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ABSTRACT

The key to understand the nature of dark energy lies in our ability to probe the distant

Universe. In this framework, the recent detection of the kinematic Sunyaev–Zel’dovich (kSZ)

effect signature in the cosmic microwave background obtained with the South Pole Telescope

(SPT) is extremely useful since this observable is sensitive to the high-redshift diffuse plasma.

We analyse a set of cosmological hydrodynamical simulation with four different realizations

of a Hu & Sawicki f(R) gravity model, parametrized by the values of f R,0= (0, −10−6, −10−5,

−10−4), to compute the properties of the kSZ effect due to the ionized Universe and how they

depend on f R,0 and on the redshift of reionization, zre. In the standard General Relativity limit

(f R,0= 0) we obtain an amplitude of the kSZ power spectrum of DkSZ
3000= 4.1µK2 (zre= 8.8),

close to the +1σ limit of the D
kSZ
3000= (2.9 ± 1.3)µK2 measurement by SPT. This corresponds

to an upper limit on the kSZ contribute from patchy reionization of D
kSZ,patchy
3000 < 0.9µK2 (95

per cent confidence level). Modified gravity boosts the kSZ signal by about 3, 12, and 50

per cent for f R,0=(− 10−6, −10−5, −10−4), respectively, with almost no dependence on

the angular scale. This means that with modified gravity the limits on patchy reionization

shrink significantly: for f R,0=−10−5 we obtain D
kSZ,patchy
3000 < 0.4µK2. Finally, we provide an

analytical formula for the scaling of the kSZ power spectrum with zre and f R,0 at different

multipoles: at ℓ = 3000 we obtain D
kSZ
3000 ∝ zre

0.24
(

1 +

√

∣

∣f R,0

∣

∣

)41

.

Key words: methods: numerical – cosmic background radiation – dark ages, reionization, first

stars – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

The origin of the accelerated expansion of the Universe has become

a longstanding problem in cosmology and in theoretical physics in

general: we are about to mark the 20th anniversary of the first de-

tection (by means of the dimming of distant supernovae (Riess et al.

1998; Schmidt et al. 1998; Perlmutter et al. 1999) of such pivotal

discovery that shaped the development of a whole field of research,

and that provided support and motivations for the design and fund-

ing of several challenging and costly observational enterprises to

survey large portions of the sky, both from the ground (DES, LSST,

HetDEX) and from space (Euclid, see Laureijs et al. 2011).

⋆ E-mail: mauro.roncarelli@unibo.it

On the theoretical side, the past two decades have been charac-

terized by widespread efforts to provide a more solid and natural

framework for the accelerated expansion with respect to the highly

fine-tuned (and yet most economic) option of the cosmological con-

stant $ that characterizes the current standard cosmological model.

Possible alternative scenarios have attempted to invoke the slow roll

of a light scalar field (known as Quintessence Wetterich 1988; Ratra

& Peebles 1988) and its possible couplings to the matter sector (see

e.g. Wetterich 1995; Amendola 2000; Amendola, Baldi & Wetterich

2008) as an explanation for the energy scale of the Dark Energy and

for the relatively recent onset of the accelerated expansion, known

as the fine-tuning and coincidence problems, respectively.

An alternative option amounts to considering possible deviations

from the standard theory of gravity in the form of extensions to

General Relativity (GR) that may result in an effective weaken-

ing of gravity at cosmological scales and late cosmic epochs. Such

C⃝ 2018 The Author(s)
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2498 M. Roncarelli, M. Baldi and F. Villaescusa-Navarro

approach, generally known as Modified Gravity, has been exten-

sively explored over the past years (see e.g. Amendola et al. 2013)

allowing to identify and classify a wide range of geometric theo-

ries of gravity that deviate from standard GR still providing healthy

equations of motion and sensible cosmological evolutions. As any

deviation from the predicted behaviour of GR within the Solar Sys-

tem is very tightly constrained by local tests of gravity (see e.g.

Bertotti, Iess & Tortora 2003; Will 2006), all such theories must

rely on some mechanism to recover standard GR within the local

environment, which go under the general term of screening (see

e.g. Vainshtein 1972; Damour & Polyakov 1994; Khoury & Welt-

man 2004; Nicolis, Rattazzi & Trincherini 2009; Hinterbichler &

Khoury 2010). Unfortunately, when such constraining conditions

are applied, most modified gravity theories still require a fine-tuned

low-energy scale to reproduce the observed background expansion

history, thereby failing to ease the problems of the cosmological

constant. None the less, these scenarios still provide a theoretically

consistent framework to test gravity on large scales and constrain

possible deviations from the standard theory of GR. Besides the

Solar System tests, the recent detection of the gravitational wave

event GW170817 (Abbott et al. 2017) and of its electomagnetic

counterpart has also severely constrained the landscape of possible

modified gravity theories (see e.g. Baker et al. 2017; Creminelli &

Vernizzi 2017; Marı́a Ezquiaga & Zumalacárregui 2017; Sakstein

& Jain 2017) by ruling out with a single observation all modified

gravity models featuring a non-negligble difference of the propa-

gation velocities of electromagntic and gravitational signals (see

also Lombriser & Taylor 2016; Lombriser & Lima 2017). After this

selection, only a bunch of modified gravity scenarios can be still

considered as viable candidates for an extension of GR at cosmo-

logical scales (see e.g. fig. 2 in Marı́a Ezquiaga & Zumalacárregui

2017).

