relational a model M ∶= ⟨F , V ⟩ and a world w from W , the clauses to evaluate modal
formulae are a direct generalisation of the standard Kripke approach: ⊧Vw ◻A if and only if
there exists an Ri in R such that for all v ∈W (wRiv ⇒ ⊧Vv A).

Notation and abbreviations. Given a relation Ri and a world w, by the symbol Ri(w)
we refer to the set of all the worlds Ri-accessible from w, i.e.: Ri(w) ∶= {x ∶ wRix}.
Given a model M ∶= ⟨W,R, V ⟩ and a formula A, we define the truth set of A, in symbols
∥A∥V , as the set of all the worlds of the model in which A is true, i.e.: ∥A∥V ∶= {w ∶ ⊧Vw A}.

Finally, let us mentions a few relevant results from Calardo and Rotolo (2014) that work
on the weak formulation of multi-relational semantics based on the clause (1).

Lemma 3.2 (Schema N) The schema N ∶= ◻⊺ is valid in the class of all multi-relational
frames.

Lemma 3.3 (Frame characterisation of C) For any multi-relational frame F the fol-
lowing holds: F ⊧ ◻A ∧ ◻B → ◻(A ∧B) iff for any world w, for any relation Ri, Rk there
exists a relation Rj such that Rj(w) ⊆ Rk(w) ∩Ri(w).

Theorem 3.4 (N-Monotonic logics - Soundness) Let MN⊢ ∶= {A ∣ CPC⊕RE⊕M⊕N ⊢
A}—where CPC stands for Classical Propositional Calculus—and MN⊧ ∶= {A ∣ ⊧ A}. Then
MN⊢ ⊆MN⊧.

Theorem 3.5 (Completeness of MN) The logic MN is complete with respect to the class
of multi-relational frames.
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4 Quantification in N-Monotonic Modal Logics

We have seen that a few works offer a semantic analysis of quantified non-normal modal
systems using neighbourhood semantics. However, as far as we are concerned, nothing has
been done so far regarding multi-relational semantics in a first order modal framework.

Let us define multi-relational structures for any quantified modal logic.

Definition 4.1 (Multi-relational frames) A multi-relational frame is a tuple F ∶=
⟨W,R,D,U⟩ where:

- W is a non empty set of worlds
- R is a (possibly infinite) set of binary relations over W
- D is a function associating to each world w ∈ W a set Dw of individuals (the inner

domain of w)
- U is a function associating to each world w ∈ W a set Uw of individuals (the outer

domain of w) such that for any w ∈W , Uw ≠ ∅ and Dw ⊆ Uw and if wRv for some R, then
Uw ⊆ Uv.

The original definition given by Kripke (1963) states that for all worlds w, Uw = ⋃v∈W Dv,
setting a unique outer domain for the whole frame. However, we decided to follow the more
general approach proposed by Corsi (2002):

The fact that Uw ⊆ Uv, if wRv, does not prevent Dw from being disjoint from
Dv. Kripke (1963) stipulates that for all v ∈ W , Uv = ⋃w∈W Dw. We gener-
alise Kripke’s original semantics by allowing Uw ⊆ Uv, if wRv, and ⋃w∈W Uw ⊇
⋃w∈W Dw. ⋃w∈W Uw may contain individuals that never happen to come into
existence. (Corsi, 2002, 1485)

Models, assignments, and the concepts of satisfaction, truth, validity are defined in the
standard way.

Definition 4.2 (Multi-relational models) A multi-relational model is a tuple M ∶=
⟨W,R,D,U, I⟩ where ⟨W,R,D,U⟩ is a multi-relational frame and I is a function I ∶ L×W ↦
⋃w∈W Uw such that:

- Iw(Pn) ⊆ (Uw)n
- Iw(c) ∈ Uw
- Iw(=) = {⟨d, d⟩ ∶ d ∈ Uw}.

Definition 4.3 (Assignments) For any w ∈ W , a w-assignment σ is a function σ ∶
V ar(L)↦ Uw.
An x-variant τ of a w-assignment σ is a w-assignment which may differ from σ for the value
assigned to x.

Notice that within the semantics framework proposed by Kripke (1963), since the outer
domains are constant, any w-assignment σ is also a v-assignment for any couple of worlds.
However, it should be noticed that, here, the fact that Uw ⊆ Uv, if wRv for some R, still
guarantees that if two worlds w, v are related by some R, then any w-assignment is also a
v-assignment, as all the variables of the language are still mapped on individuals without
gaps.

Definition 4.4 (σ-interpretation) Given a w-assignment σ, define

(a) Iσw(c) = Iw(c), and

(b) Iσw(x) = σ(x).

Definition 4.5 (Truth conditions) LetM ∶= ⟨W,R,D,U, I⟩ be any multi-relational model,
σ any assignment, and w ∈W . Truth evaluation clauses are as follows:

- M ⊧σw Pn(t1, . . . , tn) iff ⟨Iσw(t1), . . . , Iσw(tn)⟩ ∈ Iw(Pn)
- M /⊧σw �
- M ⊧σw ∀xA iff for every x-variant τ of σ such that τ(x) ∈Dw, M ⊧τw A(x)
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- M ⊧σw ◻A iff ∃Ri ∈R ∀v ∈W (wRiv⇒M ⊧σv A).

Clearly, since the operators ∃ and ◇ are defined ones, the evaluation clauses are simply:
M ⊧σw ∃xA iff for some x-variant τ of σ such that τ(x) ∈Dw M ⊧τw A(x) and
M ⊧σw ◇A iff ∀Ri ∈R there is a v ∈W (wRiv&M ⊧σv A).

Satisfaction, Truth, Validity. A model M satisfies a set of formulae ∆ iff for some
world w and some w-assignment σ, M ⊧σw A for all A ∈ ∆. A formula A is true in a world
w of a model M, M ⊧w A, iff for any w-assignment σ, M ⊧σw A. A formula A is true in a
model M, M ⊧ A, iff for all w, M ⊧w A. A formula A is valid on a frame F , F ⊧ A, iff for
any modelM on F , M ⊧ A. Given a class of frames F, a formula A is F-valid, F ⊧ A, iff for
any frame F ∈ F, F ⊧ A. M is a model for a logic L iff M ⊧ A for all A ∈ L.

Abbreviations. Given a frame F and a model M on F , for any formula A,
Satisfaction: ∥A∥σI ∶= {w ∣M ⊧σw A}
Truth: ∥A∥I ∶= {w ∣M ⊧σw A, for any assignment σ}
Validity: ∥A∥ ∶= {w ∣ F ⊧σw A for any assignment σ and any interpretation I}.

Definition 4.6 Given a multi-relational model M = ⟨W,R,D,U, I⟩, an individual constant
c is said to be a rigid designator iff for any w, v in W , if there is a relation Ri such that
(wRiv), then Iw(c) = Iv(c).

Lemma 4.7 Given a multi-relational model M = ⟨W,R,D,U, I⟩ and a w-assignment σ,
if an individual constant c is a rigid designator, then ⊧σw A(c/x) iff ⊧τw A(x) for any w-
assignment τ which is an x-variant of σ such that τ(x) = Iw(c). (Cf. (Corsi, 2002, Lemma
1.1).)

Proof. The proof is given by induction on the length of a formula A. We shall provide
a proof only for the modal case, since the others are quite standard. Suppose A has the
form ◻B(x). If ⊧σw ◻B(c/x) then there is a relation Ri such that for any world v, if wRiv,
then ⊧σv B(c/x) and by induction hypothesis we have ⊧τv B(x) where τ is an x-variant of
σ such that τ(x) = Iv(c). Since c is a rigid designator by hypothesis, Iv(c) = Iw(c), τ is a
w-assignment and hence ⊧τw ◻B(x).

If ⊧τw ◻B(x) then there is a relation Ri such that for any world v, if wRiv, then ⊧τv B(x)
and by induction hypothesis we have ⊧σv B(c/x) where τ is an x-variant of σ such that
τ(x) = Iv(c). Since c is a rigid designator by hypothesis, Iv(c) = Iw(c), σ is a w-assignment
and hence ⊧σw ◻B(c/x).

We assume all individual constants to be rigid designators.

Lemma 4.8 Given a multi-relational frame F , a model M ∶= ⟨W,R,D,U, I⟩ on it and a
world w, if σ and τ are two w-assignments which coincide on any free variable occurring in
a formula A, then it holds that M ⊧σw A iff M ⊧τw A.

Proof. The proof is given by induction on the length of a formula A. Suppose A has the
form Pn(t1, . . . , tn), then ⊧σw Pn(t1, . . . , tn) if and only if ⟨Iσw(t1), . . . , Iσw(tn)⟩ ∈ Iw(Pn). If
ti is an individual constant c, then Iσw(c) = Iw(c) = Iτw(c). Otherwise, if ti is a variable x,
Iσw(x) = σ(x) = τ(x) by hypothesis, hence Iσw(x) = Iτw(x). The other steps are straightfor-
ward.

5 The Converse Barcan and the Ghilardi schemata

(Stolpe, 2003) is certainly one of the most significant studies of quantified non-normal modal
logics. Stolpe’s aim is to find out “[. . . ] what semantical restrictions must be imposed on a
minimal model in order to validate the Barcan and the converse Barcan formulae” (Stolpe,
2003, 559, emphasis added). However, as Arló Costa pointed out:
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[. . . ] unfortunately Stolpe does not appeal to frames in his semantics (he only
uses models). So, it is obvious that there are many open questions not considered
in Stolpe’s paper. For example it would be nice to get frame conditions charac-
terizing the Barcan and the Converse Barcan in this setting. (Arló-Costa, 2011,
21)

Our aim is to attack this research question in the multi-relational setting. In particular,
in this section we shall propose frame conditions for CBF in multi-relational semantics.

Standard results in Kripke Semantics (1-relational frames) state that both BF and CBF
are valid in constant domain frames (i.e., when Dw and Uw coincide for each w). Within
first-order Kripke frames with varying domains, however, these schemata cease to be valid.
Let us recall below the proof of this well known result.

