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The incidence of cutaneous melanoma (CM) has increased in the past few dec-

ades. The biology of melanoma is characterized by a complex interaction

between genetic, environmental and phenotypic factors. A greater understand-

ing of the molecular mechanisms that promote melanoma cell growth and dis-

semination is crucial to improve diagnosis, prognostication, and treatment of

CM. Both small and long non-coding RNAs (lncRNAs) have been identified

to play a role in melanoma biology; microRNA and lncRNA expression is

altered in transformed melanocytes and this in turn has functional effects on

cell proliferation, apoptosis, invasion, metastasis, and immune response.

Moreover, specific dysregulated ncRNAs were shown to have a diagnostic or

prognostic role in melanoma and to drive the establishment of drug resistance.

Here, we review the current literature on small and lncRNAs with a role in

melanoma, with the aim of putting into some order this complex jigsaw puzzle.

1. Clinical aspects of cutaneous
melanoma

The incidence of cutaneous melanoma (CM) has

increased in the past few decades. The worldwide high-

est incidence is reported in Australia (36–50/100 000

people). In Europe, the lowest incidence occurs in the

Southern and the highest in the Northern countries

(10–20 cases/100 000) (Arnold et al., 2014). CM

accounts for 3–5% of all cutaneous cancers. Most

cases of CM are diagnosed at an early stage and are

curable with surgical excision. On the other hand, the

diagnosis of an advanced CM represents a therapeutic

challenge, due to the low sensitivity to chemotherapy

demonstrated by this tumor (Viros et al., 2008).

The 5-year survival for CM is 91% overall. Patients

with early-stage disease have a 5-year survival rate of

about 98%, but this rate drastically decreases when

regional or distant metastases are present, ranging

from 63% to 16%, respectively (Box and Terzian,

2008; Haferkamp et al., 2009; McKenzie et al., 2010).

The pathogenesis of CM is complex and includes

genetic, environmental (UV radiation exposure) and

phenotypic factors (fair phototypes, multiple nevi, pos-

itive family history for melanoma). Studies on germ-

line mutations focusing on the cyclin-dependent kinase
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inhibitor 2A (CDKN2A), have shown mutations in

5–15% of familial cases affected by CM. Other suscep-

tibility genes include MITF, CDK4, POT1, ACD,

TERF2IP, BAP1 and TERT promoter (van Dijk et al.,

2005; Garrido and Bastian, 2010; Hacker et al., 2010;

Jovanovic et al., 2010; Soura et al., 2016). Neverthe-

less, the majority of melanomas are non-familial and

sporadic. For these patients, the recognition of the

orchestra of genetic and epigenetic regulatory mecha-

nisms involved in the development and progression of

melanoma has permitted in the last two decades an

improvement in the clinical management of patients

affected by metastatic disease. Indeed, the knowledge

of genetic alterations in primary and metastatic tumors

has offered clinically actionable targets.

Cutaneous melanoma has one of the highest geno-

mic mutational burdens (number of mutations per

megabase) among human cancers (Chalmers et al.,

2017). This is specifically true for the cutaneous sub-

type and not acral or mucosal subtypes, because of the

effect of UV exposure. Recently, the landscape of

genomic alterations characterizing human cancers has

been made available through The Cancer Genome

Atlas (TCGA) project. In the context of this project,

333 samples of primary and metastatic cutaneous mel-

anoma (SKCM) were analyzed by Whole Exome

Sequencing and classified into four main genomic sub-

types: mutant BRAF, mutant NRAS, mutant neurofi-

bromatosis type 1 (NF1) and triple-wild-type (Cancer

Genome Atlas, 2015). In 2017, a more detailed analy-

sis of whole genome alterations of 183 melanoma sam-

ples reported BRAF, CDNK2A, NRAS and TP53 as

the most frequently mutated genes in CM (Hayward

et al., 2017). When copy number variations were

included in this classification, CM was characterized

by dysregulation in the following signaling pathways:

MAPK in 92% of the samples, PI3K in 56%, RTKs

in 48%, Histone modification in 48%, Cell cycle in

40%, SWI/SNF in 38%, TP53 in 37% and WNT in

29%. In Fig. 1, we present a picture of the most sig-

nificantly mutated genes in melanoma, obtained using

TCGA SKCM samples.

MAPK pathway members include RAS, RAF,

MEK and ERK. The main function of the MAPK

pathway is to transfer extracellular signals from the

cell membrane to the nucleus, using protein phospho-

rylation, finally promoting cell proliferation (van Dijk

et al., 2005; Jovanovic et al., 2010; Mishra et al., 2010;

Takata and Saida, 2006). Understanding of this path-

way is hindered by the presence of multiple isoforms

of the RAS, RAF, MEK and ERK proteins, which

have different functions and whose specific regulatory

aspects are yet not fully understood.

The RAF family consists of A-RAF, BRAF and

C-RAF, which are protein kinases frequently mutated

in cancer. BRAF gene mutations are found in 52% of

melanomas (Cancer Genome Atlas Network, 2015),

and 90% of those mutations are a single nucleotide

alteration (nucleotide 1799 T>A), resulting in substitu-

tion of glutamic acid for valine (BRAFV600E)

(Ascierto et al., 2012). This mutation causes the consti-

tutive activation of the kinase and also insensitivity to

negative feedback mechanisms, finally promoting

angiogenesis (via HIFa and VEGF activation), apop-

tosis evasion, invasion and metastasis (Maurer et al.,

2011). BRAFV600E also regulates interleukin (IL)-8,

which promotes the adhesion of melanocytes to the

vasculature, thereby helping to promote metastases

(Singh et al., 1994). In addition, BRAF mutations have

been also detected in typical and atypical melanocytic

nevi. In nevi, BRAF mutations initially trigger growth

in lesions that will eventually stop proliferating and

remain benign (Michaloglou et al., 2005). This onco-

gene-induced senescence is theorized to occur in the

82% of melanocytic nevi with BRAF mutations (Waja-

peyee et al., 2008). A second mutation causing the loss

of a tumor-suppressor gene or causing a second muta-

tion could cause a transition from ‘benign’ BRAF-

mutated nevi to malignant melanoma (Arkenau et al.,

2011; Jovanovic et al., 2010; McKenzie et al., 2010;

Michaloglou et al., 2005).

The RAS family of proteins contains N-RAS, K-

RAS and H-RAS. NRAS mutations have been found

in 28% of melanomas (Cancer Genome Atlas Net-

work, 2015), mostly occurring on chronically sun-

exposed skin (van Dijk et al., 2005; Dong et al., 2003;

Jovanovic et al., 2010). Most mutations in NRAS

occur at codon 61 and make the protein constitutively

active. Mouse models have revealed a requirement for

concurrent loss of CDKN2A/p16, a tumor-suppressor

gene, to develop melanoma (Dong et al., 2003). NRAS

mutations are mutually exclusive with BRAF muta-

tions with very rare exceptions (van Dijk et al., 2005).

KRAS and HRAS mutations have been found respec-

tively in 2% and 1% of CM.

MEK1 and 2 are protein kinases that are down-

stream of BRAF. MEK is active in 30% of all cancers.

Inhibitors for the protein have been developed as ther-

apeutic targets for BRAF-mutated melanomas

(McKenzie et al., 2010).

ERK1 and 2 are the only proteins downstream of

MEK. They phosphorylate microphthalmia-associated

transcriptional factor (MITF), which regulates melano-

cyte differentiation. ERK activation has been reported

in melanoma, and activated ERKs are present at lower

levels in the melanocytes of normal-appearing skin.
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In the last few years, the detection of somatic muta-

tions, the development of target therapies, and the

introduction of immune checkpoint inhibitors have led

to important therapeutic advances for melanoma

patients (Kirchberger et al., 2018).

The first targeted therapy to be introduced was

monotherapy with BRAF inhibitors such as vemu-

rafenib or dabrafenib for the treatment of advanced

BRAF-mutant melanoma (Martin-Liberal and Larkin,

2015). These drugs improve the outcome of patients with

advanced BRAF V600-mutant melanoma, with a high

rate of tumor response and improvement in progression-

free survival and overall survival compared with stan-

dard cytotoxic chemotherapy. Nonetheless, the acquired

resistance to BRAF inhibitor monotherapy represents

the most common cause of treatment failure, due to the

reactivation of MAPK pathway through MEK.

MEK inhibitors were than introduced in combina-

tion with BRAF-targeted therapy, demonstrating bene-

fits in randomized clinical trials, not solely attenuating

the development of resistance but also improving pro-

gression-free survival and overall survival with respect

to BRAF inhibitors alone (Long et al., 2014; Mai

et al., 2015; Spagnolo et al., 2014).

Recently, immunotherapy with checkpoint inhibitors

targeting cytotoxic T lymphocyte-associated antigen 4,

CTLA-4 (ipilimumab) and programmed death 1, PD-1

(pembrolizumab and nivolumab) have also been demon-

strated to provide durable effects in metastatic mela-

noma, which improved when combined together (Larkin

et al., 2015; Weber et al., 2017; Wolchok et al., 2017).

