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Abstract

We reconstruct for the first time the three dimensional structure of magnetic 

fields on cosmological scales, which were seeded by density perturbations 

during the radiation dominated epoch of the Universe and later on were evolved 

by structure formation. To achieve this goal, we rely on three dimensional 

initial density fields inferred from the 2M++ galaxy compilation via the 

Bayesian BORG algorithm. Using those, we estimate the magnetogenesis 

by the so called Harrison mechanism. This effect produced magnetic fields 

exploiting the different photon drag on electrons and ions in vortical motions, 

which are exited due to second order perturbation effects in the Early Universe. 

Subsequently we study the evolution of these seed fields through the non-
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linear cosmic structure formation by virtue of a magneto-hydrodynamics 

simulation to obtain a 3D estimate for the structure of this primordial magnetic 

field component today. At recombination we obtain large scale magnetic field 

strengths around 10−23G, with a power spectrum peaking at about 2 Mpc−1 h 

in comoving scales. At present we expect this evolved primordial field to have 

strengths above  ≈10−27 G  and  ≈10−29 G  in clusters of galaxies and voids, 

respectively. We also calculate the corresponding Faraday rotation measure 

map and show the magnetic field morphology and strength for specific objects 

of the Local Universe. These results provide a reliable lower limit on the 

primordial component of the magnetic fields in these structures.

Keywords: cosmology, primordial magnetic fields, large scale structure, 

MHD simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

Inference of primordial magnetic fields opens a unique window into the Early Universe 

between inflation and recombination. Although a variety of different astrophysical processes 

may generate magnetic fields, the primordial magnetic seed may very well be the origin of 

observed magnetic fields in galaxies and clusters. Primordial magnetic fields are a viable 

candidate for the 10−16 G  to  ≈10−15 G [1–4] fields expected in cosmic voids due to the non-

observation of GeV emission from TeV blazars among other explanations [5]. In any case, 

they represent by definition the minimal amount of magnetic fields present in the Universe. 

Literature provides a variety of very diverse effects for the generation of primordial magnetic 

fields coherent on a large range of scales. A incomplete list of possible magnetogenesis effects 

may include mechanisms at the end of inflation (e.g. during the reheating phase or exploiting 

the electroweak phase transitions), during QCD phase transitions or effects that make use of 

speculative non-standard model physics such as gravitational coupling of the gauge potential 

or string theory effects. Very often these mechanisms struggle with producing the necessary 

field strengths and/or, especially the post inflationary models, the necessary coherence lengths 

for large-scale magnetic fields. The scale problem might be solved, at least for helical magn-

etic fields, via an inverse cascade which transfers magnetic power to larger scales [6, 7]. 

Recent works have shown that a similar mechanism exists for non-helical fields [8], although 

the process is still poorly understood [9]. For a further discussion on different magnetogenesis 

models, we refer the reader to comprehensive review articles [10–13].

A more conservative Ansatz solely relying on the assumption of a ΛCDM Universe and 

conventional plasma physics was proposed by Matarrese et al [14]. This approach is based 

on a mechanism initially proposed by Harrison [15] in 1970. During the later phases of the 

radiation dominated epoch of the Universe a two fluid battery effect occurred between the 

proton fluid and the tightly coupled electron-photon fluid. The densities ρ(α), with α ∈ {m, γ} 
for baryons and the electron-photon fluid respectively, of the two components scale with the 

scale factor a(t) as ρ(m) ∼ a(t)−3 and ρ(γ) ∼ a(t)−4, respectively. Therefore, the separately 

conserved angular momenta L(α) ∼ ρ(α) ω(α) r5 in a rotational setup with radius r(t) ∼ a(t) 

requires the angular velocities ω(α) to depend on a(t) with ω(m) ∼ a−2 and ω(γ) ∼ a−1, respec-

tively. In other words, protons spin down faster than electrons, as the latter are carried by the 

still dominant photons. This difference in rotation then leads to currents that induce magnetic 
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fields [15]. The necessary vortical motion of both proton and radiation fluid are caused by 

effects that can be expressed as second order perturbations of the fluid equation [14].

The recent progress on the inference of the actual 3D realization of the large-scale dark 

matter structure and its formation history in the Local Universe and the fact that the Harrison 

mechanism is solely founded on well established plasma physics allows us to calculate the 

seed magnetic fields that had to be generated by this effect as well as their present day morph-

ology and strength. Since these fields have to exist today in combination with fields of other 

sources, we are therefore able to provide credible lower bounds on the primordial magn-

etic field strength in the nearby Universe. We structure this article as following: section  2 

first describes the outcome of the Matarrese paper [14] and then presents the computational 

steps that take us from dark matter over densities to magnetic fields. Section 3 gives a short 

overview on the dark matter density reconstruction used in this work. Section 5 provides the 

intermediate results on magnetic field configuration and power spectrum at radiation matter 

equality. Section 4 shows the results of the subsequent magneto-hydrodynamics (MHD) simu-

lation. Section 6 contains a summary and an outlook on potential improvements.

2. Theory

This paper strongly relies on the theoretical framework outlined by Matarrese et al [14]. This 

approach describes primordial density perturbations in the Early Universe before the recom-

bination epoch as sources of magnetic fields via the Harrison mechanism [15].

In the first part of this section we will summarize their assumptions and results. The second 

part describes the implemented reconstruction approach to translate our knowledge on dark 

matter over-densities into magnetic field estimates, first described by Dorn [16].