Lemma 5.1 CBF is not valid in the class of multi-relational frames with varying inner
domains.

Proof. The proof is trivial. Let M = ⟨W,R,D,U, I⟩ be a 1-relational model such that:
W ∶= {w, v}, R ∶= {R}, R ∶= {⟨w, v⟩}, Dw ∶= {a, b}, Dv ∶= {a}, Uw = Uv = {a, b}, Iσw(P 1) = ∅
for all σ and Iσv (P 1) =Dv, for σ(x) = a (see Figure 2). Then ∥∀x(P )∥σI =Dv and there is a
relation, i.e., R, such that for any world t, wRt (if and) only if ⊧σt ∀xP . Hence ⊧σw ◻∀xP .
Moreover ⊧σw ∃x◇¬P , as ⊧τv ¬P (x) for τ(x) = b.

a b

w

Dw

a b

v

DvR

Figure 2: A frame to build a countermodel for CBF. Indeed set Iσw(P
1) = ∅ for all σ and

Iσv (P
1) =Dv, for σ(x) = a. Hence v ⊧σv ∀xA.

Let us first consider the definition of local seriality, which us needed to study Barcan
schemata:

Definition 5.2 (Local Seriality) Given a multi-relational frame F , a world w is locally
serial iff for any relation Ri from F there is a world v such that wRiv.

In what follows we shall present two different characterisation results connecting CBF to
the concept of increasing domains. The first one (Lemma 5.3) is certainly the less intuitive,
but it is needed to provide a further, more appealing, characterisation (Lemma 5.11). In
fact, the lemma below provides necessary and sufficient conditions to build counter-models
for CBF. After this preliminary result, we shall discuss the semantic role of CBF in further
detail.

Lemma 5.3 (CBF Characterisation result) For any multi-relational frame F ∶=
⟨W,R,D,U⟩, F ⊧ ◻∀xA→ ∀x◻A iff ∀w ∈W , if w is locally serial, then for any a such that
a ∈ Dw, for any relation Rj, there is some relation Ri such that Ri(w) ⊆ Rj(w) and for all
t, (wRit⇒ a ∈Dt).

Proof. According to the statement of the Lemma above, any counter-model for CBF
should be based on a frame F with the following three conditions: There is a world w ∈W ,
and a w-assignment σ such that:

(a) BOTH w is locally serial, i.e., for all k, Rk(w) ≠ ∅
(b) AND there exists a w-assignment τ , which is an x-variant of σ such that τ(x) ∈Dw,

there is a relation Rj
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b.1 BOTH ∃t(wRjt & τ(x) /∈Dt), i.e., the inner domains are not increasing
b.2 AND for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists some world
ti such that (wRiti & τ(x) /∈Dti).

We will now show that these conditions are necessary and sufficient to build a counter-
model for CBF. The idea is to provide an interpretation to make the class Rj(w) to be
exactly the truth set of ∀xA for some formula A, so that the antecedent of CBF holds. Then,
we need an individual which actually exists in w and satisfies ¬A(x) in some Rk-accessible
state for all k; this would guarantee that the consequent of CBF is false.

Indeed, let P be some unary predicate and let I be an interpretation defined in the
following way: For any ϑ and any world z, z ∈ ∥P (x)∥Iϑ if and only if wRjz and ϑ is an
x-variant of τ such that ϑ(x) ∈Dz. Thus, Rj(w) = ∥∀xP (x)∥Iτ and hence ⊧τw ◻∀xP .

Consider now any world z such that z /∈ Rj(w); We defined I in such a way that for
any z-assignment ϑ, /⊧ϑz P (x) and thus this holds also for τ , /⊧τz P (x). Moreover our frame
conditions guarantee that for any relation Ri, if Ri(w) ⊆ Rj(w), then there is some z ∈ Ri(w)
such that τ(x) /∈ Dz and, following our construction of I, /⊧τz P (x). Since τ(x) ∈ Dw by
definition, it holds that ⊧τw ∃x◇¬P (x), thus falsifying CBF.

For the opposite direction, it is easy to see that if CBF does not hold on a model,
its frame fulfills the conditions stated above. Assume that for some frame F , F /⊧ CBF.
Then there are an assignment σ, a valuation I and a world w such that (a) ⊧σw ◻∀xA
and (b) ⊧σw ∃x◇ ¬A for some formula A. From (b) it follows that ⊧τw ◇¬A(x) for some
τ(x) ∈Dw, thus there exists some set {z1, z2 . . .} such that wRkzk for any Rk ∈R and /⊧τzk A.
From (a) it follows that for some relation Ri, Ri(w) ⊆ ∥∀xA∥σI , where ∥∀xA∥σI ∶= {t ∣ ⊧τt
A(x) for any τ such that τ(x) ∈ Dt}. Now, consider any relation Rk; if Rk(w) ⊆ Ri(w),
then by (b), Rk ⊆ ∥∀xA∥σI and by (a) there is some z ∈ Rk(w) such that z /∈ ∥A(x)∥τI for
some τ(x) ∈Dw, thus we must conclude that τ(x) /∈Dz.

This lemma leads to a result that is very close to that for Kripke semantics, as we shall
see in what follows.

Some remarks on CBF. An immediate, yet interesting result is that the schemata
M and CBF are independent, in contrast with Theorem 2.6, which establishes that, for
constant non-trivial domain neighbourhood frames CBF is valid whenever M is. Indeed
by the following lemma, it holds that M is a valid schema, whereas it is possible to build a
countermodel for CBF (see Lemma 5.1).

Lemma 5.4 The schema M is valid in the class of all multi-relational frames.

It is hence possible to derive the following:

Corollary 5.5 The validity of M does not imply that of CBF.

Lemma 5.3 offers some interesting insights about the class of CBF-frames. First of
all, it states an important property about individuals and their behaviour with respect to
different accessibility relations. It is well known that CBF imposes increasing inner domains
on Kripke frames:

Definition 5.6 (Increasing inner domains - Kripke semantics) A relational frame
F has increasing inner domains iff for all worlds w, v, if wRv then Dw ⊆Dv.

Theorem 5.7 (CBF characterisation in Kripke frames) CBF characterises the
class of Kripke frames with increasing inner domains.

Consider any Kripke frame F ∶= ⟨W,R,D,U⟩ (which is nothing but an 1-relational frame
with varying domains). From the condition stated above in Lemma 5.3 we have that F ⊧
◻∀xA→ ∀x◻A iff ∀w ∈W , for any world z, if wRz then for any w-assignment σ such that
σ(x) ∈ Dw, σ(x) ∈ Dz, i.e., Dw ⊆ Dz. Thus the conditions imposed by CBF are the usual
ones: CBF is valid in those frames whose connected worlds have increasing inner domains.
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The situation within N-monotonic logics is rather different, yet connected. The first
question that comes to mind is how to generalise the concept of increasing inner domains.
There are a couple of alternatives at hand, which look very close to the definition given
in Kripke semantics. We might either define increasing domains in a very strong sense, by
asking that all relations enjoy such property:

Definition 5.8 (General increasing inner domains) A multi-relational frame F has
increasing inner domains iff for any couple of worlds w, v for any relation Ri, if wRiv
then Dw ⊆Dv.

Alternatively, we might keep such property lighter, asking for only one relation to fulfill it:

Definition 5.9 (Restricted increasing inner domains) A multi-relational frame F has
increasing inner domains iff for any couple of worlds w, v there is at least one relation Ri,
such that if wRiv then Dw ⊆Dv.

Generally, in the multi-relational semantics scenario, CBF does not capture any of these
properties. Indeed Lemma 5.3 states that if a world w is locally serial, i.e., if there is access to
other worlds under any relation, then each actual individual (i.e., any individual belonging
to the inner domain of w) keeps being actual in a subset of every relation. So it says,
somehow, that individuals are bound to “survive” under alternative relations, although not
necessarily altogether. If Mary and Alex are both alive now (actual) the presence of CBF
guarantees that for any relation, there is a subset of alternative possible worlds in which
Mary keeps being actual, and another one in which Alex is still actual.

Logically, if we consider the big union of all the inner domains connected to w by some
relation i, the inner domain of w is a subset of it, i.e.:

Lemma 5.10 If the schema CBF is valid on a given frame, then on any world w, if w is
locally serial, i.e., for any i, Ri(w) ≠ ∅, then for any relation Ri

Dw ⊆⋃{Dv ∣ v ∈ Ri(w)}.

Proof. Assume that the property stated in this Lemma does not hold. Then there are
a locally serial world w and a relation Ri such that for some individual d ∈ Dw, for all
v ∈ Ri(w), d /∈ Dv, i.e., Dw /⊆ ⋃{Dv ∣ v ∈ Ri(w)}. Consider an assignment σ on any world
belonging to Ri(w) such that σ(x) = d, then for all v ∈ Ri(w), ⊧σv ¬∃x(x = d) and then
⊧σw ◻∀x(x ≠ d). By CBF we get ⊧σw ∀x ◻ (x ≠ d), i.e., for any w-assignment τ such that
τ(x) ∈ Dw, ⊧τw ◻(x ≠ d). Since d ∈ Dw, this holds true for σ as well, where σ(x) = d. Hence
we get that the formula ◻(d ≠ d) holds true at w. This would impose that for some j,
Rj(w) = ∅ which is contradictory with the assumptions.

Hence, within the same set of alternative possible worlds, there is one world in which
Mary lives and another in which Alex lives, although, again, they are not bound to neces-
sarily coincide.