Future investigations are needed to better compre-

hend the mechanism of primary or secondary resis-

tance to immune checkpoint inhibitors and targeted

therapies. This could be avoided by targeting other

players in the tumor microenvironment or acting on

other dysregulated molecules inside the tumor cell,

including non-coding RNAs (ncRNAs).

2. Non-coding RNA dysregulation in
cancer

In the past two decades, dysregulated expression of

small ncRNAs, including microRNAs (miRNAs), and

lncRNAs has been reported in many, if not all, tumor

types. The relevance of ncRNA in cancer development

is becoming clearer with every passing day: ncRNAs

constitute an additional layer of complexity in the cel-

lular regulatory machinery and their alteration is a

well-established driver of cancer in addition to genetic,

epigenetic and protein-coding gene expression dysregu-

lation. Much effort has focused on identifying which

ncRNA molecules are altered in each cancer type,

including melanoma.

The ENCODE project revealed that 80% of the

human genome is biochemically functional (Djebali

et al., 2012). Non-coding transcripts constitute the

majority of RNA molecules generated from the active

genome, making up 97% of the transcriptome (Moraes

and Goes, 2016). The exact type, role and function of

all non-coding transcripts is still under evaluation,

although some ncRNA classes have been better studied

than others. Among the small ncRNAs (size < 200 nt),

the most studied are undoubtedly miRNAs. It is well

known that human miRNAs can actively regulate pro-

tein-coding gene transcription by binding to the 30-
UTR of target mRNAs, therefore inducing their degra-

dation or blocking their transcription. We also know

that lncRNAs fulfil a series of regulatory functions in

the cell, including organization of nuclear architecture,

recruitment of chromatin-modifying proteins, modula-

tion of protein–DNA binding, and regulation of

mRNA stability and translation (Paralkar and Weiss,

2013; Rutenberg-Schoenberg et al., 2016; Tan and Mar-

ques, 2014; Tan et al., 2014; Vance and Ponting, 2014).

In 2012, thousands of circular RNAs (circRNAs)

were discovered (Salzman et al., 2012). circular RNAs

are particularly stable and resistant to RNA degrada-

tion and act as very powerful ‘miRNA sponges’.

According to the competing endogenous RNAs

hypothesis, any RNA molecule can potentially regulate

the level of multiple transcripts by subtracting miR-

NAs from other RNAs that share the same miRNA

responsive element (Salmena et al., 2011). Starting

from this scenario, we can only begin to imagine how

complex the interactions between coding and non-cod-

ing RNAs could be. Indeed, dysregulated lncRNAs

could indirectly modulate mRNA levels by competing

for miRNA targeting the same gene, thus altering pro-

tein localization and function.

In this review, we cover the state-of-the-art research

on ncRNAs in melanoma by presenting and discussing

Fig. 1. Plot of significantly mutated genes from the MUTSIG2.0 computational analysis of whole-exome sequencing data from a SKCM TCGA

cohort obtained from the Firebrowse website (Cancer Genome Atlas Research, 2011). Genes are ordered by level of significance (q value at

right). At left is the prevalence of each mutation in the sample set. The top graph shows the number of mutations per sample, subclassified

as synonymous (Syn) and non-synonymous (Non syn). The bottom plots show the distribution of allelic fraction of mutations for each

sample and the frequency of the different types of genetic alterations.
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all the most relevant studies published from 2008 to

2018.

2.1. MicroRNA dysregulation in melanoma

Since the discovery of miRNAs, several studies have

reported miRNA dysregulation in human cancers,

including melanoma (Hanniford et al., 2015; Howell

et al., 2010; Kozubek et al., 2013; Mueller et al., 2009;

Philippidou et al., 2010; Stark et al., 2010). Depending

on the targets they regulate and the tissue where they

are expressed, miRNAs can have oncogenic or tumor-

suppressive roles. Oncogenic miRNAs, known as

oncomiRs, target and downregulate tumor-suppressor

genes. On the other hand, some miRNAs can have a

protective role downregulating genes associated with

growth and metastasis. An imbalance of these two

types of miRNA, specifically upregulation of onco-

miRs and downregulation of tumor-suppressor miR-

NAs, affects tumor development and progression

(Negrini et al., 2007; Zhang et al., 2007).

For a better understanding of the functional role of

miRNAs in melanoma, we organized the main experi-

mental discoveries according to the cancer hallmark

that is influenced by the miRNA. These results are

summarized in Table 1.

As a technical note, we would like to emphasize that

given the changes in mature miRNA naming that have

occurred over the years (see miRBase database http://

www.mirbase.org/help/nomenclature.shtml, Ambros

et al., 2003), it was sometimes difficult to determine the

identity of mature miRNAs in certain research articles,

especially after the broader introduction of the �3p

and �5p suffixes convention for mature miRNA nam-

ing as a substitute for the star (*) symbol for the less

predominant form. Here, we decided to use theoriginal

name of the mature miRNA, as used in the reference

paper, but we provided an MIRBASE v.22 update name

in the Tables. An MIRBASE TRACKER tool was used for

miRNA name conversion (Van Peer et al., 2014).

2.1.1. MicroRNAs involved in melanoma biology

Microphthalmia-associated transcription factor

(MITF) is the leading regulator of melanocyte devel-

opment, survival and function (Levy et al., 2006). In

melanoma, it was observed that MITF is both regu-

lated by and regulates miRNAs.

The most cancer-specific dysregulated miRNA in

melanoma is miR-211-5p, which is indeed transcribed

by MITF together with its host gene, melastatin

(TRPM1), in human melanocytes. Several studies

demonstrated that miR-211 is one of the most

differentially expressed miRNAs between melanoma

cell lines and normal human melanocytes (Levy et al.,

2010; Mazar et al., 2010; Xu et al., 2012). In primary

melanoma, miR-211 is downregulated, and it is down-

regulated even further in malignant melanoma.

TRPM1/miR-211 levels are frequently downregulated

or lost during the transition from nevi to primary mela-

noma, and high TRPM1 levels correlate with longer

disease-free survival in primary melanoma patients

(Hammock et al., 2006). MicroRNA is also involved in

the regulation of cellular adhesion through the upregu-

lation of NUAK1 (Bell et al., 2014). Overexpression of

miR-211 results in an increase in pigmentation via an

increase in the total number of melanosomes and

potentiates the pigmentation induced by vemurafenib

by increasing the number of heavily pigmented stage IV

melanosomes. The role of miR-211 in melanotic mela-

noma cells is to contribute to a ‘normalization pro-

gram’ activated by the inhibition of the ERK pathway:

the resulting de-repression of MITF promotes a switch

from glycolysis to oxidative phosphorylation involving

PGC1alpha and mitochondrial biogenesis. This induces

a more differentiated phenotype mediated by TRPM1/

miR-211 and the melanin biosynthetic pathway

(Vitiello et al., 2017).

It was observed that MITF is also regulated by

miRNAs such as miR-182 and miR-137 which directly

target MITF, leading to extracellular matrix degrada-

tion and, consequently, tumor cell migration and inva-

sion (Bemis et al., 2008; Segura et al., 2009).

2.1.2. MicroRNAs involved in cell proliferation

Melanoma cell proliferation can be influenced by miR-

NAs; in fact the dysregulation of some miRNAs can

sustain and induce proliferative signals or repress

growth-suppressive pathways, thereby promoting mela-

noma carcinogenesis. Moreover, miRNAs can affect

proliferation by regulating proteins involved in the cel-

lular cycle.

One of the miRNAs involved in melanoma cell pro-

liferation is miR-21-5p (formerly miR-21). The miR-

21-5p is upregulated in melanoma cell lines relative to

melanocytes (Satzger et al., 2012), and in primary mel-

anoma compared with benign nevi (Grignol et al.,

2011). Upregulation of this miRNA is present in pri-

mary lesions with histological atypia and mitotic activ-

ity (Grignol et al., 2011). In addition, miR-21-5p is

upregulated in metastatic melanoma compared with

primary melanoma (Jiang et al., 2012). Increased

expression of miR-21-5p affects proliferation, migra-

tion and apoptosis. Knockdown of miR-21-5p in mela-

noma cell lines reduces cell proliferation and
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Table 1. MicroRNAs (miRNAs) dysregulated in human cutaneous melanoma and classified according to their main function in tumor cells.

miRNAa

Expression in melanoma vs.

normal melanocytes Target gene(s)

Reference(s) on target

gene regulation

Melanoma biology

211-5p Downregulated MITF/TRPM1 Hammock et al. (2006)

Downregulated NUAK1 Bell et al. (2014)

Downregulated ERK Vitiello et al. (2017)

182-5p, 137 Upregulated, not-specified MITF Bemis et al. (2008), Segura et al. (2009)

Cell proliferation and cycle

21-5p Upregulated PDCD4, PTEN, BTG2 Yang et al. (2011)

155-5p Upregulated SKI Levati et al. (2011)

135a-5p Upregulated FOXO1 Ren et al. (2015)

145-5p Downregulated c-MYC Noguchi et al. (2012a)

125b-5p Downregulated Nyholm et al. (2014)

Let-7 family Downregulated Rb Schultz et al. (2008)

206 Downregulated CDK4, CCND1, Cyclin C Georgantas et al. (2014)

193b-3p Downregulated CCND1 Chen et al. (2010)