2.1. Basics

All calculations here are performed using the standard ΛCDM model assuming the cosmo-

logical parameters described in table 1 following the 2015 results of the Planck mission [17].

Following [14] we further assume that the dominant constituents of the Universe in the 

relevant time frame behave as perfect fluids of dark matter, electrons, protons and photons. All 

equations and calculations are performed in Poisson gauge with the following line element:

ds2 =a2(η) (−(1 + 2φ) dη2 + 2χi dη dxi + ((1 − 2ψ) δij + χij) dxidx j)
 

(1)

a is the scale factor depending on conformal time η. φ and ψ are the Bardeen potentials, χi  and 

χij  are vector and tensor perturbations, respectively.

The perfect fluid assumption results in a vanishing anisotropic stress tensor, which yields 

φ = ψ ≡ ϕ to first order in perturbation theory.

As perfect fluids are assumed, the energy momentum tensor simplifies to

T(α)µ
ν

= (P(α) + ρ
(α)) u(α)µu(α)ν + P(α)δµ

ν (2)

with P(α) the pressure, ρα the density and uµ

α
 the bulk velocity for each component α. Pressure 

and density of a component are related via an equation of state

P(α) = w(α)
ρ
(α). (3)

We define the energy over-density with respect to the mean energy density ρ(α)  (which is the 

same quantity as ρ
(α)
0  in [14]) of a component as
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δ(α) =
ρ(α)

ρ(α)
− 1. (4)

All quantities (δ(α), u(α),ϕ,χi,χij) can now be perturbed up to second order and related via 

their respective momentum equations including source terms to describe interactions. The cou-

pling between the baryonic and radiation components is assessed by a tight coupling approx-

imation to zeroth order which implies v
( p)
i ≈ v

(e)
i ≈ v

(γ)
i . This sets Thomson and Coulomb 

interaction terms to zero in this order. The curl of the momentum equations for the proton 

and photon components of the fluid gives evolution equations for the respective vorticities. 

The magnetic fields will be generated by vortical structures in the conductive non-relativistic 

baryonic component. To understand this, however, we turn our eye to the dominating photon 

component in that fluid. If a fluid component α was considered separately, its vorticity ω(α) 

is a conserved quantity as stated by Kelvin’s circulation theorem. This holds for each order of 

perturbation theory separately, in particular for the dominating photons:

ω
′(γ) = 0. (5)

Given that we expect no vorticity in the initial conditions, external sources are absent and we 

have an ideal fluid where pressure and density gradients are aligned, photon vorticity will 

always be zero. There is however a subtelty that that comes into play due to the fact that pho-

tons experience pressure. The photon vorticity equation in second order is [14]

ω
(γ)
i (2) =−

1

2a2
ǫijk

[

av
j,k (γ)
(2) + aχ

j,k

(2) +v
j (γ)
(1) ϕ

,k
(1) + v

′j (γ)
(1) v

k (γ)
(1)

]

.
 

(6)

The vorticity of photons in second order perturbation is not equal to the curl of the second 

order perturbed velocity field, but includes coupled first order terms. Since we need to obey 

the conservation law in equation  (5) and these first order terms are non-zero, a curl in the 

photon velocity field needs to be induced. If we now turn our eye to the proton vorticity equa-

tion these squared first order terms are absent due to the vanishing pressure:

ω
(p)
i (2) = −

1

2a
ǫijk

[

v
j,k (p)
(2) + χ

j,k

(2)

]

. (7)

The crucial connection is now that the tight coupling of the fluid components does not 

couple the vorticities of protons and photons but their velocities. Therefore the right part in 

equation (7) is non-zero and acts as a external source term for vorticity. Connecting this with 

Maxwells equations, we get an equation for the generation of magnetic fields. In other words 

Table 1. Table of cosmological parameters used in this work [17].

Parameter Value

H0 67.74 km Mpc−1s−1

h 0.6774

ΩΛ 0.6911

Ωm 0.3089

Ωr 5.389 · 10−5

Ωk 0.0

zeq 3371

S Hutschenreuter et alClass. Quantum Grav. 35 (2018) 154001
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the arising proton vorticity needs to be offset by an external (magnetic) force, in order to keep 

angular momentum conserved. The tight coupling approximation is discussed in more detail 

in 2.3.

Matarrese et al [14] expressed the evolution equation for the magnetic field in terms of 

the first order scalar perturbations of the metric ϕ(1) which in the Newtonian limit gives the 

gravitational potential. By assuming negligible resistivity and therefore omitting magnetic 

diffusion terms and performing (at least partially) an analytic integration, they get [14, 16]

B =−
mp

e aH2

[

2∇ϕ
′
×∇ϕ−

1

12H
∇ (∆ϕ)×∇ϕ

−
1

12H2
∇ (∆ϕ

′)×∇ϕ

]

−
1

a2

∫

η

ηI

dη̃
a

H
∇ϕ

′
×∇ϕ+

a2
I

a2
BI

 