A natural question is then how to force individuals to survive altogether under some
relation. Well, intuitively, at first sight, it would be enough to add partial closure under
intersection, i.e., the semantic property stated in Section 3 (Lemma 3.3) and characterised
by schema C ∶= ◻A ∧ ◻B → ◻(A ∧B). However, this would generate a normal system (see
the lattice in Figure 1). Thus, in the presence of Axiom C, the situation becomes closer
to the Kripkean case. This said, Definition 5.9 seems to capture the concept of “increasing
domains” better than the stronger alternative proposed. However, it turns out that the
presence of C is not required to achieve the formerly stated property, which is actually
(partially) granted by the presence of CBF alone:

Theorem 5.11 (CBF and Restricted Increasing Domains) For any multi-relational
frame F ∶= ⟨W,R,D,U⟩, F ⊧ ◻∀xA → ∀x ◻ A iff ∀w ∈ W , if w is locally serial, then for
all Rj, there is some relation Ri such that Ri(w) ⊆ Rj(w) and for all worlds v in Ri(w),
Dw ⊆Dv.
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Proof. This is very straightforward. In fact, consider the formulation of Lemma 5.3, which
states that if w is locally serial, then for any c such that c ∈ Dw, for any relation Rj , there
is some relation Ri such that Ri(w) ⊆ Rj(w) and for all t, (wRit ⇒ c ∈ Dt). Suppose
the inner domain of w is the set {a, b}. Then, for any Rj there must be an Ri such that
Ri(w) ⊆ Rj(w) and a belongs to the inner domain of all the worlds from Ri(w). However,
since the statement of Lemma 5.3 refers to all relations and all individuals, we must consider
also Ri and b. Hence there is an Rm such that Rm(w) ⊆ Ri(w) and b belongs to the inner
domain of any world from Rm(w). Thus, all the worlds from Rm(w) have an inner domain
containing both a, and b and their inner domain is, therefore, a superset of Dw.

For the opposite direction, suppose by reductio that the property stated in the Lemma
holds, whereas CBF does not. Let us recall the construction of a counter model for CBF
as explained in Lemma 5.3. If CBF does not hold, there are an assignment σ, a valuation
I and a world w such that (a) ⊧σw ◻∀xA and (b) ⊧σw ∃x◇ ¬A for some formula A. From
(b) it follows that ⊧τw ◇¬A(x) for some τ(x) ∈Dw, thus for any Rk ∈R, there is a world zk
such that wRkzk and /⊧τzk A. From (a) it follows that for some relation Ri, Ri(w) ⊆ ∥∀xA∥σI ,
where ∥∀xA∥σI ∶= {t ∣ ⊧τt A(x) for any τ such that τ(x) ∈ Dt}. Now consider the relation
Ri(w). The statement of this Lemma says that (c) there must be a relation Rj such
that Rj(w) ⊆ Ri(w) and for all worlds v in Ri(w), Dw ⊆ Dv. Moreover, by (a), since
Rj(w) ⊆ Ri(w), for any v ∈ Rj(w) it holds that ⊧σv ∀xA. However by (b) for some z ∈ Rj(w),
/⊧τz A(x) and τ(x) ∈Dw. But by (c) Dw ⊆Dz, hence we reach a contradiction.

By all means, these results are much more specific than those proposed by Stolpe (2003),
as nothing is known about inner domains of related worlds. In fact, by translating in terms
of multi-relational semantics Stolpe (2003)’s CUPO condition (see Theorem 2.9) it is not
hard to prove a weaker correspondence result for CBF in multi-relational models.

Lemma 5.12 (CUPO models) For any multi-relational modelM ∶= ⟨W,R,D,U, I⟩,M ⊧
◻∀xA→ ∀x◻A if and only if for any world w the following holds: given a w-assignment σ,
if there is a relation Ri such that Ri(w) ⊆ ∥∀xA∥σI , then for all x-variant τ of σ such that
τ(x) ∈Dw there is some j such that Rj(w) ⊆ ∥A(x)∥τI .

Proof. For the left arrow, suppose there are a model M ∶= ⟨W,R, V ⟩ and a σ such that
⊧σw ∀xA. Hence, for some i, Ri(w) ⊆ ∥∀xA∥σw. By hypothesis for all x-variant τ of σ such
that τ(x) ∈ Dw there is some j such that Rj(w) ⊆ ∥A(x)∥τI , thus ensuring ⊧τw ◻A(x) and
hence ⊧σw ∀x ◻A(x).The other version can be proved accordingly by contraposition.

The reader may easily notice that Stolpe’s result does not say anything regarding the
inner structure of frames, but it is strictly related to specific interpretations. On the other
hand, a frame characterisation result is based on structural properties on domains of individ-
uals (here also interplaying with relations), as analysed in the literature on quantified modal
logics, where CBF is classically associated with the condition of increasing domains of in-
dividuals (Garson, 2001; Fitting and Mendelsohn, 1998; Corsi, 2002; Garson, 2005; Brauner
and Ghilardi, 2007; Gabbay et al., 2009; Goldblatt, 2011).

Mirroring Kripke semantics, CBF and the Ghilardi schema ∃x ◻ A → ◻∃xA (GF) are
semantically equivalent:

Lemma 5.13 CBF and GF are semantically equivalent

Proof. To show this result it is enough to check that GF characterises the class of CBF-
frames.
(⇒) According to the statement of Lemma 5.3, any counter-model for CBF must be based
on a frame F with the following three conditions:

there is a world w ∈W , and a w-assignment σ such that:
(a) BOTH w is locally serial, i.e., for all k, Rk(w) ≠ ∅
(b) AND there exists an individual a, a ∈Dw, and there is a relation Rj

(b.1) BOTH ∃t(wRjt & a /∈Dt), i.e., the inner domains are not increasing
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(b.2) AND for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists some world
ti such that (wRiti & a /∈Dti).
Let us sketch a valuation to build a counter-model for GF. Let A be a unary predicate,
take any w-assignment τ and set I as follows:

(a) IF τ(x) ≠ a, then ∥A(x)∥τI =W ;

(b) OTHERWISE if τ(x) = a, then ∥A(x)∥τI =W −Ri(w).

From (b) it follows that Ri(w) ⊆ ∥¬A(x)∥τI , hence ⊧σw ∃x ◻ ¬A(x).
Let us turn our attention to (a). Any world v which is not Ri-seen by w is such that

for any assignment τ , ⊧τv A(x) and hence ⊧σv ∀xA(x) for all σ. Concerning Ri the situation
is the following: the fact that ∃t(wRjt & a /∈ Dt) guarantees that ⊧σt ∀xA(x), whereas the
fact that for all the other relations Ri, IF Ri(w) ⊆ Rj(w), THEN there exists some world
ti such that (wRiti & a /∈Dti), guarantees the fact that there is always a world z in Rj(w)
such that ⊧σz ∀xA(x). This observation, together with the fact that w is locally serial by
assumption, makes sure that ⊧σw ◇∀xA(x), thus disproving an instance of GF.

6 Completeness Results5

6.1 The System Q○
=
.MN

Here we present an axiomatic system extending MN with predicate logic, which is based
on free quantified modal logic (see Corsi, 2002, 1498). The system Q○

=.MN (Free Quantified
N-monotonic modal logic) contains the following axioms and inference rules:

- Propositional tautologies;
- UI○ ∶= ∀y(∀xA(x)→ A(y/x))
- ∀x∀yA↔ ∀y∀xA
- A→ ∀xA, x not free in A
- ∀x(A→ B)→ (∀xA→ ∀xB)
- I:= t = t
- (s = t)→ (A(s//x)→ A(t//x))

- ND:= ◻A ∧ s ≠ t→ ◻(A ∧ s ≠ t)
- NI:= ◻A ∧ s = t→ ◻(A ∧ s = t)
- M ∶= ◻(A ∧B)→ (◻A ∧ ◻B)
- N ∶= ◻⊺
- MP ∶= A→ B,A/B
- RE ∶= A↔ B/ ◻A↔ ◻B
- UG ∶= A/∀xA

Some remarks on Q○
=.MN. Besides the propositional part, axiom schemata for the basic

predicate part (not considering identity) are those originally proposed by Kripke (1963) (see
Corsi, 2002) plus ∀x∀yA ↔ ∀y∀xA, which is conceptually harmless but needed to ensure
completeness results (see Goldblatt, 2011). The language includes the identity symbol =,
which makes the logic very expressive. Notice that the expression A(t//s) denotes that
some (all, none) free occurrences of s are replaced by t, whereas A(s1 . . . , t/si, . . . s, ) stands
for A(s1 . . . , si . . . sn)(t/si). (see Corsi (2002)). In quantified modal logic with identity,
logicians usually consider whether the following schemata are to be valid (for a philosophical
discussion, see Kripke, 1980):

t = s→ ◻(t = s) t /= s→ ◻(t /= s)

Here, we consider a version of them that can also capture some quite restricted versions
of C: indeed, ND and NI state that it is possible to modally aggregate two formulae when
one is any A (and thus A can also be a ◻ formula) and the other is either t = s or t /= s; this
does not in general entail C. Notice that the schema NI∗ ∶= t = s → ◻(t = s) is derivable
within this system. Finally, it is worth noting that we will make an essential use of the iden-
tity symbol and schemata NI and NI∗ to ensure completeness of the system Q○

=.MN⊕CBF,
namely, when we add CBF. We will show later why this is technically needed.

5We wish to thank Gabriele Tassi for the fruitful discussions and the useful insights he provided concerning
the issues discussed in this section.

14



Given a language L, we shall henceforth refer to the set of its individual constants with
the notation Const(L).

Theorem 6.1 (Soundness) The system Q○
=.MN is sound with respect to the class of all

multi-relational frames with varying inner domains.

Proof. The proof is standard and it is carried out by induction on the length of D, where
D ∶= D1, . . . ,Dn is a deduction in n steps in the axiomatic system Q○

=.MN with A = Dn, i.e.,
A ∈ Q○

=.MN⊢.
(a) If k = 1, A is an axiom. Let us consider just a few cases. For the propositional

schemata, please refer to Theorem 3.4. If A has the form ∀y(∀xB(x) → B(y/x)), then
assume by reductio that there are a multi-relational frame F , a model M = ⟨W,R,D,U, I⟩
on F , a world w and a w-assignment σ such that M /⊧σw ∀y(∀xB(x) → B(y/x)). Then
there is a w-assignment τ which is an y-variant of σ such that M /⊧τw ∀xB(x) → B(y/x)
and τ(y) ∈ Dw. Hence M ⊧τw ∀xB(x) and M /⊧τw B(y/x) and τ(y) ∈ Dw. It follows that
for any w-assignment ϑ, where ϑ is an x-variant of τ such that ϑ(x) ∈Dw, M ⊧ϑw B(x) and
M /⊧τw B(y/x) for τ(y) ∈ Dw. Since one must consider all the x-variants of τ which map x
to an element of the inner domain of w and since τ(y) ∈Dw, there is an assignment ϑ⋆ such

that it is an x-variant of τ , ϑ⋆(x) = τ(y), M ⊧ϑ
⋆

w B(x) and M /⊧τw B(y/x).