137 Downregulated c-Met, YB1, MITF, EZH2 Luo et al. (2013b)

365a-3p Downregulated CCND1 Zhu et al. (2018)

101-3p Downregulated MITF, EZH2 Luo et al. (2013a)

205-5p Downregulated ZEB2 Liu et al. (2012b)

Downregulated E2F1, E2F5 Dar et al. (2011)

203a-3p Downregulated BMI1 Chang et al. (2015)

Downregulated E2F3a, E2F3b Noguchi et al. (2012b)

126-3p, 126-5p Downregulated ADAM9, MMP7 Felli et al. (2013)

194-5p Downregulated PI3K/AKT/FoxO3a Bai et al. (2017)

Downregulated GEF-H1 Guo et al. (2016b)

485-5p Downregulated FZD7 Wu et al. (2017)

136-5p Downregulated PMEL Wang et al. (2017b)

31-5p Downregulated PI3K/AKT Zheng et al. (2018)

Apoptosis

18b-5p Downregulated MDM2 Dar et al. (2013)

638 Upregulated TP53INP2 Bhattacharya et al. (2015)

21-5p Upregulated PDCD4, PTEN, BTG2 Yang et al. (2011)

Upregulated PTEN, BCL-2, pAKT Syed et al. (2013)

4286 Upregulated FPGS, RRN3, APLN, GPR 55,

HMGA1

Komina et al. (2016)

15b-5p Upregulated Caspase 3 and 7 and Annexin V Satzger et al. (2010)

125b-5p Downregulated Glud et al. (2010), Holst et al. (2011),

Nyholm et al. (2014)

205-5p Downregulated E2F1, RB Dar et al. (2011)

26a-5p Downregulated SODD Reuland et al. (2013)

Invasion and metastasis

150-5p Upregulated MYB, EGR2, NOTCH3, cytokine

signaling cascade

Fleming et al. (2015), Howard et al.

(2013), Kunz (2013)

211-5p Downregulated TGFB Levy et al. (2010)

Downregulated BRN2 Boyle et al. (2011)

Downregulated KCNMA1 Mazar et al. (2010)

101-5p Downregulated MITF, EXH2 Luo et al. (2013a)

200c-3p Upregulated MARCKS Elson-Schwab et al. (2010)

203a-3p Downregulation BMI1 Chang et al. (2015)

9-5p Downregulation SNAI1, NF-jB1, E-cadherin Liu et al. (2012a)

182-5p Upregulated FOXO3, MITF Segura et al. (2009)

21-5p Upregulated TIMP3 Martin del Campo et al. (2015), Yang

et al. (2011)

Let-7a-5p Downregulated NRAS, integrin b3 Muller and Bosserhoff (2008)

34a-5p Downregulated P53 Yamazaki et al. (2012)
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migration, and promotes apoptosis by increasing the

expression of programmed cell death 4 (PDCD4),

phosphate and tensin homolog (PTEN) and BTG fam-

ily member 2 (BTG2) (Yang et al., 2011).

Upregulation of miR-155 occurs in primary mela-

noma compared with benign nevi (Grignol et al.,

2011), in melanoma with positive sentinel lymph node

biopsy compared with negative sentinel biopsy (Grig-

nol et al., 2011), and in primary melanoma and meta-

static melanoma compared with benign nevi

(Philippidou et al., 2010; Segura et al., 2010). Contrary

to what might be expected, in vitro experiments

demonstrated that overexpression of miR-155 results

in inhibition of cellular proliferation and promotion of

apoptosis (Levati et al., 2009) through targeting of v-

ski avian sarcoma viral oncogene homolog (SKI;

Levati et al., 2011).

A study has found that miR-135a, which promotes

cell proliferation and the cell cycle, is upregulated in

malignant melanoma tissue and cell lines. It was

observed that ectopic expression of miR-135a inhibits

Forkhead box protein O1 (FOXO1) protein, leading

to an upregulation of Cyclin D1 (CCND1) and down-

regulation of P21Cip1 and P27Kip1 through the AKT

pathway (Ren et al., 2015).

Conversely, there are miRNAs that act as tumor sup-

pressors and whose downregulation in cancer cells

increases the proliferation rate: miR-145, miR-125b and

miR-206. Of these, miR-145 is dysregulated in many

solid tumors and is also downregulated in melanoma. In

melanoma cell lines, it was observed that ectopic expres-

sion of miR-145 inhibits cell growth by targeting c-

MYC (Noguchi et al., 2012a). In melanoma, miR-125b

is downregulated compared with normal skin (Holst

et al., 2011). This downregulation was also demon-

strated in melanoma cell lines relative to human epider-

mal melanocytes (Kappelmann et al., 2013; Zhang

et al., 2014), in atypical nevi in comparison with com-

mon nevi (Holst et al., 2011) and in melanoma with

lymph node involvement (N+) compared with mela-

noma without lymph node involvement (N0) (Glud

et al., 2010). Experimentally, the overexpression of

miR-125b in melanoma cell line (Mel-Juso) resulted in

decreased proliferation and cell cycle arrest (Nyholm

et al., 2014). A significant downregulation of miR-206

was found in melanoma cells compared with normal

melanocytes. This miRNA targets cyclin-dependent

kinase 4 (CDK4), cyclin D1 (CCND1) and cyclin C,

and transfection of miR-206 induces G1 arrest in multi-

ple melanoma cell lines (Georgantas et al., 2014).

An important miRNA family that controls cell pro-

liferation is the let-7 family. The expression of let-7a,

let-7b and let-7d is significantly decreased in melanocy-

tic nevi compared with primary melanoma (Schultz

Table 1. (Continued).

miRNAa

Expression in melanoma vs.

normal melanocytes Target gene(s)

Reference(s) on target

gene regulation

Downregulated FLOT2 Liu et al. (2015b)

365a-3p Downregulated NPL1 Bai et al. (2015)

7-5p Downregulated IRS-2/Akt Giles et al. (2013)

125b-5p Downregulated c-Jun Kappelmann et al. (2013)

Downregulated MLK3, MMK7 Zhang et al. (2014)

542-3p Downregulated PIM1 Rang et al. (2016)

124-3p Downregulated RLIP76 Zhang et al. (2016)

625-5p Downregulated SOX2 Fang et al. (2017)

153-3p Downregulated SNAI1 Zeng et al. (2017)

137 Downregulated MITF, c-Met, YB-1, EZH2 Luo et al. (2013b)

339-3p Downregulated MCL1 Weber et al. (2016)

214-3p Upregulated ITGA5, ALCAM Orso et al. (2016)

148b-3p Downregulated

Immune response

210-3p Downregulated PTPN1, HOXA1, TP53I11 Noman et al. (2012)

30b-5p/30d-5p Upregulated GALNT7 Gaziel-Sovran et al. (2011)

17-5p Downregulated STAT3 Li et al. (2014a)

34a/c-5p Downregulated ULBP2 Heinemann et al. (2012)

21-5p, 29a-3p, 142-

3p, 223-3p

Upregulated CSF1-ETS2 Mathsyaraja et al. (2015)

34a/c-5p, 499a/c Downregulated ULBP2 Heinemann et al. (2012)

28-5p Downregulated TIM3, BTLA, PD-1 Li et al. (2016)

a MicroRNA names are updated to MIRBASE release 22 (March 2018).
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et al., 2008). The overexpression of miR-let-7b in mel-

anoma cell lines decreased expression of cyclins D1,

D3 and A, which are important for blocking the

tumor-suppressor retinoblastoma protein (Rb) and

promoting proliferation in melanoma (Schultz et al.,

2008).

The expression of miR-193b was found to be 3.4-

fold lower in metastatic melanoma than in benign

nevi. It was also observed that overexpression of miR-

193b in melanoma cell lines inhibits proliferation. In

addition, it was demonstrated that miR-193b directly

targets CCND1 (Chen et al., 2010). It was suggested

that dysregulation of this miRNA may contribute to

melanoma progression. Similarly, miR-137 is involved

in the regulation of cell proliferation and is downregu-

lated in melanoma cell lines from a stage IV patient

compared with normal human melanocytes. It was

demonstrated that miR-137 inhibits proliferation medi-

ated by tyrosine-protein kinase Met (c-Met), Y box

binding protein 1 (YB1), MITF, and enhancer of zeste

homolog 2 (EZH2) (Luo et al., 2013a). The expression

of miR-365 is lower in melanoma cells than in normal

melanocytes, and it was observed that overexpression

of miR-365 inhibits proliferation and induces cell cycle

arrest via inhibition of its targets, CCND1 and BCL2

(Zhu et al., 2018).

A study analyzed miR-101 expression in melanoma

cell lines from stage IV melanoma patients who had

different survival times. The results suggest that sur-

vival might be favored by high levels of miR-101. In

fact, it was demonstrated that miR-101 inhibits prolif-

eration through the downregulation of MITF and

EZH2 (Luo et al., 2013a). Despite this observation,

miR-101 is not considered to be a classical tumor sup-

pressor because of its low expression in human mela-

nocytes (NHEM).