(8)

for the magnetic field at time η, assuming some initial field BI at time ηI. A prime denotes 

derivation by conformal time. mp is the proton mass, e the elementary charge, a the scale fac-

tor and H = a′/a the comoving Hubble constant. In the formulation above, the generation of 

magnetic fields is the result of a coupling between first order temporal and spatial gradients 

of the scalar perturbations. In other words, the generation of magnetic fields is the result of 

dynamics in the gravitational potential, which in turn are a result of the gravitational pull on 

infalling matter through the horizon and the counteracting radiation pressure. This close con-

nection to the Baryon Accoustic Oscillations (BAOs) will be evident in the power spectra of 

our results at recombination. Even for ϕ′ = 0, which is true in the matter dominated era, this 

terms is not zero, as the second term only depends on spatial gradients. The formulation above 

is very convenient, as the sole dependence on the scalar perturbations makes the connection to 

initial conditions and the corresponding state of the Universe today very easy, as will be dem-

onstrated in the next section. Furthermore all terms in equation (8) include at least two deriva-

tives of ϕ. For large scales above the horizon scales this implies a scaling of the magnetic field 

power spectrum of approximately k4. Similar arguments where brought up in [18]. This is also 

in accordance with the causality limit on uncorrelated magnetic fields, which demands at least 

a k2 scaling [19]. The integral term was omitted by Mataresse in their analysis on the correla-

tion structure of the field. The initial field BI can safely be set to zero due to the a2
I /a2 factor. 

The assumption of small resistivity can be justified via considering the diffusion timescale

τdiff = 4πσL2, (9)

where L typical scale of magnetic structures and σ is the electron conductivity. Electron 

momentum transfer is dominated via Thomson scattering, we can therefore write σ = nee2

nγmeσT
. 

Plugging everything in, using the cosmological parameters from the Planck mission [17] e.g. 

at recombination and L ≈ 1 Mpc, yields

τdiff ≈ 1042 s, (10)

which is orders of magnitude higher than the age of the Universe at tU ≈ 4.4 · 1017s. Therefore 

neglecting the diffusion term is justified. In general, this is true throughout the history of the 

Universe, at least after inflation and on large scales [20]. High conductivity also implies flux 

freezing, which will lead to field amplification during structure formation in the late time evo-

lution of the magnetic field as we will see in our results.

In the following we discuss the implementation of equation (8).

S Hutschenreuter et alClass. Quantum Grav. 35 (2018) 154001
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2.2. Implementation

We now need to calculate ϕ and its spatial and temporal derivatives with respect to confor-

mal time. We begin our calculation by translating the CDM density perturbations measured11 

shortly before the last scattering surface δcdm(z ≈ 1000) into primordial initial conditions deep 

inside the radiation epoch at zp. Magnetogenesis can only take place on scales which have 

entered the cosmic horizon at the corresponding epoch. Therefore it makes sense to make this 

the criterion for zp. We know that the horizon condition can be roughly written as

kh · ηh ≈ 1 (11)

with the conformal time measured in units of one over length, the speed of light set to one 

and with η indicating conformal time. Knowing that the smallest scales of the grid correspond 

to k256 ≈ 2.39 h Mpc−1 and k512 ≈ 4.78 h Mpc−1 with respective grid sizes of 256 and 512 

points respectively, we know that the initial times must be on the order of the grid resolution 

η256 ≈ 0.42 Mpc h−1 and η512 ≈ 0.21 Mpc h−1 with the speed of light set to one. The equiva-

lent redshifts are z256 ≈ 9.7 · 105 and z512 ≈ 1.9 · 106 . Finally, zp = 107 was adopted in this 

work, as it safely satisfies the aforementioned condition. We obtain δcdm(zp) by using linear 

cosmological transfer functions and calculate the total energy over-densities δtot(zp) from it,

δtot(zp) =
4

3
δcdm(zp) =

4

3
T(k, zp, zrec) δcdm(zrec). (12)

The 4/3 factor comes from the adiabatic super-horizon solutions for the density perturba-

tions (see e.g. [22]). The transfer functions T(k, zp, zrec) in Poissonian gauge were calculated 

by the CLASS code [23]. They contain all relevant physics at linear order.

The peculiar gravitational potential ϕ(k, η) in the radiation epoch (implying w(γ)
≈ 1/3) 

evolves as (see, e.g. [14])

ϕ(k, η) =
3 j1(x)

x
ϕ0(k) (13)

in Fourier space with initial conditions ϕ0 at redshift z  =  107, j1 is the spherical Bessel func-

tion of first order and

x =
k η
√

3
. (14)

Furthermore, the linearised Einstein equations  relate the total energy perturbations to the 

potential by

δtot =
2

3H2
(∆ϕ− 3H [ϕ′ +Hϕ]) . (15)

With this equation we can calculate the initial ϕ0 in Fourier representation as

ϕ0(k) =
3H2

2k2 j1(x)
x

− 6H
[

∂
∂ η

(

j1(x)
x

)

+H
j1(x)

x

] δtot. (16)

From there on we can use equation (13) again to calculate the potential and its derivatives 

at any time up to zeq. The potential ϕ will tend to a constant after radiation-matter equality, 

as pressure becomes negligible. This means that the first and third term in equation (8) do not 

contribute to magnetogenesis from the epoch of radiation-matter equality to recombination. 

11 For further comments on the data see section 3 and [21].
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We therefore evaluate these terms at radiation matter equality (z ≈ 3371). From there on, 

these magnetic field terms are then propagated to recombination at redshift z  =  1088 via the 

induction equation of magneto-hydrodynamics (MHD) (assuming again perfect conductivity):

∂B

∂η
= ∇× (v × B). (17)

The fluid velocity v is also calculated in first order perturbation theory. The second term of 

equation (8) contains no time derivative of the potential and is therefore evaluated at recom-

bination (z  =  1088).

We illustrate the steps of the calculation in figure 1.

2.3. Simplifications

This calculation contains simplifying assumptions to keep the evolution equation  for the 

magn etic field anaytically solvable. For completeness, those shall be discussed here.