If A has the form B → ∀xB for x not free in B, then suppose by reductio that there are a
multi-relational frame F , a modelM = ⟨W,R,D,U, I⟩ on F , a world w and a w-assignment
σ such that M /⊧σw B → ∀xB, thus M ⊧σw B and M /⊧σw ∀xB, i.e., M ⊧σw ∃x¬B. From this
it follows that M /⊧τw B for some x-variant τ of σ such that τ(x) ∈ Dw. Since x is not free
in B, σ and τ coincide on any free variable occurring in B, hence, by Lemma 4.8 it holds
that M ⊧σw B and M /⊧σw B.

If A has the form ∀x(B → C) → (∀xB → ∀xC), then suppose by reductio that there are a
multi-relational frame F , a modelM = ⟨W,R,D,U, I⟩ on F , a world w and a w-assignment
σ such that ⊧σw ∀x(B → C), ⊧σw ∀xB and ⊧σw ∃x¬C. Thus (i)M ⊧τw B → C for any x-variant
τ of σ such that τ(x) ∈ Dw; (ii) M ⊧ϑw B for any x-variant ϑ of σ such that ϑ(x) ∈ Dw;
(iii) M /⊧υw C for some x-variant υ of σ such that υ(x) ∈ Dw. From (i) it follows that for
any x-variant τ of σ such that τ(x) ∈ Dw, either M /⊧τw B, contradicting (ii), or M ⊧τw C,
contradicting (iii).

If A has the form ◻B∧s = t→ ◻(B∧s = t), then assume that there are a model, a world and
an assignment such that ⊧σw ◻B ∧ s = t. This entails the existence of a relation Ri such that
Ri(w) ⊆ ∥B∥σI . Take any v ∈ Ri(w). If t (or s) is an individual constant, then Iσw(t) = Iσv (t),
since constants are rigid designators; on the other hand if t (or s) is a variable, than, since
Uw ⊆ Uv, it holds that Iσw(t) = σ(t) = Iσv (t). Thus ⊧σw ◻(B ∧ (t = s)).

(b) If k = n + 1, then A is an axiom (see previous cases) or it has been obtained either
via MP, or via RM, or else via UG. For the first two cases, please refer to Theorem 3.4.
Let us focus on the latter case. If A has been obtained via the rule UG, it has the form
∀xB and it has been derived applying UG to a formula B. By IH, ⊧σw B for any valuation
I, any world w and any assignment σ. In particular this holds true for any assignment τ
which is an x-variant of σ such that τ(x) ∈Dw and hence ⊧σw ∀xB.

6.2 Some Auxiliary Results

Following Corsi (2002), let us establish some auxiliary results.

Definition 6.2 Let L be a logic on the language L, ∆ ⊆ L and Q ⊆ Const(L).
- ∆ is L-consistent iff ∆ /⊢L �.
- ∆ is L-deductively closed iff for any sentence A of L, ∆ ⊢L A iff A ∈ ∆.
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- ∆ is L-complete iff for any sentence A of L, either A ∈ ∆ or ¬A ∈ ∆.
- ∆ is L-maximal iff ∆ is L-consistent and L-complete.
- ∆ is Q-universal iff if ∀xA(x) ∈ ∆, then A(c/x) ∈ ∆, for all individual constants c ∈ Q.
- ∆ is Q-existential iff if A(c/x) ∈ ∆ for some individual constant c ∈ Q, then ∃xA(x) ∈

∆.
- ∆ is Q-inductive iff if A(c/x) ∈ ∆ for all individual constants c ∈ Q, then ∀xA(x) ∈ ∆.
- ∆ is Q-rich iff if ∃xA(x) ∈ ∆ for some individual constant c ∈ Q, then A(c/x) ∈ ∆.
- ∆ is L-saturated iff if ∆ is L-maximal and for some Q ⊆ Const(L), ∆ is Q-universal

and Q-rich.

Lemma 6.3 Let L ⊆ Q○
=.MN be a logic on L. Let C be a denumerable set of individual

constants not occurring in L, let LC be the language obtained adding C to Const(L) and
LC be the logic on LC .

i. If ⊢LC A(c1, . . . , cn), then ⊢LC A(x1/c1, . . . , xn/cn) where x1, . . . , xn are variables not
occurring in A(c1, . . . , cn).

ii. If ⊢LC A and no constants of C occur in A, then ⊢L A.
iii. If ∆ is an L-consistent set of sentences and no constant from C occurs in ∆, then

∆ is LC-consistent. (Cf. (Corsi, 2002, Lemma 1.6))

Lemma 6.4 Given an L-maximal set ∆ of sentences in L and Q ⊆ Const(L), if ∆ is
Q-universal then ∆ is Q-existential.(Cf. (Corsi, 2002, Lemma 1.11))

Proof. Assume A(c/x) ∈ ∆ for some individual constant c ∈ Const(L) and ∃xA /∈ ∆. Since
∆ is L-maximal, ¬∃xA(x) ∈ ∆ and hence ∀x¬A(x) ∈ ∆. Thus, since ∆ is Q-universal by
definition, ¬A(c/x) ∈ ∆ and hence � ∈ ∆, contradicting the consistency of ∆.

Lemma 6.5 (Lindenbaum’s Lemma) Given a logic L, if ∆ is a L-consistent set of for-
mulae, then there is a L-maximal set ∆+ such that ∆ ⊆ ∆+.

Lemma 6.6 Let ∆ be an L-consistent set of sentences of L. Then for some not-empty
denumerable set C of new constants, there is a set Π of sentences of LC such that ∆ ⊆ Π,
Π is LC-maximal, Π is Q-universal and Q-rich for some set Q ⊆ Const(LC). (cf. (Corsi,
2002, Lemma 1.16))

6.3 Canonical Models

In order to define canonical models for a language with identity, we need to introduce a
binary equivalence relation on individual constants:

a ∼ b if and only if (a = b) ∈ w.

Any individual constant c may be interpreted on its equivalence class [c], where [c] ∶= {a ∣
c ∼ a}.

Definition 6.7 (Non-normal canonical model for Q○
=.MN) Let L ⊇ Q○

=.MN be a logic
based on L. Let Q be a set of constants with cardinality ℵ0 such that Q ⊃ Const(L) and
∣ Q−Const(L) ∣= ℵ0. A non-normal canonical model for L is a tuple M = ⟨W,R,D, I⟩ such
that:

- W is the class of all Lw-saturated sets of sentences w, where Lw = LS for some set
S of constants such that Const(LS) ≠ ∅, S ⊂ Q and ∥Q − Const(LS)∥ = ℵ0 (where LS is
defined as in Lemma 6.3).

- For any formula A ∈ Fma(L) let RA be a binary relation over W . For all w, v ∈ W ,
wRAv iff ◻A ∈ w ⇒ A ∈ v and for any constant c ∈ Const(Lw), [c]w = [c]v, where [c]v =
{b ∈ Const(Lv) ∶ (b = c) ∈ v}. The set of relations R is the collection of all such relations.

- Dw = {[c]w ∶ ∃x(x = c) ∈ w}.
- Uw = {[c]w ∶ c ∈ Const(Lw)}.
- Iw(c) = [c]w.
- Iw(Pn) = {⟨[c1]w , ..., [cn]w⟩ ∶ P

n(c1, ..., cn) ∈ w}.
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Notice that this definition implies that whenever a formula ◻A does not belong to a
state w, the relation associated to A for w would be RA(w) = W , i.e., the whole universe.
Otherwise if ◻A ∈ w, RA(w) would be exactly ∣A∣Q○

=
.MN, where ∣A∣Q○

=
.MN ∶= {v ∈ W ∣ A ∈ v}.

Moreover, it is important to notice that the frame of a Q○
=.MN-canonical model is not always

generally serial. Indeed it allows the presence of empty relations for any world, and hence
the schema CON:=◇⊺ is not valid on the canonical frame.

Lemma 6.8 (Existence lemma) Given a canonical modelM for Q○
=.MN, for any w ∈W ,

if ◇A ∈ w, then for any formula B ∈ Fma(L) there is a set v such that:
1. v belongs to the base set of M, i.e., in the set of possible worlds W
2. A ∈ v
3. If ◻B ∈ w then B ∈ v
4. Const(Lw) ⊆ Const(Lv)
5. for any individual constant c ∈ Const(Lw), [c]w = [c]v.

Proof. Below we shall define a procedure to construct any such v for any formula B.
Let C be a denumerable set of constants which do not belong to Lw and let LCw = Lw∪C.

Let H1,H2,H3, ... be an enumeration of all the existential formulae of LCw where any formula
occurs infinitely often.
Let Γ be a chain of sets as defined below:

1. Γ0:

(1.a) If ◻B ∈ w, then Γ0 ∶= {B} ∪ {A}
(1.b) otherwise, Γ0 ∶= {A}.

2. Γ1 ∶= Γ0 ∪ {(a = b) ∣ (a = b) ∈ w}
3. Let Γn be already defined for 1 ≤ n and let Hn+1 = ∃xF (x). The set Γn+1 is defined as:

(3.a) If ∃xF (x) contains at least one constant c such that c ∉ Const(Γn), then Γn+1 ∶=
Γn.

(3.b) otherwise, if any constant occurring within ∃xF (x) is already in Γn, then there
are a few cases:

(3.b.1) If Γn ∪ {∃xF (x)} is LC
w-consistent, then

(3.b.1.1) Γn+1 ∶= Γn ∪ {∃xF (x)} ∪ {F (b/x)}, where b ∈ Const(Γn) and Γn ∪
{F (b/x)} is LC

w-consistent;

(3.b.1.2) Γn+1 ∶= Γn ∪ {∃xF (x)} ∪ {F (c/x)} ∪ {(c ≠ b) ∣ b ∈ Const(Γn)}, if
Γn ∪ {F (b/x)} is not LC

w-consistent for any b ∈ Const(Γn), and c ∈ C is a
constant not occurring in Γn.