In addition to miR-211, there is a group of miR-

NAs, namely, miR-203, -204 and -205, which show

skin-specific expression. All of these miRNAs have

been found to be dysregulated in melanoma. Specifi-

cally, miR-205 is downregulated in metastatic and pri-

mary melanomas compared with benign nevi (Xu

et al., 2012). This finding was confirmed by Hanna

et al. (2012), who also demonstrated that miR-205

downregulation is associated with worse clinical out-

come. Overexpression of miR-205 in cell lines reduced

anchorage-independent colony formation, thereby

reducing survival capability (Franken et al., 2006; Liu

et al., 2012b), and is also correlated with zinc-finger

E-box binding homeobox 2 (ZEB2) downregulation,

E-cadherin upregulation (Liu et al., 2012b) and sup-

pression of cell proliferation via E2F1 and E2F5

targeting (Dar et al., 2011).

Both miR-203 and 126/126* were found to be down-

regulated in melanoma, in particular in metastatic mel-

anoma. Specifically, the downregulation of miR-203

was inversely correlated with B lymphoma Mo-MLV

insertion region 1 homolog (BMI1) levels. It was

demonstrated that miR-203 inhibits the proliferation

by targeting BMI1, thereby reducing invasion and

tumor sphere formation (Chang et al., 2015). In addi-

tion, it was observed that ectopic expression of miR-

203 in melanoma cells reduced the expression of

E2F3a and E2F3b, leading to the inhibition of cell

growth and induction of cell cycle arrest and senes-

cence (Noguchi et al., 2012b). It was experimentally

demonstrated that restored expression of miR-126/

126* reduces cell proliferation, invasion in vitro, and

melanoma growth and dissemination in vivo. The

opposite effect was observed when miR-126/126* were

silenced, probably due to their direct action on two

metalloproteases, namely ADAM9 and MMP7, which

play a pivotal role in melanoma progression (Felli

et al., 2013).

Another miRNA with a tumor suppressor role in

melanoma is miR-194. It was observed that the over-

expression of miR-194 inhibits cell proliferation

through the PI3K/AKT/FoxO3a signaling pathway

(Bai et al., 2017). In addition, another study observed

that the inhibition of proliferation by miR-194 can be

due to the negative regulation of Rho guanine nucleo-

tide exchange factor 2 (GEF-H1) (Guo et al., 2016b).

They also observed a negative association between

miR-194 expression and TNM stages.

There was significant downregulation of miR-485-5p

in melanoma tissue and cell lines compared with corre-

sponding controls. It was observed that the overex-

pression of miR-485-5p inhibits proliferation and

invasion mediated by the downregulation of Frizzled7

(FZD7), indicating a role of miR-485-5p in the regula-

tion of Wnt signaling (Wu et al., 2017).

Another miRNA linked to the Wnt pathway is miR-

136. The expression level of miR-136 is decreased in

mouse melanoma cells and is linked to the progression

of melanoma. It was observed that miR-136 acts as a

tumor suppressor by inhibiting proliferation, migration

and invasion, and promoting apoptosis. The action of

miR-136 is mediated by the inhibition of preme-

lanosome protein (PMEL), resulting in the downregula-

tion of the Wnt signaling pathway (Wang et al., 2017b).

Most of the functional studies on the role of miR-

NAs in melanoma were performed using melanoma

cell lines in vitro. There are a few recent studies that

used miRNA mimics or anti-miRNA molecules to

treat melanoma in vivo. All of them were based on the

use of melanoma-derived cells that were injected into
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immunocompromised mice. No in vivo miRNA study

has yet been performed using genetically engineered

mouse models of melanoma (Perez-Guijarro et al.,

2017) or patient-derived xenografts (PDX) (Yan et al.,

2018).

Zheng et al. (2018) found that overexpression of

SOX10 promoted melanoma cell proliferation and

chemotherapy resistance both in vitro and in vivo, and

was associated with poor overall survival. They also

demonstrated that miR-31 could regulate tumor cell

growth and chemosensitivity of melanoma cells by

suppressing SOX10. The miR-31–SOX10 axis mediates

tumor growth and drug resistance through activation

of the PI3K/AKT signaling pathway.

2.1.3. MicroRNAs involved in apoptosis

Uncontrolled cell growth involves the loss of control of

apoptosis. Certain proteins, including BCL2 and

BCL2-like 1, have anti-apoptotic roles and can be the

target of specific miRNAs. Furthermore, p53 activity is

positively and negatively regulated by specific miRNAs

(Feng et al., 2011; Liu et al., 2017). One of them is

miR-18b, which upregulates p53 by downregulating

mouse double minute 2 homolog (MDM2); miR-18b

was found to be downregulated in melanoma compared

with benign nevi and its downregulation was responsi-

ble for decreased p53 activity (Dar et al., 2013).

Overexpression of miR-638 is reported in metastatic

lesions compared with primary melanomas; it down-

regulates the TP53INP2 oncosuppressor and thereby

protects melanoma cells from apoptosis and autophagy

(Bhattacharya et al., 2015).

There are many miRNAs already known to be

involved in the control of proliferation and cell cycle

that also affect apoptosis. One of them is the oncomiR

miR-21 (Yang et al., 2011). Jiang et al. (2012) reported

upregulation of PTEN upon miR-21 inhibition, and

also observed changes in B-cell lymphoma 2 (BCL-2)

and phosphorylated RAC-alpha serine/threonine-pro-

tein kinase (pAKT). Furthermore, miR-21-5p expres-

sion can be induced by UV irradiation in human

keratinocytes (Syed et al., 2013).

Compared with benign melanocytes, melanoma exhi-

bits upregulated expression of miR-4286, which pro-

motes proliferation and protects from apoptosis. The

use of miR-4286 inhibitors leads to the alteration of

miR-4286 targets that are implicated in proliferation

and apoptosis pathways: folylpolyglutamate synthase

(FPGS), RNA polymerase I-specific transcription initi-

ation factor (RRN3), apelin (APLN), G-protein-

coupled receptor 55 (GPR 55) and high-mobility group

A1 protein (HMGA1) (Komina et al., 2016).

A significant upregulation of miR-15b is seen in

melanoma compared with melanocytic nevi. High

expression of miR-15b is correlated with worse sur-

vival. Downregulation of miR-15b inhibits cell prolif-

eration and promotes apoptosis. It was observed that

high levels of miR-15b are associated with an increase

of caspase 3 and 7, and annexin V, whereas Bcl-2 was

not induced. This suggests that miR-15b may promote

apoptosis independently of Bcl-2 in melanoma cells

(Satzger et al., 2010).

In addition to the earlier described role in cell prolif-

eration, miR-125b can also affect senescence and

apoptosis. In fact, miR-125b-transfected cells showed

increased levels of p27, p53 and p21, and consequently

induced senescence (Nyholm et al., 2014).

The miRNA miR-205 is considered a tumor sup-

pressor for promoting apoptosis: Dar et al. (2011) sug-

gested that the downregulation of miR-205 in

metastatic melanomas may lead to the activation of

E2F transcription factor 1 (E2F1) and the inhibition

of Rb.

Reuland et al. (2013) studied the role of miR-26a in

melanoma: they observed downregulation of this

miRNA in melanoma cells compared with normal mel-

anocytes. In addition, the replacement of miR-26a pro-

moted cell death by targeting directly the anti-

apoptotic protein silencer of death domains (SODD)

(Reuland et al., 2013).

2.1.4. MicroRNAs involved in invasion and metastasis

For the development of metastasis, it is necessary for

the tumor to acquire the capacity to migrate and go

through a de-differentiation program called epithelial-

mesenchymal transition (EMT).

The upregulation of miR-150, observed in primary

and metastatic melanoma in comparison with congeni-

tal nevi (Segura et al., 2010), was implicated in cellular

proliferation and cellular migration (Howard et al.,

2013; Walker et al., 1998) through the activity of miR-

150 on targets such as v-myb avian myeloblastosis viral

oncogene homolog (MYB), early growth response 2

(EGR2) and neurogenic locus notch homolog protein 3

(NOTCH3), as well as on immune system-related genes,

cytokine signaling cascades and G-proteins (Fleming

et al., 2015; Howard et al., 2013; Kunz, 2013).

It has been reported that reducing miR-211 expres-

sion using a miR-211 specific ‘antagomir’ enhanced

melanoma invasiveness 10-fold. Conversely, overex-

pression of miR-211 decreased the invasive potential

of melanoma cells, but did not change the growth rate

(Levy et al., 2010). The miR-211 caused reduced

expression of transforming growth factor beta (TGFb),
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which furthered invasion and melanoma metastasis

(Levy et al., 2010). Overexpression of miR-211 can

also result in decreased expression of brain-specific

homeobox/POU domain protein (BRN2) (Boyle et al.,

2011) and ion channel KCNMA1 (Mazar et al., 2010),

the upregulation of which is associated with increased

cellular invasion in melanoma and other cancers.

In addition to its involvement in proliferation, miR-

101 inhibits the invasion of melanoma cells, likely due

to the downregulation of its target MITF and EXH2

genes (Luo et al., 2013a).