The evolution of the potential via equation  (13) is performed for a radiation dominated 

Universe with equation of state (3). The transition to the matter dominated era is modelled 

in an abrupt way with w = 1
3
 before equality and w  =  0 afterwards. As the real transition 

is smooth, scales in the order of the equality horizon maybe affected by the modelling and 

magnetogenesis may even take place even after recombination. A heuristic modelling via e.g. 

hyperbolic functions was not performed as the additional time dependence makes the evo-

lution equations for the potential not analytically solvable. This could be incorporated in the 

model if needed for the price of more contrieved calculations. Related to that, the coupling 

between electrons and photons is modelled via the tight coupling approximation as mentioned 

earlier. Thomson scattering is very efficient for scales larger than the mean free path of the 

photons, which at recombination can be estimated via

dThomson =
1

neaσT

≈ 2 Mpc h−1
 (18)

in comoving scales. As we will see in the next section, our calculation is performed on a ≈
1.3Mpc h−1 grid. Therefore the tight coupling should ideally be expanded to higher order in 

case of the Thomson coupling.

The above mentioned shortcomings where overcome by more detailed studies on the 

the generation of primordial magnetic fields via the Harrison mechanism, which have been 

conducted by several authors in the past 15 years. Gopal et al [24] showed that differences 

between electron and photon velocities lead to source terms for magnetic field generation. 

Saga et  al [25] and Fenu et  al [18] have refined this calculation by including anisotropic 

stresses stemming from the imperfect Thomson coupling. A similar calculation was done by 

Christopherson et  al [26] first on the generation of vorticity in second order and later on 

the subsequent magnetic field generation [27] via the introduction of non-adiabatic pressure 

terms.

All of these approaches give source terms on which the Harrison mechanism can oper-

ate. The corresponding equations can in principle all be solved given suitable initial condi-

tions. Only the approach shown above, however, gives an analytically integrable expression. 

All other models require the iterative solution of the respective magnetic field evolution 

equation in combination with all relevant quantities throughout the whole plasma era of the 

Universe up until recombination. This requires considerable computational effort to be imple-

mented on the 5123 voxel grid used in this work. For this reason, and as the field strengths 

S Hutschenreuter et alClass. Quantum Grav. 35 (2018) 154001
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which were found in [18, 24, 25, 27, 28] are comparable to the ones found by Mataresse [14], 

we find the above mentioned simplifications acceptable. Fidler et al [28] show that the exact 

treatment of the Thomson coupling gives rise to significant magnetogenesis even after last 

scattering, which highlights that a better modelling around recombination would be desirable, 

given that one can shoulder the resulting computational complications.

3. Data

This work builds upon three dimensional dark matter density fields previously inferred from 

the 2M++ galaxy compilation [29] via the BORG algorithm [30]. The BORG algorithm is 

a full scale Bayesian inference framework aiming at the analysis of the linear and mildly-

non-linear regime of the cosmic large scale structure (LSS) [21, 31]. In particular it performs 

dynamical LSS inference from galaxy redshift surveys employing a second order Lagrangian 

perturbation model. As such the BORG algorithm naturally accounts for the filamentary struc-

ture of the cosmic web typically associated to higher order statistics as induced by non-linear 

gravitational structure formation processes. A particular feature, relevant to this work, is the 

ability of the BORG algorithm to infer Lagrangian initial conditions from present observations 

of the galaxy distribution [21, 30, 31]. More specifically the algorithm explores a LSS poste-

rior distribution consisting of a Gaussian prior for the initial density field at a initial scale fac-

tor of a  =  0.001 linked to a Poissonian likelihood model of galaxy formation at redshift z  =  0 

via a second order Lagrangian perturbation theory (2LPT) model (for details see [21, 30, 31]), 

that is conditioned to the 2M++ galaxy compilation [30]. Besides typical observational sys-

tematics and uncertainties, such as survey geometries, selection functions and noise this algo-

rithm further accounts for luminosity dependent galaxy bias and performs automatic noise 

calibration [30]. The BORG algorithm accounts for all joint and correlated uncertainties in 

z = 0 2M + + B

z = 1088 δCDM Brec

z = 3402 ϕeq Beq

z ≈ 1e7 δp ϕp

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 1. An illustration of the implemented algorithm. The ellipses indicate relevant 
redshifts. The labels near the arrows refer to the following steps: (a) dark matter inference 
from galaxy data via BORG, (b) linear dark matter transfer functions (equation (12)), (c) 
translation of dark matter density to potential ϕ (equation (16)), (d) time evolution of 
the potential via equation (13), (e) calculation of the magnetic field (equation (8)), (f) 
induction equation (equation (17)), (g) full MHD solver (see section 4).
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inferred quantities by performing a Markov Monte Carlo chain in multi-million dimensional 

parameter spaces via an efficient implementation of a Hamiltonian Monte Carlo sampler [31]. 

As a result the algorithm provides a numerical representation of the LSS posterior in the form 

of data constrained realizations of the present three dimensional dark matter distribution and 

corresponding initial conditions from which it formed. It is important to remark that each indi-

vidual Markov sample qualifies for a plausible realisation of the LSS. Each sample of the dark 

matter distribution consists of a box with 2563 grid points and 677.7 Mpc h−1 edge length, 

resulting in a resolution of approximately 2.5 Mpc h−1. For one sample of BORG we increase 

the resolution of the grid to 5123 by augmenting the large scale modes with random fluctua-

tions consistent with the known dark matter power spectrum. This sample is then propagated 

into todays configuration via a MHD simulation as explained in the following section. As 

described above we now apply the Harrison mechanism on data constrained initial conditions 

of the Nearby Universe.