(3.b.2) Otherwise if Γn ∪ {∃xF (x)} is not LC
w-consistent, then Γn+1 = Γn.

4. Γ = ⋃n∈N (Γn).

In order to show that Γis LC
w-consistent, we have to check that for any n, Γn is LC

w-
consistent.

1. Γ0 is consistent. Indeed:

(1.a) If Γ0 ∶= {A,B} and ◻B ∈ w, then suppose ⊢MN A∧B → �, then ⊢MN B → (A→ �),
⊢MN B → ¬A and ⊢MN ◻B → ◻¬A by the RM rule. By definition, it follows
that w ⊢MN ◻¬A, ¬ ◇ A ∈ w, leading to a contradiction as w is consistent by
assumption.

(1.b) If Γ0 ∶= {A}, then assume it is not consistent and hence ⊢MN A→ �, i.e., ⊢MN ¬A.
Thus by the necessitation rule we have ⊢MN ◻¬A and this implies that ¬◇A ∈ w
and hence ◇A /∈ w, which is in contradiction with our hypothesis.

2. Γ1 is consistent. Indeed assume it is not. There are two cases:
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(2.a) Γ0 ∶= {A,B} and ◻B ∈ w, then ⊢MN B → (a = b → (A → �)) for some a = b ∈ w.
Then ⊢MN B → (a = b → ¬A), and ⊢MN ◻B → ◻((a = b) → ¬A) by the RM rule.
By definition of w and MP, it follows that w ⊢MN ◻((a = b) → ¬A). Thus by
the RM rule ⊢MN ◻(a = b) → ◻¬A. But ◻(a = b) ∈ w by the NI∗ schema, hence
¬◇A ∈ w, ◇A /∈ w, which contradicts the hypothesis.

(2.b) If Γ0 ∶= {A}, then ⊢MN (a = b) → A → �, i.e., ⊢MN (a = b) → ¬A for some
(a = b) ∈ w. Thus by the RM rule ⊢MN ◻(a = b) → ◻¬A. But ◻(a = b) ∈ w by the
NI schema, hence ¬◇A ∈ w, ◇A /∈ w, which contradicts the hypothesis.

3. Γn+1 is also consistent, in fact:

(3.a) If ∃xF (x) contains at least one constant c such that c ∉ Const(Γn), then Γn+1 =
Γn and thus it is LC

w-consistent by the Inductive Hypothesis (IH henceforth).

(3.b) If any constant occurring within ∃xF (x) is already in Γn, then

(3.b.1) If Γn ∪ {∃xF (x)} is LC
w-consistent, then

(3.b.1.1) The set Γn+1 = Γn∪{∃xF (x)}∪{F (b/x)} (where b ∈ Const(Γn) and
Γn ∪ {F (b/x)} is LC

w-consistent) is consistent by construction and IH;

(3.b.1.2) Assume Γn+1 = Γn∪{∃xF (x)}∪{F (c/x)}∪{(c ≠ b) ∣ b ∈ Const(Γn)},
if Γn ∪ {F (b/x)} is not LC

w-consistent for any b ∈ Const(Γn), and c ∈ C is
a constant not occurring in Γn. We know that the set Γn ∪ {∃xF (x)} is
consistent by hypothesis. First of all, let us show that Γn ∪ {F (c/x)} is
LC
w-consistent. Assume by reductio that Γn∪{F (c/x)} is not LC

w-consistent.
Then there are sentences {D1, ...,Dk} ∈ Γn such that ⊢LCw D1 ∧ ... ∧Dk ∧
F (c/x)→ �
Γn ⊢LCw ¬(F (c/x)
Γn ⊢LCw ¬F (y/c)
Γn ⊢LCw ∀y¬F (y/c)
Γn ⊢LCw ¬∃yF (y)
contrary to the fact that Γn∪{∃xF (x)} is LC

w-consistent by hypothesis, thus
Γn ∪ {F (c/x)} is LC

w-consistent.
Assume by reductio that Γn+1 is not LC

w-consistent. Hence for some finite
set of individual constants {b1, ..., bh} ⊆ Const(Γn),
Γn ⊢LCw F (c/x) ∧ (c ≠ b1 ∧ ... ∧ c ≠ bh)→ �
Γn ⊢LCw F (c/x)→ ¬(c ≠ b1 ∧ ... ∧ c ≠ bh)
Γn ⊢LCw F (c/x)→ (c = b1 ∨ ... ∨ c = bh)
Γn ∪ {F (c/x)} ⊢LCw c = b1 ∨ ... ∨ c = bh
hence for some i, 1 ≤ i ≤ h, Γn∪{F (bi/x)} is LC

w-consistent, in contradiction
with the assumption that there is no constant b ∈ Const(Γn) such that
Γn ∪ {F (b/x)} is LC

w-consistent. Therefore Γn+1 is LC
w-consistent.

(3.b.2) If Γn ∪ {∃xF (x)} is not LC
w-consistent, then Γn+1 = Γn and it is thus

consistent by IH.

4. Since Γ is the big union of a chain of consistent sets, then Γ is LC
w-consistent.

Let Q = Const(Γ). We start by showing that
(∗) For any existential formula ∃xF (x) of LQw there is some Γk such that either ∃xF (x) ∈ Γk+1
or Γk ∪ {∃xF (x)} is LCw-inconsistent.
Let c1, . . . , cj be all the constants occurring in ∃xF (x). Since ∃xF (x) ∈ LQw , {c1, . . . , cj} ⊆ Q,
hence for some j, {c1, . . . , cj} ⊆ Const(Γj). Since ∃xF (x) occurs infinitely many times within
H1,H2,H3, ..., then ∃xF (x) =Hk for some k > j. Therefore the (b) step of our construction
is applied to ∃xF (x) and hence (∗) is proved. It follows that Γ is LQw -rich.

The set Γ can be extended to some v which is LQw -consistent and LQw - maximal. Let
Lv = LQw . The extension v does not compromise richness. Indeed, if an existential formula
of LQw belongs to v, by (∗) it is also in Γ, and hence some exemplification of it is also in

18



Γ and since Γ ⊆ v, it is also in v. Therefore v is L=v-saturated and it hence belongs to the
canonical base set. Therefore:

1. v ∈W .

2. Since A ∈ Γ0 and v ⊇ ⋃n∈N (Γn), it follows that A ∈ v.

3. Moreover it holds true that if ◻B ∈ w, then B ∈ v.

4. Since Const(Lw) ⊆ Const(LQw) it holds that Const(Lw) ⊆ Const(Lv).
5. The set v is LQw -maximal: the only constants occurring in v are those already present

in Γ. Since by construction {(a = b) ∣ (a = b) ∈ w} ⊆ Γ, it follows that for any b,
[b]w ⊆ [b]v. On the other hand, suppose that there is some c from Const(Lv) which
does not occur in Const(Lw). Then c has been added at some point in the construction
of the Γj sets. The step (3.b.1.2) is the only possible way to add the new constant c
to Γj+1 and it guarantees that for any d ∈ Const(L(Γj)), c ≠ d ∈ Γj+1, so c /∈ [b]v for
any b ∈ Const(Lw).

Lemma 6.9 (Truth Lemma) Given a canonical model ML = ⟨W,R,D,U, I⟩ for a quan-
tified N-Monotonic modal logic L extending Q○

=.MN, for any formula A ∈ Fma(L), for any
world w ∈W , the following holds: ⊧σw A(xi) ⇔ A(σ(xi)/xi) ∈ w.

Proof. By induction on the length of a formula A. We omit details of the induction base.
Suppose the length of A is n + 1 and A has the form ∃xB(x, y1, . . . , ym).

(i) ⊧σw ∃xB(x, y1, . . . , ym) iff for some x-variant τ of σ such that τ(x) ∈ Dw, ⊧τw
B(x, y1, . . . , ym). Suppose τ(x) = c. Since by assumption all constants are rigid designators,
by Lemma 4.7 it holds that ⊧σw B(c/x, y1, . . . , ym). Hence B(c/x,σ(y1), . . . , σ(ym)) ∈ w
by IH. Since w is Dw-universal, w is also Dw-existential by Lemma 6.4 and hence
∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. (ii) Assume ∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. Since w is Dw-
rich, B(c/x,σ(y1), . . . , σ(ym)) ∈ w for some c ∈ Dw. Thus, by IH, ⊧σw B(c/x, y1, . . . , ym)
and, by Lemma 4.7 it holds that ⊧τw B(x, y1, . . . , ym) for some w-assignment τ which is an
x-variant of σ such that τ(x) = Iw(c) = c. Therefore ⊧σw ∃xB(x, y1, . . . , ym).

Assume that ◇A ∈ w. Since the schema ◇A → ◇⊺ is a theorem6 of Q○
=.MN, it follows

that ◇⊺ ∈ w and by Lemma 6.13 in (Calardo and Rotolo, 2014), w is locally serial, i.e.,
for any formula B ∈ Fma(L) there is a state z such that wRBz. It remains to show that
for any formula B ∈ Fma(L), RB(w) ∩ ∣A∣Q○

=
.MN ≠ ∅, i.e., for any B there is some z such

that z ∈ RB(w) and A ∈ z. (i) If A is a theorem, then ∣A∣Q○
=
.MN = W (A belongs to any

maximal consistent set in W ). (ii) A cannot be a contradiction, otherwise ⊢Q○
=
.MN ¬A by

EFQ, ⊢Q○
=
.MN ◻¬A, ◻¬A ∈ w, ¬◻¬A /∈ w, i.e., ◇A /∈ w which leads to a contradiction. (iii) If

A is neither a theorem nor a contradiction, both {A} and {¬A} are Q○
=.MN-consistent and

both ∣A∣Q○
=
.MN and ∣¬A∣Q○

=
.MN are not empty. Assume by reductio that for some C ∈ Fma(L)

RConst(w) ⊆ ∣¬A∣Q○
=
.MN. This implies that ◻C ∈ w (otherwise we would have RC(w) = W

which is inconsistent with our assumption). Hence we have that in all Q○
=.MN-maximal sets

z, C → ¬A ∈ z and therefore it is a theorem of Q○
=.MN. Thus ⊢Q○

=
.MN C → ¬A, ⊢Q○

=
.MN ◻C →

◻¬A, ◻¬A ∈ w and hence ◇A /∈ w which is a contradiction.