The most widely studied example of such models still passing

the GW170817 scrutiny is given by f(R) gravity (Buchdahl 1970),

where the standard Ricci curvature term R in the Einstein–Hilbert

Action is extended by an additional function f(R):

S =

∫

d4x
√−g

(

R + f (R)

16πG
+ Lm

)

. (1)

In equation (1) G is Newton’s gravitational constant, g is the deter-

minant of the metric tensor gµν , and Lm is the Lagrangian density of

all matter fields. The quantity fR ≡ df(R)/dR represents a new scalar

degree of freedom that propagates as the carrier of an additional

force. In the weak-field and quasi-static limit, this scalar field obeys

an independent dynamic equation1(see Hu & Sawicki 2007):

∇2fR =
1

3
(δR − 8πGδρ) , (2)

where δR and δρ are the relative perturbations in the scalar curvature

and matter density, respectively.

Different choices for the functional form of f(R) in equation (1)

may then lead to a large variety of effects on both the background

expansion history of the Universe and the growth of its density

perturbations, giving thus rise to possible characteristic observa-

tional signatures in the resulting large-scale structure (LSS) for-

mation. Among the many ways to parametrize the variety of pos-

sible f(R) forms, the most common approach (see Section 2 for

a more detailed discussion) adopts the mean value of fR at the

1For the formulas presented in this section, we work in units where the speed

of light is set to unity, c = 1.

present epoch, f R,0, as the key parameter to describe deviations

from standard GR, and uses it as a reference to define observational

constraints.

The wide range of diverse phenomenological effects that modi-

fied gravity models imprint on gravitating systems at different scales

– from the dynamics of the Solar System to the expansion of the

Universe and the formation LSSs (see e.g. Lombriser 2014, for an

excellent recent review on observational constraints on Chameleon

modified gravity theories) – provide several complementary ways

to constrain deviations from standard GR. In particular, f(R) gravity

is already quite tightly constrained by the properties of small-scale

structures, from the size of the Solar System (see e.g. Hu & Saw-

icki 2007; Lombriser, Koyama & Li 2014) to that of dwarf galaxies

(see e.g. Jain & VanderPlas 2011; Jain, Vikram & Sakstein 2013;

Vikram et al. 2013), with upper bounds on the scalar amplitude

|f R,0| of 8 × 10−7 and 1 × 10−7, respectively. Despite these very

tight constraints, f(R) gravity models with larger |f R,0| values still

remain an interesting target for LSS phenomenology, as constraints

on larger scales are significantly looser (see e.g. Lombriser 2014;

Hu et al. 2016), and since including massive neutrinos in the LSS

modelling significantly loosens the bounds (Baldi et al. 2014). Fur-

thermore, simple extensions of the basic f(R) scenario – e.g. by

considering an effective decoupling of the scalar field from ordi-

nary baryonic matter – would evade the tightest local bounds and

be mostly constrained by LSS formation.

In addition to what already stated, potentially new constraints on

f R,0 may be provided by the kinematic Sunyaev–Zel’dovich (kSZ)

effect of the LSS, i.e. the Doppler-shift induced on the cosmic mi-

crowave background (CMB) photons by the motion of free electrons

along the line of sight. In fact, the kSZ effect is expected to receive

significant contribution by high-redshift gas and is affected by mo-

tions on all physical scales (see e.g. Roncarelli et al. 2007; Battaglia

et al. 2010; Shaw, Rudd & Nagai 2012; Roncarelli, Villaescusa-

Navarro & Baldi 2017), thus being potentially influenced by any

type of modification of the gravitational force. This becomes par-

ticularly interesting after the first measurement of the amplitude of

kSZ-driven temperature fluctuations at ℓ = 3000 achieved by the

South Pole Telescope (SPT) team. Due to the combination of the

thermal Sunyaev Zel’dovich (tSZ) effect bispectrum from the SPT-

SZ survey (800 deg2) with the full 2540 deg2 SPT field, George

et al. (2015) obtained a >2σ detection of the kSZ power spec-

trum amplitude, i.e. DkSZ
3000= (2.9 ± 1.3)µK2 (see also a previous

measurement in a smaller area by Crawford et al. 2014). Consid-

ering that the LSS plasma at the epoch of reionization (EoR) is

expected to provide a significant, albeit uncertain, contribution to

the kSZ power (see e.g. Iliev et al. 2007; Battaglia et al. 2013; Iliev

et al. 2014, and references therein), this value is sufficiently low to

provide meaningful constraints on reionization models, despite the

relatively large errors. In our previous work (Roncarelli et al. 2017)