4. MHD simulations

The MHD computation is started from the magnetic field generated at z  =  1088 and is evolved 

to z  =  0 using the cosmological code ENZO [32]. ENZO is a grid based code that follows the 

dynamics of dark matter with a particle-mesh N-body method, and a combination of sev-

eral possible shock-capturing Riemann solvers to evolve the gas component [32]. The MHD 

method employed in this paper is the Dedner ‘cleaning’ method [33], which makes use of 

hyperbolic divergence cleaning to keep the (spurious) divergence of the magnetic field as low 

as possible during the computation. The magnetic fluxes across the cells are computed with 

a piecewise linear interpolation method and the fluxes are combined with a Lax-Friedrichs 

Riemann solver, with a time integration based on the total variation diminishing second order 

Runge–Kutta scheme [34]. Thanks to the capabilities of ENZO of selectively refining interest-

ing patches in the domain at higher resolution, we used adaptive mesh refinement (AMR) to 

selectively increase the dynamical resolution in the formation region of galaxy clusters and 

groups, which is necessary to properly resolve structure formation and overcome the effect of 

magnetic field dissipation in converging flows at low resolution [35].

In detail, we apply AMR only in the innermost (120 Mpc h−1)3 region of the simulation, 

centred on the Milky Way location, and allowed for 5 levels of refinement (by increasing the 

resolution of a factor 2 at each level, therefore up to a 25  =  32 refinement) whenever the local 

gas/dark matter density exceeded the mean density of surrounding cells by a factor of 3; the 

procedure is recursively repeated at each AMR level. This ensures that the magnetic field 

evolution in the innermost clusters regions is typically followed with a spatial resolution of 

61–122 kpc h−1 (comoving) within the innermost AMR region of our volume. To confirm the 

consistency of our result, we show a slice through the gas density resulting from the simula-

tion in figure 2. This plot indicates that we reproduce the large scale structure consistently 

with observations.

5. Reconstructing primordial magnetic fields

We will present the results of our work in two steps. First we focus on the statistical properties 

of the field at recombination. By applying the procedure described in the previous sections to 

an ensemble of data constrained initial conditions we can propagate observational uncertain-

ties of the matter distribution as traced by the 2M++ survey to the derived magnetic fields. 

In doing so we arrive at an ensemble of initial magnetic fields which constitutes a numerical 
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description of the magnetic field posterior distribution at redshift z  =  1088 conditional on 

2M++ galaxy data. The goal here is to show how these uncertainties translate onto the calcu-

lated primordial magnetic field and to give scale dependent estimates on correlations and field 

strengths at this epoch.

The second part will show the results after the MHD run at redshift z  =  0. Here we will 

also turn our face on one particular realisation of the primordial magnetic field. We will show 

the large scale primordial magnetic field of some clusters of galaxies as well as the field in the 

close proximity to Earth. The resulting fields are available for download at12.

5.1. Recombination

5.1.1. Means and Variances. To illustrate the uncertainties we show slice plots of the input 

data and the resulting magnetic field strength at recombination in figures 3 and 4. All plots 

are slices through the (677.7 Mpc h−1)3 cube. The first plot shows the field resulting form 

one particular sample of the BORG algorithm. The comoving root mean square (rms) field 

strength is around 10−23 G . The uncertainties are rather large compared to the mean. This is 

a consequence of he sparse data, which rather constrains the large scales than the small ones. 

Structures in the field appear to be rather small, typically with Mpc-scale (see section 5.1.2).

Figures 3 and 4 give an impression of the Bayesian properties of the BORG algorithm, 

which is translated onto our magnetic field realisations. They show the posterior mean and 

variance field of the magnetic field strength generated from 351 samples from the BORG 

posterior distributions. Areas which are highly constrained by data have well distinguish-

able structures in the mean, and have low uncertainty variance. The outer regions are less 

constrained, structures which are well visible in one particular sample are averaged out in the 

mean, and the variance is high.

Figure 2. A slice through the gas density distribution of the innermost region of the 
box averaged over 6 voxels in x direction at redshift z  =  0 as a result of the ENZO 
simulation. The plane is about 1 Mpc h−1 thick. The red crosses indicate the positions 
of galaxies found by the 2M++ survey in the same volume.

12 https://wwwmpa.mpa-garching.mpg.de/∼ensslin/research/data/data.html or https://doi.org/10.5281/zeno-

do.1190925

S Hutschenreuter et alClass. Quantum Grav. 35 (2018) 154001



11

5.1.2. Power spectra. Information on the correlation structure of a scalar field s(x) can be 

gained from the corresponding scalar power spectrum defined as:

〈s(k)s∗(k′)〉P(s) = (2π)3
δ(k − k′)Ps(k) (19)

where the asterisk denotes the complex conjugate. In case of a magnetic field B, the statisti-

cally isotropic and homogeneous correlation tensor is defined as

〈Bi(k)B
∗

j (k
′)〉P(B) = (2π)3

δ(k − k′)Mij(k), (20)

Figure 3. The posterior mean (left) and uncertainty standard deviation field of the dark 
matter overdensities (right) at redshift z  =  1000. This is the mean of the input data for 
our calculation averaged over 351 posterior samples of the matter field as generated by 
BORG. Our galaxy is centered in the middle. Areas close to the center a very pronounced 
in the mean, while areas further away are blurred out during the averaging. This reflects 
the Bayesian nature of the BORG algorithm, as the closer areas are very constrained by 
data, which leads to a relatively narrow posterior distribution in each pixel as reflected 
by the uncertainty variance. Therefore each sample looks similar there. The outer 
regions are barely constrained by data, leading to high uncertainties in the posterior.