Lemma 6.10 LetML ∶= ⟨W,R,D,U, I⟩ be a canonical model for a logic L ⊇ Q○
=.MN. If ∆ is

an L-consistent set of formulae, then for some w ∈W and some w-assignment σ, ML ⊧σw D
for any D ∈ ∆. (cf. Corsi, 2002, Lemma 1.19)

Let L be any logic L ⊇ Q○
=.MN. Consider any formula A such that /⊢L A. Then {¬A}

is L-consistent. By Lemma 6.10 there is a world w of a canonical model ML for L and a
w-assignment σ such that ML /⊧σw A and hence ML /⊧ A.

Corollary 6.11 (Completeness of Q○
=.MN) The logic Q○

=.MN is strongly complete with
respect to the class of all multi-relational frames.

6Indeed ⊢Q○
=
.MN �→ ¬A ex falso quodlibet, ⊢Q○

=
.MN ◻�→ ◻¬A by RM, ⊢Q○

=
.MN ◇A→◇⊺ by contraposition.
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6.4 Completeness and Increasing Domains

The class of frames with restricted increasing inner domains is quite interesting on many
respects. As shown in Section 5 it is closely connected to the CBF schema. In Kripke
semantics the class of frames with increasing inner domains is captured by the logic Q○

=.K⊕
CBF, thus showing that CBF is sufficient to achieve the result. The case of multi-relational
frames with restricted inner domains is, however, more complex. In this section we focus
on finding an axiomatisation to capture the semantic concept of restricted increasing inner
domains.

It turns out that merely adding CBF to our system is not enough to axiomatise the logic
semantically generated by the class of multi-relational frames with restricted increasing inner
domains: Something more is needed. In particular, as it will become clear in the following
theorem, a weak version of schema C is needed, namely

◻∃ ∶= ◻A ∧ ∃x1 . . .∃xn(x1 = t1 ∧ . . . ∧ xn = tn)→ ◻(A ∧ ∃x1 . . .∃xn(x1 = t1 ∧ . . . ∧ xn = tn))

Let us define Q○
=.MN ⊕ CBF ⊕ ◻∃ as the system obtained by adding CBF and ◻∃ to

Q○
=.MN. Notice that although we added a weak version of C (or, in other words, a stronger

version of NI), this system is still non-normal. Moreover the schema ◻∃ does not hold in
general, although it is sound in the class of multi-relational frames with finite restricted
increasing inner domains.

Lemma 6.12 The schema ◻∃ is valid in the class of multi-relational frames with restricted
increasing inner domains (as described in Lemma 5.11).

Proof. Suppose by reductio ad absurdum that there are a model M ∶= ⟨W,R,D,U, I⟩
based on a frame with restricted increasing inner domains and a world w such that (a)
⊧σw ◻A, (b) ⊧σw ∃x1 . . .∃xn(x1 = a1 ∧ . . . ∧ xn = an), where {a1, . . . , an} ⊆ Dw, and (c)
⊧σw ◇(¬A∨∀x1 . . .∀xn(x1 ≠ a1 ∨ . . .∨xn ≠ an)). Clearly by (c) w is locally serial and by (a)
there is a relation Ri such that Ri(w) ⊆ ∥A∥σI . By definition there is a relation Rk such that
Rk(w) ⊆ Ri(w) and the inner domains are increasing. Since Rk(w) ⊆ ∥A∥σI , by (c) there
must be a world v ∈ Rk(w) such that ⊧σv ∀x1 . . .∀xn(x1 ≠ a1 ∨ . . . ∨ xn ≠ an). Since any ai
belongs to Dw, the inner domains are not increasing, thus reaching a contradiction.

Theorem 6.13 (Completeness of Q○
=.MN⊕CBF⊕◻∃) The logic Q○

=.MN⊕CBF⊕◻∃ is
complete with respect to the class of multi-relational frames with finite restricted increasing
inner domains, i.e. frames with the following property: ∀w ∈W , if w is locally serial, then
for all Rj, there is some relation Ri such that Ri(w) ⊆ Rj(w) and for all worlds v in Ri(w),
Dw ⊆Dv, as in Lemma 5.11.

Proof. Let M be a canonical model for Q○
=.MN⊕CBF. Take any world w and assume it

is locally serial. Then the schema ◇⊺ belongs to w. By Lemma 6.8, it follows that for any
formula Bi ∈ Fma(L) there is a world vi such that wRBivi and Const(Lw) ⊆ Const(Lvi)
and for any individual constant c ∈ Const(Lw), [c]w = [c]vi . This implies that Uw ⊆ Uvi .
Take any [c] ∈ Dw; by definition it holds that ∃x(x = c) ∈ w. From these facts it follows
that ⊧σw x = c for some σ such that σ(x) ∈ Dw and, moreover, for each i, ⊧σvi x = c. Hence
⊧σw ◇(x = c) and since σ(x) ∈ Dw, ∃x◇ (x = c) ∈ w. By CBF, ◇∃x(x = c) ∈ w. This means
that for every existing individual b from Dw, for any relation RB , there is a world t ∈ RB(w)
such that b ∈Dt.

Now we want to show that the property expressed by Lemma 5.11 holds. Take any
relation RA. By definition of canonical model, the set RA(w) is such that either (1) RA(w) =
∥A∥I , or (2) RA(w) = ∥⊺∥I . If (1), then ◻A ∈ w, hence the formula ◻A∧⋀a∈Dw

∃x(x = a) ∈ w.
By axiom ◻∃ ∶= ◻A∧ ∃x1(x1 = t1)∧ . . .∧ ∃xn(xn = tn)→ ◻(A∧ ∃x1(x1 = t1)∧ . . .∧ ∃xn(xn =
tn)), we get ◻(A∧⋀a∈Dw

∃x(x = a)) ∈ w. Let us denote this formula by the letter C. Clearly,
RC(w) ⊆ RA(w) and for any world v ∈ RC(w), it holds that Dw ⊆Dv. Likewise, if (2) holds,
◻⊺ ∈ w and by a similar argument we can show that the domains are increasing.
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7 The Case of Barcan Formula

7.1 BF and CGF: Semantic Considerations

If compared to CBF, additional technical difficulties make BF harder to handle. The
remainder of this section provides some preliminary but interesting results.

Similar to the case with CBF, the invalidity of the BF schema follows immediately from
its analogous result in Kripke semantics.

Lemma 7.1 BF is not valid in the class of multi-relational frames.

Proof. Consider the following model: M ∶= ⟨W,R1,D,U, I⟩ where W ∶= {w, z}, R1 ∶=
{⟨w, z⟩}, Dw = {a}, Dz = {b}, Uw = Uz = {a, b}, P (a) ∈ Iz(P ) and P (b) /∈ Iz(P ). Then it
holds that for any x−variant of a σ-assignment τ such that τ(x) ∈Dw, ⊧τw ◻P (x) and hence
⊧σw ∀x◻P (x). Moreover there is an x-variant θ of σ such that θ(x) ∈Dz and P (x) ∈ Iθz (P ),
i.e. θ(x) = b and since wR1z it holds that ⊧σw ◇∃x¬P (x). (See Figure 3)

a b

w

Dw

a b

v

DvR

Figure 3: A Kripke frame to build a countermodel for BF .

Lemma 7.2 (BF Characterisation Result) For any multi-relational frame F ∶=
⟨W,R,D,U⟩, F ⊧ ∀x◻A→ ◻∀xA iff ∀w ∈W , either there is an Ri ∈R such that Ri(w) = ∅
or for any (possibly infinite) sequence of worlds z1, z2, . . . of length n (if the sequence is
infinite n is ℵ0) such that n is also the cardinality of R and wRkzk for any Rk ∈R, for any
(possibly infinite) sequence Rj1 ,Rj2 , . . . of length m where ∥Dw∥ =m, i.e., m is the number of
individuals belonging to the inner domain of w, there is a world t ∈ {z1, z2, . . .}∩⋂i≤mRji(w)
such that Dw ⊇Dt.
Proof. (⇒) Assume that there is a w ∈W such that for all Ri ∈R, Ri(w) ≠ ∅ and for some
(possibly infinite) sequence of worlds z1, z2, . . . such that wRkzk for any Rk ∈ R, for some
(possibly infinite) sequence of relations Rj1 ,Rj2 , . . . the following holds: for all t ∈ W , if
t ∈ {z1, z2, . . .}∩Rj1(w)∩ . . .∩Rjm(w) then Dw ⊂Dt. We shall now define an interpretation
I in order to build a countermodel for BF in this frame. Let Dw ∶= {d1, d2, . . .} of cardinality
m (not necessarily finite), and consider the w-assignments σ1, σ2, . . . such that for any σi,
σi(x) = di. For some unary predicate P , for any i, let ∥P (x)∥σiI ∶= Rji(w). Then clearly
⊧σiw ◻P (x) for each i and hence, since σ1, σ2, . . . are all the x-variant of a w-assignment σ
such that σi ∈Dw for each i, ⊧σw ∀x◻P (x). Consider now any zi from the sequence z1, z2, . . .
and define a zi-assignment ϑi such that ϑi(x) /∈ Iϑi

zi (P (x)) and ϑi(x) ∈ Dzi . Notice that it
is always possible to define such an assignment. In fact even if zi ∈ Rj1(w) ∩ . . . ∩Rjm(w),
by assumption we have that Dzi ⊃ Dw. Hence ⊧ϑi

zi ¬P (x) and hence ⊧σzi ¬∃xP (x) which
implies that /⊧σw ◻∀xP (x).