The miR-200 family plays an important role in

cancer migration. The expression of the miR-200

family is upregulated in melanoma and promotes

tumor cell migration. In particular, the transfection

of miR-200c in melanoma cells induces an ameboid-

like invasion mode, with the cells assuming a round

cell-body phenotype. It was suggested that the effect

could be due to the downregulation of MARCKS,

which is important for the formation of cell protru-

sions. On the other hand, miR-200a promotes the

protrusion-associated elongated invasion mode

because it reduces actomyosin contractility, which is

a feature of a rounded phenotype (Elson-Schwab

et al., 2010).

In melanoma, miR-203 is downregulated and conse-

quently its target BMI1 is upregulated. It was observed

that overexpression of miR-203, in addition to sup-

pressing proliferation, leads to the inhibition of the

invasiveness in melanoma (Chang et al., 2015).

Low expression levels of miR-9 were seen in meta-

static melanoma compared with primary melanoma. In

melanoma, miR-9 acts as a tumor suppressor. Its role

consists in metastasis inhibition by the downregulation

of Zinc-finger protein SNAI1 (Snail1) and nuclear fac-

tor kappa-light-chain-enhancer of activated B cells

(NF-jB1) and by upregulation of E-cadherin (Liu

et al., 2012a).

In melanoma cell lines, miR-182 was found upregu-

lated and its overexpression promoted metastasis by

repressing FOXO3 and MITF (Segura et al., 2009).

It was demonstrated that miR-21 upregulation pro-

motes invasiveness through the downregulation of the

tissue inhibitor of metalloproteinase-3 (TIMP3) (Mar-

tin del Campo et al., 2015; Yang et al., 2011). In this

study, mice treated with anti-miR-21 molecules showed

a significant reduction of TIMP3 expression and tumor

growth and invasiveness.

It has been reported that let-7a is downregulated in

melanoma cells compared with melanocytes (Muller

and Bosserhoff, 2008). Moreover, this miRNA targets

neuroblastoma RAS viral oncogenes homolog (NRAS)

and human integrin b3, which have a well-documented

role in melanoma progression and invasion. The

amount of let-7a has been linked to upregulation of

integrin b3 in melanoma cells (as shown by transient

in vitro overexpression and luciferase assays), indicat-

ing that this miRNA has a tumor-suppressive role in

melanoma (Muller and Bosserhoff, 2008).

The miR-34a is part of the miR-34 family (miR-34a/

b/c) that is regulated by p53. In human melanoma cell

lines, the overexpression of the miR-34 family inhibits

the growth and invasion of cells expressing wild-type

p53 gene (Yamazaki et al., 2012). There is significant

downregulation of miR-34a in metastatic melanoma

compared with in situ melanoma, nevi and normal

melanocytes. The high expression of miR-34a also

inhibits proliferation and metastasis by targeting flotil-

lin 2 (FLOT2) (Liu et al., 2015b).

A strong downregulation of miR-365 was shown in

malignant melanoma tissue and cells lines. The ectopic

expression of miR-365 inhibits growth, invasion and

metastasis in malignant melanoma by directly targeting

neuropilin-1 (NPL1) (Bai et al., 2015).

Giles et al. (2013) studied the role of miR-7-5p in

melanoma. They observed a downregulation of miR-7-

5p in metastatic melanoma-derived cell lines compared

with primary melanoma cells. Furthermore, the ectopic

expression of miR-7-5p suppresses cell migration and

invasion by directly targeting insulin receptor sub-

strate-2 (IRS-2), and the inhibition of IRS-2 reduced

the activity of protein kinase B (AKT) (Giles et al.,

2013).

MicroRNA miR-125b is downregulated in mela-

noma especially in metastatic melanoma; miR-125b

acts as tumor suppressor and decreases cell migration

(Kappelmann et al., 2013). This could be mediated by

the downregulation of the transcription factor c-Jun

(Kappelmann et al., 2013) and serine/threonine kinase

mixed lineage kinase (MLK3) protein and mitogen-

activated protein kinase kinase 7 (MMK7), which are

direct targets of miR-125b (Zhang et al., 2014).

Melanoma cell lines and tissues showed a downregu-

lation of miR-542-3p. It was observed that the ectopic

expression of miR-542-3p suppresses tumor cell migra-

tion, invasion and EMT through the inhibition of its

target, the proto-oncogene serine/threonine protein

kinase (PIM1) (Rang et al., 2016). The expression

levels of miR-124 were negatively correlated with the

advanced stage of melanoma. The tumor suppressor

effect of miRNA-124 consisted in the suppression of

proliferation and invasion mediated by the inhibition

of its target RLIP76, which is overexpressed in mela-

noma cell lines (Zhang et al., 2016). MicroR-625 was

found downregulated in malignant melanoma and it

was shown that its ectopic expression inhibits
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proliferation and migration in malignant melanoma.

In particular, in malignant melanoma, the expression

level of miR-625 was inversely correlated with that of

transcription factor SOX-2 (SOX2), suggesting that

the anti-tumor action of miR-625 is at least partially

mediated by the inhibition of SOX2 (Fang et al.,

2017).

Also, miR-153-3p is downregulated in melanoma tis-

sue and cell lines. In particular, it was observed that

miR-153-3p modulates cell proliferation and invasion

by the inhibition of the expression of SNAI1, which is

a zinc-finger transcription factor involved in the pro-

motion of the EMT (Zeng et al., 2017).

MicroRNA miR-137 acts as tumor suppressor; in

fact, the expression of miR-137 in melanoma leads to

the inhibition of the proliferation and invasion by the

downregulation of its targets, including MITF, c-Met,

Y-box-binding protein 1 (YB-1) and enhancer of zeste

homolog 2 (EZH2). In addition, a correlation was

observed between miR-137 expression and prognosis;

low levels of miR-137 are associated with a short sur-

vival in stage IV melanoma patients (Luo et al., 2013b).

Weber et al. (2016) performed a very interesting

study where they tested a large panel of miRNA mim-

ics to assess their effect on melanoma A375 cell line

invasion capability. They identified the miRNAs that

were most effective in promoting cell invasion (miR-

576-5p, miR-21, miR-214 and miR-182) and those that

were most effective in preventing cell invasion (miR-

339-3p, miR-211, miR-101, miR-126-3p and -5p). They

then tested the effect of miR-339-3p in vivo by per-

forming lung colonization assays in immunodeficient

NSG mice. They found that mice injected with A375

cells overexpressing miR-339-3p carried significantly

fewer tumor nodules compared with control mice, con-

sistent with the inhibitory effect of miR-339-3p on

tumor cell invasion in vitro. In addition, they blocked

miR-339-3p using an antagomir and found an increase

of melanoma cell invasion, an effect that could be phe-

nocopied by RNAi-mediated silencing of MCL1,

which is a target of miR-339-3p.

Orso et al. (2016) studied the role of miR-214 and

miR-148b in the process of metastatic dissemination.

Depleting miR-214 or elevating miR-148b blocked the

dissemination of melanoma, an effect that could be

accentuated by their dual alteration (Orso et al., 2016).

In fact, they demonstrated that the dual alteration sup-

presses the passage of malignant cells through the

blood vessel endothelium by reducing the expression

of the cell adhesion molecules ITGA5 and ALCAM;

furthermore, single or combined miR-214 downregula-

tion and miR-148b upregulation in tumor cells inhibits

metastasis formation in mice.

2.1.5. MicroRNA involved in immune response

One hallmark of melanoma biology is immune eva-

sion. This can be induced by senescence, alterations in

antigen presentation, interference with regulatory T

cells or hypoxia (Noman et al., 2012). The role of the

immune system in melanoma is widely known and

immunotherapies based on immune checkpoint

(CTLA4 and PD1) inhibitors have been developed,

such as anti-CTLA4 and anti-PD1 (Postow et al.,

2015). Recently, some evidence of the immune sup-

pressive/evasive effects of families of miRNAs.

Immune escape can be promoted by a hypoxic

microenvironment (Noman et al., 2011). In melanoma,

hypoxia-induced miR-210 expression level resulted in

the escape from cell lysis by antigen-specific cytotoxic

T lymphocytes (CTL or CD8+ T cells) (Noman et al.,

2012). In the same study, it was observed that in

hypoxic cells, miR-210 targets and inhibits protein tyr-

osine phosphatase non-receptor type 1 (PTPN1),

homeobox protein Hox-A1 (HOXA1) and tumor pro-

tein p53-inducible protein 11 (TP53I11; Noman et al.,

2012).

MicroRNA-30b and -30d act as immunosuppressive

miRNAs. It was observed that miR-30b and miR-30d

are upregulated in melanoma, and their increased

expression level correlates with an advanced stage,

metastatic potential and a worse prognosis. The ecto-

pic expression of miR-30b/30d leads to the downregu-

lation of GalNAc transferase GALNT7, resulting in

suppression of immune cell activation and recruitment

mediated by a high level of immunosuppressive cyto-

kine IL-10 (Gaziel-Sovran et al., 2011).

Other miRNAs that are able to influence the

immune response are miR-34a/c. In particular, miR-

34a/c control the expression of UL16 binding protein

2 (ULBP2), which is a ligand for NK cell immunore-

ceptor NKG2D. The downregulation of miR-34a/c,

which occurs frequently in cancer, leads to an upregu-

lation of ULBP2, thus paradoxically resulting in an

increased tumor-immune surveillance by natural killer

(NK) cells (Heinemann et al., 2012).