Figure 4. The posterior mean (left) and uncertainty standard deviation (right) field of 
the absolute value of the Harrison magnetic field at redshift z  =  1088. Just as in the case 
of the initial data in figure 3, we note a very similar pattern in the mean and variance 
plots for regions closer and further away from Earth. The uncertainties of the density 
fields translate into uncertainties of the magnetic field.
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where the tensor Mij is defined as (see e.g. [19]):

Mij =
1

2

(

δij − k̂ik̂j

)

PB(k) + iǫijkk̂kPH(k). (21)

The helical part PH(k) is assumed to be zero in this work. The magnetic field power spectra 

are therefore just the trace component of the magnetic field power spectrum tensor.

As a consistency check we first show the power spectrum of the initial CDM field and 

the scalar perturbations ϕ through some of the time steps of the algorithm in figures 5–7. 

These plots show the averaged spectra from 351 samples from BORG together with the corre-

sponding uncertainties. We also show the magnetic field power power spectrum in figure 8.

Despite some deviations on very large scales reflecting the uncertainties mentioned in the 

previous section, the spectra agree to a very good level with our expectations. These devia-

tions can be noted in our intitial matter fields coming from the BORG algorithm (figure 5) and 

further on in all the other averaged power spectra. We note a clear k−3 dependence in the pri-

mordial potential and matter power spectrum corresponding to an approximately unity spec-

tral index as expected for uncorrelated and scale invariant structures [36, 37]. We can compare 

the spectrum with the Planck results as a consistency check, see table 2 and the dashed line 

in figure 6.

The potential power spectrum at matter-radiation equality drops shortly above 

k = 0.1 Mpc−1 h, indicating the size of the horizon at that time. At small scales, the spectrum 

shows oscillations in Fourier space, which stem from the functional form of the potential 

evolution equation in equation (13). Physically speaking, these are the Baryon-accoustic oscil-

lations (BAO’s) induced by horizon crossing during the radiation epoch. The uncertainties 

again agree with the initial dark matter spectrum. The resulting power spectrum of the magn-

etic field is plotted in figure 8. It rises for small k-values with approximately k3.5 as expected 

from our discussion in section 2 and peaks at kpeak ≈ 2 · 10−1 Mpc−1 h. The plot shows little 

‘bumps’ on small scales, which are remnants of the oscillating potential in the radiation epoch. 

At this point it shall also be noted that in the time frame of our calculation any turbulence due 

to primordial velocity perturbations is not relevant. In [39] the authors show that given these 

perturbations the very Early Universe has Reynolds numbers in the range of 103. This then 

gives the perfect framework for a small-scale dynamo to amplify the magnetic seed fields 

originating from the Harrison effect to fields with strengths of approximately 10−15 G , but 

with typical correlation lengths of the order of parsecs. Given the Mpc resolution of our grid, 

this is not relevant for this work.

5.1.3. Scale dependent mean field. To give a more intuitive picture of the expected magnetic 

field strengths, we convolve the magnetic field power spectrum with a Gaussian kernel in posi-

tion space to get an estimate for B given a scale of reference λ.

B2
λ
=

1

(2π)3

∫

PB(k) e−
k2

λ
2

2 d3k. (22)

The result of this operation is shown in figure 9. For scales reaching from 2.65 Mpc h−1 

to ≈ 10 Mpc h−1 the magnetic field strength weakly declines and has a typical strength of 

approximately 10−23 G . For scales larger than 10 Mpc h−1, Bλ roughly scales as

Bλ ∼ λ
−2.5. (23)

The field strength reaches from 10−23 G  at the smallest scales just over 1 Mpc h−1 to less than 

10−27 G  at scales over a 100 Mpc h−1. This information is of course closely related to the 

magnetic field power spectrum.
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5.2. Today

5.2.1. Field strength and correlation structure. In figure 10 we depict the power spectrum 

of the magnetic field today for one sample of the BORG posterior. We show the complete 

spectrum as well as the void power spectrum inferred via negleting dens voxels with gas den-

sity ρ > 3 · ρ and the critical filter technique [40], which assumes that the unmasked regions 

are typical for the whole volume. The BAO signature and most small structures have been 

destroyed during structure formation, leading to a mostly red spectrum. For the complete 

spectrum and the voids, most power still lies on scales of about kpeak ≈ 10−1 Mpc−1 h. The 

Figure 5. The matter power spectrum at z  =  103. This is the spectrum of the input 
data. The red line is the mean averaged over the 351 samples. The grey area gives the 
uncertainty in the spectrum.

Figure 6. The power spectrum of the primordial scalar perturbations at redshift z  =  107 
as extracted from the cosmic structure reconstruction by [21]. The dashed black line 
indicates the scale invariant spectrum normalized with the Planck amplitude parameter 
As, see table 2.
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Figure 7. The power spectrum of the scalar perturbations at redshift z  =  3402 at the 
end of the radiation dominated epoch. The oscillations in the spectrum are the Baryon-
Accoustic Osclillations (BAO).