using hydrodynamical simulations we predicted a kSZ power spec-

trum amplitude of DkSZ
3000 = 4.0 µK2 from the ionized Universe in the

lambda cold dark matter ($CDM) model (assuming cosmological

parameters from Planck Collaboration XIII 2016). This translates

into an upper limit on the contribution form ‘patchy’ reionization of

D
kSZ,patchy

3000 <1.0 µK2 (95 per cent C.L.), which is interestingly close

to conservative predictions (see e.g. Park et al. 2013) and, possi-

bly, enough to rule out some of the most extreme models (see e.g.

Mesinger, McQuinn & Spergel 2012; Mesinger, Ferrara & Spiegel

2013). In this scenario, modified gravity models are expected to

increase the gas peculiar velocities with respect to the GR model,

thus boosting the kSZ power, and making it a new and potentially

competitive probe.

MNRAS 481, 2497–2506 (2018)
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The kSZ effect and f(R) 2499

This paper is the second in a series of works (following Roncarelli

et al. 2017, Paper I, hereafter, on the effect of massive neutrinos)

aimed at describing the properties of the kSZ effect from the LSS in

different cosmological models beyond the standard $CDM. Here,

we present the first analysis of the kSZ effect signal derived from

a set of cosmological hydrodynamical simulations that account for

the effect of modified gravity with a state-of-the-art numerical code

(MG-GADGET, Puchwein, Baldi & Springel 2013). Starting from the

physical properties of the baryons in the simulations, we derive the

kSZ signal by constructing Doppler b-parameter maps integrated

in the past light-cone from z = 0 down to the EoR, and compute

the amplitude of the power spectrum (1000 < ℓ < 20 000) in the

standard GR case and assuming different values of f R,0. We also

study the degeneracy between zre (the redshift at which reionization

occurs) and f R,0 and, by comparing our predictions with the results

of George et al. (2015), we derive upper limits on D
kSZ,patchy

3000 in

different modified gravity scenarios.

This manuscript is organised as follows. In the next section, we

review the main definitions of modified gravity adopted for our

work. In Section 3, we describe our simulations and our modelling

of the kSZ effect. We discuss in Section 4 our results and draw our

conclusions in Section 5.

2 BA S I C D E F I N I T I O N S O F M O D I F I E D

G R AV I T Y T H E O RY

Here we review the main definitions of the modified gravity formal-

ism adopted in our work, together with the definition of f R,0. For a

more detailed description of this class of models, we refer he reader

to some excellent reviews on the subject (De Felice & Tsujikawa

2010; Sotiriou & Faraoni 2010).

As stated above, in order to pass observational tests and reproduce

the observed expansion history the choice of the functional form of

f(R) must fulfil some specific constraints. The most widely studied

case for such constrained f(R) functions is represented by the form

(Hu & Sawicki 2007):

f (R) = −m2
c1

(

R

m2

)n

c2

(

R

m2

)n
+ 1

, (3)

where m2 ≡ H 2
0 )M is a mass scale while c1, c2, and n are non-

negative constant free parameters of the model. The choice of equa-

tion (3) has the appealing feature of allowing to recover with ar-

bitrary precision the expansion history of a $CDM cosmology by

choosing c1/c2 = 6)$/)M under the condition c2(R/m2)n ≫ 1, so

that the scalar field fR takes the approximate form:

fR ≈ −n
c1

c2
2

(

m2

R

)n+1

. (4)

In this work we will restrict our analysis to models with n = 1, so

that c2 remains the only free parameter which can be also expressed

in terms of the mean value of the scalar degree of freedom at the

present epoch, f̄R0. We will then define our f(R) cosmologies by

their f̄R0 value in the following.

In f(R) gravity, the dynamical gravitational potential * corre-

sponding to the time–time metric perturbation obeys the equation

(Hu & Sawicki 2007; Winther et al. 2015):

∇2* =
16πG

3
a2δρ − 1

6
a2δR , (5)

which can be rewritten as:

∇2* = ∇2*N − 1

2
∇2fR (6)

Table 1. Parameter values of our set of simulations. First column: simula-

tion name. Second column: comoving box size, in h−1 Mpc. Third column:

total number of particles (DM + baryons). Fourth and fifth column: masses

of the DM and baryonic particles, respectively, in units of 109 h−1M⊙. Sixth

column: value of f R,0. All simulations assume a flat cosmology with )$ =

0.6866, )m = )CDM + )b = 0.3134, )b = 0.049, H0 = 67 km s−1 Mpc−1

(h = 0.67), ns = 0.96, and As = 2.13 × 10−9 (corresponding to σ 8= 0.834 at

z = 0 for the GR simulation). The physical scheme assumed for the baryonic

component includes radiative cooling, UV background, and star formation

following the ‘quick-Lyman-α’ method (see text for details). These param-

eters are defined so that the GR simulation matches the N0 simulation of

Paper I.