The microRNAs miR-21, miR-29a, miR-142-3p and

miR-223 are induced in macrophages by activation of

CSF1-ETS2 pathway and can influence melanoma

growth and metastasis. Consistently, miR-21 and miR-

29a are upregulated in specific suppressive myeloid

populations in mouse bone marrow and patient blood

during melanoma metastatic progression (Mathsyaraja

et al., 2015). MicroRNAs miR-34a/c and miR-499a/c

bind to the 30-UTR of ULBP2, a ligand of NKG2D

receptor that activates NK cells against the tumor

(Heinemann et al., 2012).
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Ultraviolet radiation is the main risk factor for CM.

Experimental models for UV-induced melanoma have

highlighted that UVR-induced inflammation can pro-

mote immune evasion (Hodis et al., 2012). Recently,

the effect of UV exposure on miRNA expression in

melanocytic nevi was explored (Bell et al., 2018) and a

depth-related signature was identified. Another recent

study demonstrated that 14 miRNAs are altered after

UV exposure, leading to the increase of immune eva-

sive molecules such as CCL2, CCL8, PD1 and B7H2

(Sha et al., 2016).

MicroRNAs can also be involved in immune check-

point regulation; in fact, exhausted T cells in mela-

noma show a downregulation of miR-28 expression.

MicroRNA miR-28 binds the 30-UTR of TIM3, BTLA

and PD-1. When miR-28 mimics were administered to

exhausted T cells, the phenotype reverted and IL-2

and tumor necrosis factor (TNF)-a production

restored (Li et al., 2016). Because of PD-L1 regulation,

miR-17-5p has also been proposed as a prognostic bio-

marker. BRAF- and MEK-inhibitor-resistant mela-

noma cell lines showed increased expression of PD-L1,

which is inversely correlated with miR-17-5p expres-

sion. The authors demonstrated that PD-L1 is a direct

post-transcriptional target of miR-17-5p (Audrito

et al., 2017).

2.2. MicroRNAs as diagnostic or prognostic

biomarkers

2.2.1. Circulating miRNAs in melanoma

An important characteristic of miRNAs is that they

are released by the tumor in the bloodstream. Tumor-

derived endogenous miRNAs are very stable in the

blood and are resistant to RNAse activity. It is possi-

ble to analysis miRNA levels in blood samples in a

non-invasive way, performing a ‘liquid biopsy’. In

2008, it was reported for the first time that circulating

miRNAs could be used as biomarkers in patients with

solid tumors (Mitchell et al., 2008). Circulating miR-

NAs can be used for cancer diagnosis and prognosis

(Ferracin and Negrini, 2015). The circulating miRNA

profile is different from that of tumors and relies

strongly on the protocol used for sample processing,

probably because of the different amount of extracellu-

lar vesicles (EVs) retained during plasma/serum prepa-

ration. Indeed, exosomes and EVs in general are one

of the main repositories of miRNAs in the blood

(Cheng et al., 2014).

Some pilot studies for the analysis of the entire spec-

trum of circulating miRNAs by microarray and small

RNA sequencing (Ferracin et al., 2015) or quantitative

PCR (Greenberg et al., 2013; Stark et al., 2015b) have

been performed in the past few years. Ferracin et al.

(2015) demonstrated the potential of miR-320a as a

plasma melanoma biomarker in comparison with other

main types of solid tumors and healthy subjects. In

contrast, in their study, Greenberg et al. (2013)

showed that there was a significant reduction of circu-

lating miR-29c and miR-324-3p in the serum of mela-

noma patients compared with healthy subjects. The

decrease of miR-29c expression was also observed in

stage III/IV compared with stage I/II melanoma

tumors and it was associated with a poor prognosis in

CM (Nguyen et al., 2011). Stark et al. (2015b) per-

formed a screening on the level of 233 miRNAs in

melanoma and healthy controls and across melanoma

stages. They identified a panel of 17 miRNAs (MEL-

miR-17 signature) that was correlated with stage,

recurrence and survival and with a predictive potential.

In that study, they further selected a panel of seven

miRNAs that was able to detect the presence of mela-

noma with high sensitivity (93%) and specificity

(82%). In this panel, miR-4487, miR-4706, miR-4731,

miR-509-3p and miR-509-5p were reduced, whereas

miR-16 and miR-211 (stage IV only) were increased in

melanoma.

Another panel was proposed by Margue et al.

(2015), who found that in serum samples of melanoma

patients the levels of miR-122-5p and miR-3201 were

higher than in serum samples of healthy people.

In another study, the quantification of 21 miRNAs

in the plasma of melanoma patients and healthy sub-

jects identified five miRNAs that can be used as diag-

nostic markers. In particular, the upregulation of

circulating miR-149-3p, miR-150-5p and miR-15b-5p,

and the downregulation of circulating miR-193a-3p

and miR-524-5p were associated to melanoma (Fogli

et al., 2017).

Armand-Labit et al. (2016) demonstrated that the

detection of miR-185 and miR-1246 in plasma discrim-

inated patients with metastatic melanoma from healthy

individuals with a sensitivity of 90.5% and specificity

of 89.1%.

Circulating miRNA can also be used to provide

prognostic information. Friedman et al. (2012) pro-

posed a panel of five circulating miRNAs to identify

melanoma patients with high risk of recurrence. In

particular, they found that in melanoma patients’

serum samples, low levels of miR-15b and miR-33a,

and elevated levels of miR-150, miR-199a-5p and miR-

424 were associated with a high risk of recurrence.

A predictive panel formed by miR-150-5p, miR-30d-

5p, miR-15b-5p and miR-425-5p in conjunction with

the pathologic stage was superior for predicting
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recurrence-free and overall survival when compared

with conventional staging criteria. In addition, it was

shown that miR-15b levels can be useful for early

monitoring for recurrence in melanoma patients

(Fleming et al., 2015).

Shiiyama et al. (2013) proposed a panel of six miR-

NAs to identify metastatic melanoma. In fact, the

expression of miR-150-5p, miR-9-5p, miR-145-5p,

miR-155-5p, miR-203 and miR-205-5p was signifi-

cantly different in metastatic and non-metastatic mela-

noma patients.

In a case–control study, it was found that the

expression of circulating miR-16 can be used as a

prognostic biomarker. Expression levels of miR-16

were lower in serum of melanoma patients than in

serum of cancer-free controls. Furthermore, it was

shown that the decrease of miR-16 was correlated with

an increase in tumor thickness, ulceration status,

AJCC stage, and tissue Ki-67 expression (Guo et al.,

2016a).

� A comparison of miR-206 levels between 60
patients with melanoma and 30 healthy controls
showed that serum levels of miR-206 are signifi-
cantly lower in melanoma. In addition, a correla-
tion between miR-206 levels and prognosis was
reported. In fact, it was observed that patients
with low serum miR-206 levels present two or
more sites of metastases and had a shorter 5-
year overall and disease-free survival than mela-
noma patients with a high miR-206 level (Tian
et al., 2015).

� Plasma levels of miR-21 were found to be ele-
vated in melanoma in two independent studies
(Ferracin et al., 2015; Saldanha et al., 2013).
Plasma levels of miR-210 were higher in individ-
uals with melanoma and an increased level of
miR-210 predicted disease recurrence. Further-
more, miR-210 increase in plasma was correlated
with a poor prognosis (Ono et al., 2015).

MicroRNA miR-221-5p was shown to be increased

in the serum of patients with metastatic melanoma,

decreasing after excision and increasing with disease

recurrence (Kanemaru et al., 2011).

The level of miR-125b-5p in serum-derived exo-

somes of 21 patients with advanced melanoma was

compared with that in 16 disease-free patients and 19

healthy volunteers; miR-125b-5p expression was

reduced in exosomes of individuals with an active dis-

ease (Alegre et al., 2014).

Xiao et al. (2016) demonstrated that melanoma cell-

derived exosomes actively interact with normal mela-

nocytes. They also suggest that melanoma cell-derived

exosomes may promote the EMT-resembling process

through autocrine/paracrine signaling, creating a

tumor-supportive microenvironment, through the

action of miR-191 and let-7a.

Pfeffer et al. (2015) investigated miRNA signatures

of plasma-derived exosomes from familial and spo-

radic melanoma patients and unaffected family mem-

bers. They demonstrated that miR-17, miR-19a, miR-

21, miR-126 and miR-149 are expressed at higher

levels in plasma-derived exosomes from patients with

metastatic melanoma. They then studied plasma from

genetically predisposed familial melanoma patients

with/without evidence of disease. They did not found

differences between CDKN2A mutation carriers and

controls.

Lunavat et al. found that inhibition of BRAFV600E

with vemurafenib and dabrafenib was associated with

increased secretion of EVs from melanoma cells. They

observed the specific increase of miR-211-5p after

treatment in cells and EVs both in vitro and in vivo.

This result indicated that target therapies change the

RNA cargo in tumor-derived EVs. In addition, miR-

211-5p forced expression reduced sensitivity to BRAF

inhibitors and decreased its efficiency in melanoma cell

lines (Lunavat et al., 2017).