Figure 8. The power spectrum of the magnetic field at redshift z  =  1088 just before 
recombination. The spectrum is defined of a vector field is defined in equations (20) and 

(21). The spectrum peaks at approximately  ≈3 · 10−1 Mpc−1 h.

Table 2. Comparison of inflation parameters provided by the Planck collaboration [38] 
and as inferred from the samples used in this work.

Planck (2015) This work

ln
(

1010As

)

3.064 ± 0.023 ≈3.1

ns 0.9667 ± 0.0040 ≈1
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morphology of the complete power spectrum is rather similar to the void power spectrum, 

which is expected, as they compromise the largest volume share of the Universe and calculat-

ing a power spectrum is effectively a volume averaging procedure. The decrease at large scales 

again reflects the solenoidality of magnetic fields (∇ · B = 0) for uncorrelated signals [19], as 

the large scale structure has a characteristic size and therefore larger scales are not strongly 

causally connected via gravity.

Figure 9. Scale averaged magnetic field at recombination. This is the result of 
equation (22).

Figure 10. The magnetic power spectrum at z  =  0, defined according to equation (20). 
The black line indicates the spectrum for the complete magnetic field in the box. The 
green dashed line indicates the void power spectrum, computed only from a part of the 
box. Here we considered voxels with gas density ρ < 3 · ρ as void voxels. The void 
power spectrum was inferred using the critical filter technique [40], which assumes that 
the unmasked regions are typical for the whole volume.
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In figure 11 we show the joint probability function of matter density and magnetic field 

strength. Most of the probability mass lies on rather small densities, with varying magnetic 

field strengths. Large densities tend to be associated with large magnetic field strength. The 

lower bound of this plot follows a B ∝ ρ
2
3  proportionality, which was already found in pre-

vious simulations, e.g.: [41]. All in all this leads to the picture that the magnetic field in 

the low density areas which are relatively little affected by structure formation mostly retain 

their correlation structure and morphology. After recombination, the field is frozen into the 

plasma. Therefore the field strength scales with a(t)−2, explaining the field strengths some-

where around 10−29 G. Within dense structures the field is at least amplified up to 10−26.5 G. 

We underline this view with specific examples in the next chapter.

5.2.2. Field realisations. In figures 12 and 13 we show structures in the magnetic field and the 

density field which belong to different morphological features of the Local Universe. We find 

that the magnetic field strength strongly correlates with the gas density in all of these struc-

tures, consistent with a frozen-in behaviour of magnetic fields. In very dense clusters such as 

Virgo and Perseus-Pisces in figure 12 the magnetic field morphology seems to be driven by 

the infall of matter on the cluster. Of course the simulation is too coarse to correctly cover the 

structure formation and magnetic field behaviour on small scales within these structures, for 

this reason any small scale structures in these plots are highly uncertain. Also the maximum 

magnetic field strength maybe higher, as we cannot resolve any potential dynamo mech anism 

during structure formation. Magnetic field amplification of a primordial seed field via tur-

bulence and dynamos in clusters and galaxies is discussed in e.g. [42–45]. In underdense 

regions as depicted in the upper image in figure 13, we observe a morphology similar to the 

initial conditions, with a charcteristic scale of a few Mpc/h. Apart from the aforementioned 

a(t)−2 dependence of the field strength, the morphology seems to relatively unaffected, which 

is consistent with our view of a ‘frozen’ magnetic field. In the lower image of figure 13 we 

Figure 11. Joint histogram of the magnetic field and matter density at redshift z  =  0 

with 5122 bins. The dashed line indicates the B ∝ ρ2/3 relation resulting from the flux 

freezing of the magnetic field lines. This relation is also observed in simulations starting 

with unconstrained magnetic field conditions, see e.g. [41].

S Hutschenreuter et alClass. Quantum Grav. 35 (2018) 154001



17

show the magnetic field in a slice around our galaxy. The field here is slightly amplified up to 

field strengths of 10−28 G , as a slight overdense structure seems to have formed in the region, 

which may correspond to the Local Group. The Local Group has a typical scale of about 2 

Mpc, which is slightly below the smallest data constraint scale in our calculation, making the 

association difficult.

Figure 12. The magnetic field and gas matter density in a slice trough the Virgo 
(above) and the Perseus-Pisces (below) cluster. The plots shows the gas matter density 
overplotted with the y  −  z components of the magnetic field vectors. All colorbars 
have a logarithmic scaling. The coordinates are defined via the equatorial plane with 
reference to the galactic centre. The choice of the slice is purely for artistic reasons.
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5.2.3. Full sky maps. We can use the results of the ENZO simulation to estimate the expected 

Faraday rotation of linear polarized light under the influence of a magnetic field. Faraday rota-

tion measure (RM) is calculated via

RM =
e3

2πm2
ec4

∫ Rmax

0

nth B dr (24)

in cgs units (see e.g. [48]). It is essentially a line of sight (LOS) integration up to a distance 

Rmax over the magnetic field B weighted with the electron number density nth. This can be 

Figure 13. The magnetic field and gas matter density in an underdense region (above) 
and around the galactic center in the x  −  y plane. The plots shows the gas matter density 
overplotted with the x  −  y components of the magnetic field vectors. All colorbars 
have a logarithmic scaling. The coordinates are defined via the equatorial plane with 
reference to the galactic centre.
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Figure 14. The magnetic field strength averaged over line of sights in units of Gauss for 
sources within a distance of 60 Mpc/h from Earth. The plot is in galactic coordinates. 
The two dominant clusters in this image are Persues Pisces in the middle left of the 
image and Virgo close to the North pole. Close ups of both structures are provided in 
figure 12.