(⇐) Assume that for some frame F , F /⊧ ∀x ◻ A → ◻∀xA for some formula A. Then
there are a world w, an interpretation I and an assignment σ such that (a) ⊧σw ∀x ◻A(x)
and (b) ⊧σw ◇∃x¬A(x). Given that Dw ∶= {d1, d2, . . .} and ∥Dw∥ =m, from (a) it follows that
there are m w-assignments σ1, σ2, . . . which are all the x-variants of σ such that σi(x) ∈Dw
and ⊧σiw ◻A(x). Thus there is a set of relations {R1,R2, . . .} of cardinality m such that for
any Ri, Ri(w) ⊆ ∥A(x)∥σiI .

From (b) it follows that there is a sequence z1, z2, . . . of worlds such that for each Ri,
wRizi (hence for each Ri, Ri(w) ≠ ∅) and for each i, ⊧σzi ∃x¬A(x). Thus for each zi there

is some zi-assignment ϑi such that ϑi(x) ∈Dzi and ⊧ϑi
zi ∃x¬A(x).
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Clearly all the worlds t belonging to the intersection ⋂i≤mRji(w) are such that ⊧σit A(x)
for all the x-variants of σ such that σi(x) ∈ Dw and hence if a world zi belongs to such
intersection, the zi-assignment ϑi must be such that ϑi(x) ∈ Dzi but ϑi(x) /∈ Dw and
therefore for any such world Dw ⊂Dzi .

Again, mirroring Kripke semantics, the schemata BF and CGF ∶= ◻∃xA → ∃x ◻A are
equivalent.

Lemma 7.3 The schemata BF and CGF characterise the same class of multi-relational
frames.

Proof. (⇒) Assume that ∃w ∈ W such that for all Ri ∈ R, Ri(w) ≠ ∅ and for some
(possibly infinite) sequence z1, z2, . . . such that wRkzk for any Rk ∈ R, for some (possibly
infinite) sequence of relations Rj1 ,Rj2 , . . . of length m (if the sequence is infinite m is ℵ0),
where m is the number of individuals belonging to Dw, the following holds: for all t ∈W , if
t ∈ {z1, z2, . . .}⋂i≤mRji(w) then Dw ⊂Dt.

We shall now define an interpretation I in order to build a countermodel for CGF in this
frame. Let Dw ∶= {d1, d2, . . .} of cardinality m and consider the sequence of w-assignments
σ1, σ2, . . . of length m such that for any σi, σi(x) = di. For some unary predicate P , for any
i, let ∥P (x)∥σiI ∶= Rji(w). Then clearly ⊧σiw ◻P (x) for each i and hence, since σ1, σ2, . . . are
all the x-variants of a w-assignment σ such that σi ∈Dw for each i, ⊧σw ∀x ◻ P (x).

Consider now any zi from the sequence z1, z2, . . . and define a zi-assignment ϑi such
that ϑi(x) /∈ Iϑi

zi (P (x)) and ϑi(x) ∈ Dzi . Notice that it is always possible to define such an
assignment. In fact even if zi ∈ ⋂i≤mRji(w), by assumption we have that Dzi ⊃Dw. Hence
⊧ϑi
zi ¬P (x) and hence ⊧σzi ¬∃xP (x) which implies that /⊧σw ◻∀xP (x).

(⇐) Assume that for some frame F , F /⊧ ∀x◻A→ ◻∀xA for some formula A. Then there
are a world w, an interpretation I and an assignment σ such that (a) ⊧σw ∀x◻A(x) and (b)
⊧σw ◇∃x¬A(x). Given that Dw ∶= {d1, . . . , dm}, from (a) it follows that there are σ1, σ2, . . .
w-assignments which are all the x-variants of σ such that σi(x) ∈Dw and ⊧σiw ◻A(x). Thus
there is a set of relations R1,R2, . . . such that for any Ri, Ri(w) ⊆ ∥A(x)∥σiI .

From (b) it follows that there is a sequence z1, z2, . . . of length n of worlds such that for
each Ri, wRizi (hence for each Ri, Ri(w) ≠ ∅) and for each i, ⊧σzi ∃x¬A(x). Thus for each

zi there is some zi-assignment ϑi such that ϑi(x) ∈Dzi and ⊧ϑi
zi ∃x¬A(x).

Clearly all the worlds t belonging to the intersection ⋂i≤mRji(w) are such that ⊧σit A(x)
for all the x-variants of σ such that σi(x) ∈ Dw and hence if a world zi belongs to such
intersection, the zi-assignment ϑi must be such that ϑi(x) ∈ Dzi but ϑi(x) /∈ Dw and
therefore for any such world Dw ⊂Dzi .

By translating in terms of multi-relational semantics also Stolpe (2003)’s CUPI condition
(see Theorem 2.8) it is quite straightforward to prove a weaker correspondence result for BF
in multi-relational models. However this implies conditions on models instead of frames.

Lemma 7.4 (CUPI models) For any multi-relational model M ∶= ⟨W,R,D,U, I⟩, M ⊧
∀x ◻ A → ◻∀xA if and only if for any world w the following holds: given a w-assignment
σ, if for any x-variant σi such that σi(x) ∈Dw there exists a relation Ri such that Ri(w) ⊆
∥A(x)∥σiI , then there is a relation Rk such that Rk(w) ⊆ ∥∀xA∥σI .

Proof. The left to right arrow is trivial. For the other direction consider the contrapositive
proposition. Assume that for some world w ∈ W it holds true that, for all w-assignments
σ, (a) for any x-variant σi of σ, σi(x) ∈ Dw, there exists a relation Ri such that Ri(w) ⊆
∥A(x)∥σiI and (b) for any relation Rk, Rk(w) /⊆ ∥∀xA∥σI . From (a) it follows that for any
σi, ⊧σiw ◻A(x) and hence ⊧σw ∀x ◻ A(x) whereas from (b) it follows that /⊧σw ◻∀xA, thus
/⊧σw ∀x ◻A→ ◻∀xA.
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7.2 The Independence of the Schemata C and BF

Recall that the schema C imposes on frames the following property: F ⊧ ◻A∧◻B → ◻(A∧B)
iff for any world w, for any relation Ri, Rk there exists a relation Rj such that Rj(w) ⊆
Rk(w)∩Ri(w). Hence for any C-frame, the characterisation result for BF is the following:

Lemma 7.5 (BF on C-frames) Let F be any C-frame. Then for any world w ∈W , given
that ∥Dw∥ = k, if w is locally serial, then for all sets of relations with cardinality up to k
{Ri1, . . . ,Rik}, for all worlds v ∈ Ri1 ∩ . . . ∩Rik it holds that Dw ⊇Dv.

Proof. Indeed if we assume that the BF-condition does not hold on a C-frame, we would
get the following situation. For some world w such that w is locally serial and ∥Dw∥ = k,
there is some set R1, . . . ,Rk of relations such that for some world v ∈ R1(w) ∩ . . . ∩Rk(w)
it holds that Dw /⊇ Dv. It is easy to build a counter-model in such situation. In Kripke
semantics this is equivalent to denying decreasing domains.

It is easy to find a frame validating C but not BF: It is enough to consider the frame
described in Lemma 7.1, which is Kripkean and hence validates C.

It is not hard to show that the schema BF does not imply C. Below we describe
a countermodel for C based on a frame for BF. Consider the model M ∶= ⟨W,R,D,U, I⟩
whereW = {w, z1, z2},R ∶= {R1,R2}, R1 ∶= {⟨w, z1⟩}, R2 ∶= {⟨w, z2⟩}, Dw =Dz1 =Dz2 = {d},
σ is a w-assignment such that σ(x) = d. Let P and Q be two unary predicates such that
∥P (x)∥σI = {z1} and ∥Q(x)∥σI = {z2}. Then ⊧σw ◻P (x) ∧ ◻Q(x) but /⊧σw ◻(P (x) ∧ Q(x)).
Moreover M is built on a frame which fulfills the conditions imposed by BF. Indeed w is
locally serial but there is only one tuple ⟨z1, z2⟩ such that wR1z1 and wR2z2. The number of
individuals from Dw is 1, thus: z1 ∈ {z1, z2}∩R1(w) and Dw ⊆Dz1 and z2 ∈ {z1, z2}∩R2(w)
and Dw ⊆ Dz2 . Notice that any countermodel for C based on a BF-frame must contain a
locally serial world w whose inner domain contains at most one individual and the frame of
such model should have more than one relation.

Corollary 7.6 The schemata BF and C are semantically mutually independent.

The importance of this result is limited at the moment, as it lays only on semantic
grounds. In fact, without a completeness result, one cannot infer that adding BF to a
system does not generate normal systems, i.e., it is not yet clear whether BF does or does
not syntactically imply C.

8 The Role of Identity

The choice of a language with the identity relation can be driven by different reasons. First
of all, the expressive power increases greatly. Nevertheless, there is also a technical reason
behind it. Working with the identity symbol allowed us to build canonical models for CBF-
frames, a very difficult goal to be achieved without it. It is actually much easier to prove
completeness for systems without identity, at least for those systems which do not include
any form of the Barcan schemata.

8.1 Completeness without Identity

Below we present a completeness theorem for an analogous system built on a language
without identity. The axiomatic system Q○.MN is obtained by deleting all the schemata
concerning identity:

The system Q○.MN contains the following axioms and inference rules:

- Propositional tautologies;
- UI○ ∶= ∀y(∀xA(x)→ A(y/x))
- ∀x∀yA↔ ∀y∀xA
- A→ ∀xA, x not free in A
- ∀x(A→ B)→ (∀xA→ ∀xB)

- M ∶= ◻(A ∧B)→ (◻A ∧ ◻B)
- N ∶= ◻⊺ to Q○

=.E
- MP ∶= A→ B,A/B
- RE ∶= A↔ B/ ◻A↔ ◻B
- UG ∶= A/∀xA
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Theorem 8.1 (Soundness) The system Q○.MN is sound with respect to the class of all
multi-relational frames with varying inner domains.

Proof. It follows from Theorem 6.1.