MicroRNA miR-222 is involved in melanoma devel-

opment by controlling tumor progression through the

down-modulation of its target genes: p27Kip1/

CDKN1B, c-KIT and c-FOS (Felicetti et al., 2008). It

was later discovered that miR-222 can be detected in

exosomes from human melanoma cell lines established

from primary or metastatic tumors. It has been also

demonstrated that miR-222 can be transferred between

cells, resulting in the capability of promoting malig-

nancy through p27Kip1 inhibition and consequent

PI3K/AKT pathway activation in the recipient cells

(Felicetti et al., 2016).

A summary of the miRNAs that can be detected in

the circulation in melanoma is presented in Table 2.

2.2.2. MicroRNAs in prognosis prediction and drug

resistance

The dysregulated expression of specific miRNAs in

melanoma cells could serve as a prognostic biomarker

for the patients or interfere with their response to treat-

ments (Table 3). Expression of miR-21-5p is an impor-

tant prognostic factor in melanoma, where its increased

expression was correlated with higher tumor stage and

worst survival (Jiang et al., 2012). Galasso et al. (2018)

demonstrated that the loss of miR-204 is common in

melanomas with NRAS sole mutation but is less fre-

quent in those harboring CDKN2A mutations.
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Additionally, miR-204 was associated with a better

prognosis in two independent melanoma cohorts and

its exogenous expression led to growth impairment in

melanoma cell lines (Galasso et al., 2018).

Segura et al. established a signature of 18 miRNAs

associated with metastatic melanoma survival. In par-

ticular, they showed that metastatic patients had a

longer survival when the metastasis was overexpressing

Table 2. Circulating miRNAs with a diagnostic, prognostic or functional impact in melanoma.

miRNA Significance

Levels in melanoma patients vs.

healthy subjects References

320a Diagnostic marker Increased Ferracin et al. (2015)

29c, 324-3p Diagnostic marker Decreased Greenberg et al. (2013)

4487, 4706, 4731, 509-3p,

509-5p

Diagnostic marker Decreased Stark et al. (2015b)

16-5p, 211-5p Increased (only stage IV)

29c-3p Staging (III/IV vs. I/II) Decreased Nguyen et al. (2011)

122-5p, 3201 Diagnostic marker Increased Margue et al. (2015)

149-3p, 150-5p, 15b-5p Diagnostic marker Increased Fogli et al. (2017)

193a-3p, 524-5p Decreased

185-5p, 1246 Diagnostic marker Increased Armand-Labit et al. (2016)

15b-5p, 33a-5p Prognostic marker Decreased Friedman et al. (2012)

150-5p, 199a-5p, 424-5p Increased

150-5p, 30d-5p, 15b-5p, 425-5p Prognostic marker Fleming et al. (2015)

150-5p, 9-5p, 145-5p, 155-5p,

203, 205-5p

Metastasis marker Shiiyama et al. (2013)

16-5p Prognostic marker Decreased Guo et al. (2016a)

206 Diagnostic and

prognostic marker

Decreased Tian et al. (2015)

21-5p Diagnostic and

prognostic marker

Increased Ferracin et al. (2015), Saldanha et al.

(2013)

210 Diagnostic and

prognostic marker

Increased Ono et al. (2015)

221-5p Prognostic marker Increased Igoucheva and Alexeev (2009),

Kanemaru et al. (2011)

125b-5p Diagnostic marker Decreased Alegre et al. (2014)

191 and let-7a EMT Released in exosomes Xiao et al. (2016)

17-5p, 19a-3p, 21-5p, 126-3p,

149-5p

Diagnostic marker Released in exosomes Pfeffer et al. (2015)

211–5p Therapy resistance Released in exosomes Lunavat et al. (2017)

222-3p Malignant

transformation

Released in exosomes Felicetti et al. (2016)

Table 3. MicroRNAs (miRNAs) involved in prognosis prediction and drug resistance.

miRNA Significance Expression Reference

21-5p Prognostic marker Upregulated in the worse prognosis group Jiang et al. (2012)

204-5p Prognostic marker Downregulated in NRASmut Galasso et al. (2018)

150-5p, 455-3p, 145-5p,

342-3p, 497-5p, 155,

342-5p, 143-3p, 193a-3p,

146b-5p, 28-3p, 10b-5p,

193b-3p, 28-5p, 142-5p,

143-5p, 126-3p, 214-3p

Prognostic marker Upregulated in the better prognosis group Segura et al. (2010)

34a-5p, 100-5p, 125b-5p Resistance to BRAF inhibitors Upregulated in resistant cells Vergani et al. (2016)

514a-3p Resistance to BRAF inhibitors Upregulated in resistant cells Stark et al. (2015a)

200c-3p Sensitivity to BRAF inhibitors Upregulated in resistant cells Liu et al. (2015a)

579-3p Resistance to BRAF/MEK inhibitors Downregulated in resistant cells Fattore et al. (2016)
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these miRNAs (miR-150, mir-455-3p, miR-145, miR-

342-3p, miR-497, miR-155, miR-342-5p, miR-143,

miR-193a-3p, miR-146b-5p, miR-28-3p, miR-10b,

miR-193b, miR-28-5p, miR-142-5p, miR-143*, miR-

126 and miR-214) (Segura et al., 2010). In addition,

they proposed a reduced 6-miRNA panel (miR-150,

miR-455-3p, miR-145, miR-497, miR-155, miR-342-

3p) to stratify stage III patients according to prognosis

and also demonstrated its validity in primary tumors.

Several miRNAs can affect drug resistance in mela-

noma. It was observed that melanoma could acquire

resistance against BRAF inhibitors by altering the pat-

tern of cytokine production. The treatment with

BRAF inhibitor vemurafenib led to an increase of

CCL2, which acts as an autocrine growth factor in

melanoma. CCL2 in turn upregulates miR-34a, miR-

100 and miR-125b (Vergani et al., 2016). In that

study, high levels of these miRNAs were associated

with apoptosis inhibition and drug resistance. The

simultaneous inhibition of all the three miRNAs

restored sensitivity to BRAF inhibitors by increasing

apoptosis.

Another study observed that in melanoma, miR-514

contributed to the sensitivity of BRAF inhibitors.

Specifically, miR-514 targets NF1 and leads to the

maintenance of MAPK pathway activation. In this

way, the overexpression of miR-514 contributes to the

resistance to BRAF inhibitors (Stark et al., 2015a).

Liu et al. (2015a) investigated the role of miR-200c

in resistance of BRAF inhibitors. They observed a

downregulation of miR-200c in resistant melanoma

tumors and cell lines, with a consequent upregulation

of its targets, including BMI1, ZEB2, TUBB3, ABCG5

and MDR1. The study showed that the overexpression

of miR-200c restores the sensitivity of BRAF inhibi-

tors through the inhibition of PI3K/AKT and MAPK

signaling pathways.

Fattore et al. (2016) found that the expression of

miR-579-3p is a prognostic factor; in particular, low

levels of miR-579-3p are associated with a poor prog-

nosis. They observed that the expression levels

decrease from nevi to stage III/IV melanoma samples

and also that melanoma cell lines resistant to BRAF/

MEK inhibitors showed a downregulation of this

miRNA. The overexpression of miR-579-3p altered the

drug sensitivity in melanoma cell lines.

2.3. MicroRNA editing in melanoma

RNA editing is the post-translational process that

changes the sequence of a transcribed RNA. This

event is mediated by specific enzymes, including mem-

bers of double-stranded RNA-specific adenosine

deaminase (ADAR) and activation-induced cytidine

deaminase or its relative APOBEC cytidine deaminase

families, which can be dysregulated in cancer (Por-

cellini et al., 2018). Specifically, mature miRNA

nucleotides can be subjected to hydrolytic deamination

of adenosine to inosine (A-to-I) or C-to-U conversion.

In melanoma, a downregulation of ADAR1 in meta-

static tumors was reported and correlated with reduced

A-to-I editing of miR-455-5p, miR-324-5p and miR-

378a-3p (Shoshan et al., 2015). The changes in miR-

455-5p editing sites modified its activity on the target

genes and conferred completely different biological

functions on this miRNA.

Velazquez-Torres et al. (2018) studied the effect of

ADAR1 hypo-editing in metastatic melanoma cells.

Micro (mi)R-378a-3p undergoes A-to-I modification

only in the non-metastatic melanoma cells. The target

of miR-378a-3p is the oncogene PARVA, but the gene

is preferentially downregulated by the edited form of

miR-378a-3p. In melanoma cells, the expression of a-
parvin and ADAR1 is inversely correlated. When they

transfected the WT and edited form of miR-378a-3p in

SB2 cells, a-parvin expression reduction was observed

only upon edited miR-378a-3p transfection.

Nemlich et al. (2013) studied metastatic melanoma

cells that exhibit significant downregulation of

ADAR1-P110 and ADAR1-P150 as compared with

normal melanocytes, nevi and primary melanoma

tumors. They reported that miR-17-5p and miR-432

are direct, independent, endogenous cellular regulators

of ADAR1. They also observed that the upregulation

of miR-21-5p (by silencing) and the downregulation of

miR-34a (by forced expression) seems partially to

reverse the enhanced proliferation of ADAR1-KD

cells. They also showed that amplification of the geno-

mic segment encoding miR-17-5p occurs frequently in

melanoma, facilitating the malignant phenotype by

directly targeting ADAR1. In addition, the overexpres-

sion of miR-432 in melanoma can be attributed to fre-

quent genomic amplification and aberrant

hypomethylation patterns of the DLK1-DIO3 locus on

chromosome 14.