Figure 15. A polarization-like plot visualizing the magnetic field morphology 
perpendicular to the LOS. This plot was generated using the ‘Alice’ module of the 
HEALPix software13 [46] and the linear integral convolution algorithm [47]. The plot 
is in galactic coordinates.

13 http://healpix.sourceforge.net
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computed using the publicly available Hammurabi Software [49], which performs the neces-

sary LOS integration over a sphere around the Earth14. The result can be seen in figure 16. The 

same software is also able to calculate the dispersion measure of electrons (DM) and the LOS 

averaged absolute magnetic field strength,

DM =

∫ Rmax

0

nth dr, (25)

shown in figures 17 and 14. These maps nicely trace dense structures in the sphere over which 

we integrated. We also used the output of Hammurabi for the LOS perpendicular components 

of the magnetic to generate a polarization like plot in figure 15, which traces the magnetic 

field morphology in the sphere. Comparing the plots we see that areas of large RM correspond 

to large electron densities, as we expect given the linear nth dependence of RM. We also note 

again that the magnetic field strength and morphology correlates with the density.

Of course the expected signal is beyond any chance of measurability, and in the realistic 

case we expect that the memory of any such tiny seed field within clusters is entirely lost due 

to the dynamo amplification process [50], which is expected to be much more efficient on 

scales smaller than what is resolved at our resolution here. The void signal, however, although 

a few order of magnitudes smaller, may be relatively undisturbed by such processes, at least 

away from other possible sources of magnetisation, like dwarf galaxies [51].

Figure 16. The primordial magnetic field Faraday rotation measure for polarized 
sources located within a distance of 60 Mpch−1 from earth in units of radians per 
square metre. The plot is in galactic coordinates. The colormap is logarithmic on both 
the negative and the positve regime with a linear scaling between  −10−29 and 10−29 
rad·m−2, connecting both parts of the scale. We used the rescaled gas mass density as 
an estimate for the electron number density.

14 We used a reimplementation of Hammurabi (Wang et al, in prep.); https://bitbucket.org/hammurabicode/hamx
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6. Summary and discussion

We calculated the large scale primordial magnetic field originating from the Harrison effect 

[15] and second order vorticity generation in the radiation dominated era. This is the first time 

a data constraint reconstruction of the remnant of a primordial magnetic field was achieved.

For that, we used our knowledge about the large scale structure in the Universe coming 

from the 2M++ galaxy survey and the BORG algorithm to infer the corresponding density 

distributions deep in the radiation epoch. Using an existing formalism for the magnetic field 

generation from these initial conditions, we then found at recombination a field coherent on 

comoving scales in the 10 Mpc h−1 regime, with a maximum field strength of about 10−23 G  at 

these scales. By means of a MHD simulation we evolved the magnetic field through structure 

formation and came up with field strengths higher than  ≈10−27 G  and  ≈10−29 G  in clusters 

of galaxies and voids, respectively. We specifically showed the structure of the field around 

well known structures in the Local Universe, such as the Virgo and Perseus Pisces cluster.

The above results, including the statistical properties of the magnetic fields, the morphology 

of the field on above Mpc scales and the expected observables shown in figures 16 and 17 rely 

only on the assumption of a ΛCDM cosmology and conventional plasma physics. We introduced 

further simplifications such as the tight coupling approximation and the simplified modelling 

around the radiation matter equality due to computational constraints. In [18, 25], the authors 

calculated the correct evolution equations without these simplifications, leading to slightly dif-

ferent spectra, but comparable magnetic field strengths. Large scale magnetic fields can also 

be produced by more speculative mechanisms for primordial magnetogenesis, by transferring 

magn etic energy of small scaled magnetic fields to larger scales via an inverse cascade and 

by magnetogenesis driven by radiation pressure during reionisation [52]. For this reason, we 

Figure 17. The electron dispersion measure in units of parsecs per cubic centimetre for 
sources within a distance of 60 Mpc/h from Earth. The plot is in galactic coordinates. 
We used the rescaled gas mass density as an estimate for the electron number density. 
The two dominant clusters in this image are Persues Pisces in the middle left of the 
image and Virgo close to the North pole. Close ups of both structures are provided in 
figure 12.
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view our results as a lower limit on the magnetic field strength in the Local Universe. This is 

especially true for clusters, as for once small scales are not strongly constraint by our data and 

moreover we where not able to resolve the relevant scales for magnetic field amplification via 

turbulence, as predicted by e.g. Subramanian et al [53]. We did arrive at magnetic field strengths 

which could act as a seed field for the galactic dynamo [54], however given the fact that we can-

not adequately resolve sub-Mpc scales and galactic magnetic fields maybe explained without a 

primordial seed, we refrain from giving an estimate to which extent the Harrison magnetic field 

could have influenced galactic magnetic fields. A possible explanation for the non-observation 

of TeV-photons from blazars are void magnetic fields of strength 10−15 G [1, 12], among other 

explanations [5]. If these fields exist, our prediction is not sufficient to explain them.

Considering the rather conservative assumptions made in our calculations, we can provide 

a credible lower bound on the strength of the large scale magnetic field today and an impres-

sion of its expected morphology. The logical next step building up on this work would be a 

refinement of the calculation via the implementation of more sophisticated formalisms for the 

generation of primordial magnetic fields, especially including a more accurate baryon photon 

interaction treatment.
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