Lemma 8.2 Let ∆ be an L-consistent set of sentences of L. Then for some not-empty
denumerable set C of new constants, there is a set Π of sentences of LC such that ∆ ⊆ Π,
Π is LC-maximal, Π is Q-universal and Q-rich for some set Q ⊆ Const(LC). (cf. (Corsi,
2002, Lemma 1.16))

Definition 8.3 (Non-normal Canonical Models) Let L be a non-normal quantified
modal logic on the language L such that L ⊇ Q○.MN. Let Q be a set of constants of cardi-
nality ℵ0 such that Q ⊃ Const(L) and ∥Q−Const(L)∥ = ℵ0. A non-normal canonical model
ML = ⟨W,R,D,U, I⟩ for L is defined as follows:

- W is the class of all Lw-saturated sets of sentences w, where Lw = LS for some set S
of constants such that Const(LS) ≠ ∅, S ⊂ Q and ∥Q −Const(LS)∥ = ℵ0.

- For any formula A ∈ Fma(L) let RA be a binary relation over W . For all w, v ∈ W ,
wRAv iff ◻A ∈ w⇒ A ∈ v. The set of relations R is the collections of all such relations.

- Dw = {c ∈ Const(Lw) ∣ ∀xA→ A(c/x) ∈ w, for all sentences ∀xA of Lw}
- Uw = Const(Lw)
- Iw(c) = c
- Iw(Pn) = {⟨c1, . . . , cn⟩ ∣ Pn(c1, . . . , cn) ∈ w}.

Lemma 8.4 (Existence lemma) Given a canonical modelM for Q○.MN, for any w ∈W ,
if ◇A ∈ w, then for any formula B ∈ Fma(L) there is a state z such that wRBz and A ∈ z.

The proof follows directly from Lemma 6.14 by Calardo and Rotolo (2014).

Lemma 8.5 (Truth Lemma) Given a canonical model ML = ⟨W,R,D,U, I⟩ for a quan-
tified N-Monotonic modal logic L extending Q○.MN, for any formula A ∈ Fma(L), for any
world w ∈W , the following holds: ⊧σw A(xi) ⇔ A(σ(xi)/xi) ∈ w.

Proof. By induction on the length of a formula A. We omit details of the induction base.
Suppose the length of A is n + 1 and A has the form ∃xB(x, y1, . . . , ym).
(i) ⊧σw ∃xB(x, y1, . . . , ym) iff for some x-variant τ of σ such that τ(x) ∈ Dw, ⊧τw
B(x, y1, . . . , ym). Suppose τ(x) = c. Since by assumption all constants are rigid designators,
by Lemma 4.7 it holds that ⊧σw B(c/x, y1, . . . , ym). Hence B(c/x,σ(y1), . . . , σ(ym)) ∈ w
by IH. Since w is Dw-universal, w is also Dw-existential by Lemma 6.4 and hence
∃xB(x,σ(y1), . . . , σ(ym)) ∈ w.

(ii) Assume ∃xB(x,σ(y1), . . . , σ(ym)) ∈ w. Since w is Dw-rich,
B(c/x,σ(y1), . . . , σ(ym)) ∈ w for some c ∈ Dw. Thus, by IH, ⊧σw B(c/x, y1, . . . , ym)
and, by Lemma 4.7 it holds that ⊧τw B(x, y1, . . . , ym) for some w-assignment τ which is an
x-variant of σ such that τ(x) = Iw(c) = c. Therefore ⊧σw ∃xB(x, y1, . . . , ym). If lg(A) = n+ 1
and A has the form ◻B, please refer to Lemma 48 (Truth Lemma) in (Calardo and Rotolo,
2014).

Lemma 8.6 Let ML ∶= ⟨W,R,D,U, I⟩ be a canonical model for a logic L ⊇ Q○.MN. If ∆ is
an L-consistent set of formulae, then for some w ∈W and some w-assignment σ, ML ⊧σw D
for any D ∈ ∆. (cf. Corsi, 2002, Lemma 1.19)).

Let L be any logic L ⊇ Q○.MN. Consider any formula A such that /⊢L A. Then {¬A}
is L-consistent. By Lemma 6.10 there is a world w of a canonical model ML for L and a
w-assignment σ such that ML /⊧σw A and hence ML /⊧ A.

Theorem 8.7 (Completeness of Q○.MN) The logic Q○.MN is strongly complete with re-
spect to the class of all multi-relational frames.
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8.2 Some Remarks on Identity

The completeness proof for a system without identity follows from the propositional results
(see Calardo and Rotolo, 2014) and from those stated by Corsi (2002). However, things
change radically when the identity symbol is included. As Corsi (2002) observes:

In a language with identity, the fact that constants are rigid designators can be
expressed by the schema:

(x = a)→ ◻(x = a)
Therefore (. . . ) all the systems of Q.M.L. with identity we are going to discuss
are bound to be systems with rigid terms. (Corsi, 2002, 1499)

However this ceases to be true in the broader framework of multi-relational semantics. In
fact if there is only one relation within a frame (the Kripkean case), the problem of rigidity
can be easily solved by stating that if two names denote the same individual in a world,
then this is bound to be the case in all accessible worlds. On the other hand, if interpreted
in the multi-relational case, this would only state that under some accessibility relation this
couple of names denote the same individual. This is obviously not enough. Our version of
the necessity of identity schema

NI ∶= ◻A ∧ (a = b)→ ◻(A ∧ (a = b))
says something more. It states that for any formula, i.e., semantically, for any relation, this
must hold. It is a restricted form of axiom C, which holds only for specific formulae, namely
identities. The same holds for the necessity of diversity, ND. The resulting system is still
a proper subset of K even though it includes a restricted version of the aggregation schema
C.

This may explain what happened in Lemma 6.8, in the construction of the set Γ1. In
the proof of Lemma 6.8, the set Γ0 is built to ensure the truth of modal formulae:

Γ0 ∶=

1. If ◻B ∈ w, then Γ0 ∶= {B} ∪ {A}
2. otherwise, Γ0 ∶= {A}.

This is not sufficient to preserve rigidity of denotation. However, it can be amended by
adding a further step in the construction:

Γ1 ∶= Γ0 ∪ {(a = b) ∣ (a = b) ∈ w}
This further step is necessary to keep rigidity of designation as well as the validity of axiom
NI. Moreover, the consistency of Γ1 is guaranteed by the presence of NI in the system.

This is even more obvious within the proof of Theorem 6.13, where we make an essential
use of identity formulae. In fact, when it comes to prove completeness results for systems
including CBF, if identity is not present, it is very difficult to denote the same individual
across different worlds. One may think about adding an existence predicate, but this would
be just a definite description in disguise. The standard way to introduce an existence
predicate is to add to the language a unary predicate symbol E whose extension, for any
world, is equal to the inner domain:

⊧σw E(x) if and only if σ(x) ∈Dw
This is clearly equivalent to state that E(a) is satisfied in a world if and only if the formula
∃x(x = a) holds. Hence, adding an existence predicate would make very little difference, if
not at all, on the technical level and would not take us any closer to proof completeness for
systems including CBF.
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9 Summary and Further Work

This paper provided a semantic study in multi-relational semantics of quantified N-Monotonic
modal logics with varying domains with and without the identity symbol (Q○

=.MN and
Q○.MN). We also identified conditions on frames to characterize Barcan and Ghilardi
schemata and presented some completeness results. The characterisation of BF and CBF
in multi-relational frames with varying domains has shown that BF and C are mutually
independent and that M does not imply the validity of CBF (M is an axiom of MN). This
fact was suggested for classical modal systems by Stolpe (2003) but unfortunately that work
used only models and not frames.

In detail, in this paper

- We provided a completeness result for Q○
=.MN;

- We provided a completeness results for Q○.MN;

- We proved the semantic equivalence for CBF and GF, and for BF and CGF;

- We provided frame characterisation results for both CBF, and BF;

- We provided a completeness result for Q○
=.MN⊕CBF⊕◻∃;

- We showed that Schema M does not entail CBF;

- We proved that schema C and BF are semantically independent.

Problems related to the completeness of non-normal systems, with and without identity,
that include BF, are still open and require a deeper analysis. In systems without identity,
this problem concerns both CBF and BF. Moreover, we see other important directions for
future research.

A preliminary question—which is out of scope for this paper—regards the general relation
between multi-relational and neighbourhood semantics. For propositional non-normal modal
logics the two semantics are equivalent (Governatori and Rotolo, 2005). However, it is not
obvious if they are still equivalent (in regard, e.g., to completeness and incompleteness
results) above K: Normal systems do not necessarily make Governatori and Rotolo (2005)’s
semantics collapse on Kripke’s. Regarding quantified modal logics, a full comparison of the
two semantics is anyway needed.

An immediate extension of the present work is to consider constant domains (FOL⊕MN).
It is definitely less trivial to adopt Governatori and Rotolo (2005)’s semantics and study
the open problem that Arló-Costa (2011) mentioned for FOL ⊕ E ⊕ CBF, as well as to
investigate other quantified (classical, monotonic, and regular) systems with constant and
varying domains.

Finally, a question concerning (Kracht and Wolter, 1999; Gasquet and Herzig, 1996)’s
proof that non-normal modal logics can be simulated by a normal modal logic with three
modalities. The key idea is to translate the neighbourhood models into Kripke models with
three suitable relations as well as the ◻-formulae into three-modality formulae. This result,
which holds for MN, is of great interest in the context of multi-relational semantics, whose
structures can in fact recall Kripke frames for multi-modal logics: indeed, ◻-formulae are
evaluated in multi-relational semantics by considering one existing relation among a set
of accessibility relations, a plurality of relations that occurs, too, in Kripke structures for
multi-modal logics. However, when predicate calculi are added to the propositional modal
base we can obtain unexpected interactions between Barcan schemata and modal axioms:
while for propositional multi-relational frame, one can easily adapt (Kracht and Wolter,
1999; Gasquet and Herzig, 1996)’s translation, it is not clear that the translation holds
for first-order extensions. Hence, extending Kracht and Wolter (1999)’s case to quantified
non-normal modal logics is an open question.
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