2.4. Long non-coding RNA dysregulation in

melanoma

Besides small ncRNAs, several recent studies described

the dysregulation and cancer-promoting role of specific

lncRNAs in CM (Table 4). From these studies, some

lncRNAs were associated with stage (Yang et al.,

2018) or metastasis (Wang et al., 2017a). Recently,

two prognostic lncRNA signatures were proposed

(Chen et al., 2017b; Yang et al., 2018), demonstrating
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the potential of lncRNA in melanoma classification.

Functionally, the mechanisms used by two melanoma-

specific lncRNAs (SAMMSON and TYRP1) to pro-

mote tumor growth were recently described (Gilot

et al., 2017; Leucci et al., 2016). The lncRNA SAMM-

SON is located in a genomic region that is amplified

in melanoma and interacts with the mitochondrial pro-

tein p32 in regulating the survival of melanoma cells

(Leucci et al., 2016). TYRP1 mRNA, independently of

its protein-coding activity, sequestering through its 30-
UTR a microRNA (miR-16) and thus dampening the

tumor suppressor activity of miR-16 itself (Gilot et al.,

2017).

Sprouty4-intronic transcript 1 (SPRY4-IT1) is one

of the first described lncRNAs associated with mela-

noma; it has been reported to promote melanoma cell

growth and invasion and inhibit apoptosis by altering

lipid metabolism (Khaitan et al., 2011; Mazar et al.,

2014). Normally, this lncRNA is expressed at low

levels in human melanocytes but it is highly upregu-

lated in human melanoma cells (Khaitan et al., 2011).

Expression levels of this lncRNA have been evaluated

in plasma of melanoma patients and matched controls,

showing that patients have higher levels of SPRY4-IT1

compared with healthy controls, associated with tumor

site, tumor stage and poor prognosis (Liu et al., 2016).

Other lncRNAs involved in melanoma cell prolifera-

tion are LLME23, UCA1 and MALAT1 (Wei et al.,

2016; Wu et al., 2013). Upregulation of LLME23 was

detected in human melanoma cell lines and it was

found to bind the protein-associated splicing factor

PSF, a well-known tumor suppressor; by binding to

PSF, LLME23 was able to promote the expression of

the proto-oncogene RAB23, a RAS-related small

GTPase (Wu et al., 2013). Moreover, LLME23 silenc-

ing reduced tumor growth in vivo.

UCA1 is upregulated in human melanoma tissues

and cell lines and is involved in tumor cell prolifera-

tion, migration and invasion. Moreover, this lncRNA

significantly increases with stages (Tian et al., 2014).

UCA1 has a binding site for miR-507, suggesting a co-

regulation of these two ncRNAs. A study on primary

melanoma, metastatic melanoma and nevi from

patients and melanoma cell lines showed that the

UCA1 level is increased in primary and metastatic

melanoma, as well as in cell lines, compared with nevi

(Wei et al., 2016). The same authors also demon-

strated a negative correlation between UCA1 and

miR-507, and that UCA1 silencing decreases the levels

of FOXM1 by releasing miR-507.

MALAT-1 was demonstrated to increase progres-

sively in melanoma progression in a cohort of 63 pri-

mary melanomas, adjacent normal tissue and

metastatic lesions (Tian et al., 2014). MALAT-1 pro-

motes cell proliferation and invasion through a com-

plex interaction with miR-183 and integrin b1
(ITGB1) (Sun et al., 2017).

In an RNA sequencing study by Flockhart et al.

(2012) the authors described a panel of 39 lncRNAs

regulated by BRAFV600E in melanoma; the most sig-

nificant was BRAF-activated non-coding RNA

(BANCR). BANCR regulates a set of genes involved

in cell migration, including the chemokine CXCL11,

and can promote melanoma proliferation via activa-

tion of ERK1/2 and JNK MAPK pathway both

in vitro and in vivo (Li et al., 2014b).

ANRIL (antisense non-coding RNA in the INK4A

locus) is a lncRNA first identified in familiar mela-

noma with CDKN2A/B (INK4B-ARF-INK4A) germ-

line mutations (Sarkar et al., 2017). ANRIL is located

in chromosome 9p21, nearby CDKN2A/B genes, and

SNPs in this region have been associated with human

Table 4. Long non-coding RNAs (lncRNAs) dysregulated in human cutaneous melanoma.

lncRNA Functional role Expression in melanoma References

SAMMSON Interacts with p32 Upregulated Leucci et al. (2016)

TYRP1 Sponge for miR-16 Upregulated Gilot et al. (2017)

SPRY4-IT1 Melanoma cell growth and invasion Upregulated Khaitan et al. (2011), Mazar et al. (2014)

SPRY4-IT1 Diagnostic and prognostic marker in serum Upregulated Liu et al. (2016)

LLME23 PSF binding Upregulated Wu et al. (2013)

UCA1 Prognostic marker Upregulated Tian et al. (2014), Wei et al. (2016)

Target of miR-507 Upregulated Wei et al. (2016)

MALAT-1 Target miR-183 and ITGB1 Upregulated Sun et al. (2017)

Prognostic marker Upregulated Tian et al. (2014)

39 lncRNAs panel Target BRAFV600E Flockhart et al. (2012)

BANCR Cell Migration Upregulated Li et al. (2014b)

ANRIL CDKN2A/B germlines deletion Upregulated Sarkar et al. (2017)

PVT1 Cell proliferation and metastasization Upregulated Chen et al. (2017a, 2018)
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diseases, e.g. coronary disease, stroke, diabetes, mela-

noma and glioma (Congrains et al., 2013). ANRIL

presents different linear and circular isoforms due to

alternative splicing, with different functional roles in

melanoma (Sarkar et al., 2017). The main function of

this lncRNA is to mediate the repression of the

CDKN2A/B locus by association with polycomb

repressor complexes (PRC1 and PRC2) involved in the

methylation-mediated control of histone3 (Richtig

et al., 2017; Yap et al., 2010). ANRIL silencing was

able to restore the proper expression of CDKN2A and

B in a melanoma xenograft model (Xu et al., 2016).

The role of plasmacytoma variant translocation 1

(PVT1) as a regulator of cell proliferation and metas-

tasis has been studied in melanoma (Chen et al.,

2017a, 2018). PVT1 is overexpressed in melanoma

samples and correlates with tumor stage. This associa-

tion was also confirmed in plasma samples, underlin-

ing the possibility of using this lncRNA as a detection

biomarker (Chen et al., 2017a). In addition, the

authors suggest a role of PVT1 in the regulation of

miR-200c expression.

Long ncRNAs could be used as targets for melanoma

treatment. Leucci et al. (2016) demonstrated that the

intravenous administration of SAMMSON-specific

antisense oligonucleotide in vivo in combination with

BRAF inhibitor dabrafenib in a melanoma patient-

derived xenograft (PDX) significantly induced apopto-

sis, reducing the tumor growth, whereas the administra-

tion of dabrafenib alone only inhibited tumor growth.

3. Concluding remarks and future
perspectives

Cutaneous melanoma typically arises on sun-exposed

skin because of the progressive accumulation of UV

radiation-induced genetic alterations. These chronically

sun-damaged (CSD) melanomas are very different

from non-CSD melanomas (Shain and Bastian, 2016).

UV exposure induces specific genetic alterations in

melanocytes (e.g. prevalence of C-to-T transition) and

a generally high tumor mutational burden, both in

coding and non-coding regions of the genome (Hay-

ward et al., 2017). This in turn generates a broad

range of genetic alterations in oncogenic drivers, as

detailed at the beginning of this review.

This heterogeneity is also reflected in the pattern of

gene expression alterations documented for this tumor.

From our analysis of the literature on ncRNAs, it is

evident that many different small and long non-coding

genes contribute to the onset and progression of mela-

noma. These ncRNA alterations are reported as recur-

rent in several studies and in large cohorts, but the

majority are is study-dependent or not yet validated in

large groups of patients. In addition, most of the pub-

lished studies mixed primary and metastatic tumors, or

did not discriminate between melanoma subtypes. For

example, no analysis of the ncRNA profile of CSD

and non-CSD melanomas has been performed yet. We

believe that this issue should be investigated in more

detail in future studies.

As far as ncRNA research in melanoma is concerned,

it is difficult to imagine that targeting a single miRNA

or lncRNA could be an effective treatment for all mela-

noma patients. There is still much work to do in this

field, especially in vivo studies for the validation of the

most interesting miRNAs, lncRNAs or combination of

these. Some interesting miRNA/lncRNA pairs which

can boost tumor growth and dissemination, were identi-

fied. Despite this potential, the relationship and mutual

interference between coding and non-coding RNAs is

still hardly studied because the quantification of all

ncRNA types in the same sample is not usually available

and computational analysis is complex.

We believe that this specific aspect of melanoma

biology deserves further investigation and a proper

integration with clinical and genomics data, in order

to find all the missing pieces in the complex jigsaw

puzzle of CM.
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