Simulation Lbox Np mp,cdm mp,b f R,0

( h−1 Mpc) (109 h−1M⊙)

GR 240 2 × 5123 7.56 1.40 0

FR-6 240 2 × 5123 7.56 1.40 −10−6

FR-5 240 2 × 5123 7.56 1.40 −10−5

FR-4 240 2 × 5123 7.56 1.40 −10−4

where *N is the standard Newtonian potential. From equation (6)

it follows that the total gravitational force in f(R) gravity is dictated

by a modified potential * = *N − 1
2
fR (while the lensing potential

, – i.e. the space–space perturbation of the metric tensor – is not

affected by the modification of gravity).

The fifth-force – proportional to ∇⃗fR – is suppressed for scales

larger than the Compton wavelength of the field, which is given by

λC = a−1
√

3dfR/dR = a−1

√

6 |fR0|
R̄2

0

R3
. (7)

This sets a maximum scale for the effects of the modification of

gravity, thereby introducing a scale dependence in the model. Ad-

ditionally, due to the non-linear dependence of δR on fR, the theory

exhibits the so-called Chameleon screening mechanism (Khoury &

Weltman 2004): the Compton wavelength λC shrinks (or equiva-

lently the scalar field mass mfR
∼ 1/λC increases) in high-density

environments, where the fifth-force propagation is then confined

to arbitrarily short distances. This provides a mechanism to evade

Solar System constraints on gravity (see e.g. Bertotti et al. 2003;

Lombriser 2014; Will 2006)

3 M O D E L L I N G TH E E F F E C T O F f(R) O N TH E

K S Z SI G NA L

3.1 The hydrodynamical simulations

As mentioned above, for our simulations we have used the MG-

GADGET code (Puchwein et al. 2013), a modified version of GADGET-

III (Springel 2005) that includes the effects of the modified potential

and its associated Chameleon screening mechanism. MG-GADGET

solves equation (2) for a generic density field produced by a set

of discrete particles by means of a Newton–Gauss–Seidl iterative

scheme, and computes the total force on each particle via equa-

tion (5) by including the curvature perturbation δR (derived accord-

ing to equation 2) in the gravitational source term. We refer the

interested reader to the MG-GADGET code paper (Puchwein et al.

2013) for an extended presentation of the numerical implementa-

tion.

In this work we will consider four different hydrodynamical sim-

ulations, whose characteristics are summarized in Table 1. The

parameters have been chosen to mimic exactly the configuration of

our first simulation set of Paper I (dubbed N0, N15, N30, and N60)

MNRAS 481, 2497–2506 (2018)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

-a
b
s
tra

c
t/4

8
1
/2

/2
4
9
7
/5

0
8
6
0
8
7
 b

y
 S

is
te

m
a
 B

ib
lio

te
c
a
rio

 d
'A

te
n
e
o
 - U

n
iv

e
rs

ità
 d

e
g
li S

tu
d
i d

i B
o
lo

g
n
a
 u

s
e
r o

n
 0

3
 D

e
c
e
m

b
e
r 2

0
1
8



2500 M. Roncarelli, M. Baldi and F. Villaescusa-Navarro

on the effect of massive neutrinos, to allow for a direct comparison.

Besides the GR simulation that corresponds to the standard $CDM

scenario (f R,0= 0), we run three other simulations, dubbed FR-6,

FR-5, and FR-4, with f R,0= (− 10−6, −10−5, −10−4), respectively.

While the largest of these values is already ruled out (see Section 1)

by other probes (even though it was never tested before using the

kSZ effect alone, as we will do in our analysis) the other models

considered in this work are still marginally consistent with the most

recent observational constraints and are widely employed by the

community to test f(R) gravity phenomenology.

Our simulations evolve a periodic distribution of 5123 CDM par-

ticles and an equal number of baryonic particles, in a cosmological

box of 240 h−1 Mpc per side, from a starting redshift of zi = 99.

Initial conditions have been generated by displacing particles from

a homogeneous cartesian grid according to the Zel’dovich approxi-

mation (Zel’dovich 1970) in order to obtain a random realization of

the linear matter power spectrum computed with the public Boltz-

mann code CAMB (Lewis, Challinor & Lasenby 2000) for the set

of cosmological parameters summarized in the caption of Table 1.

As the effects of Modified Gravity are fully screened in the high-

redshift Universe by the high background density, no modification

is needed in such procedure to generate initial conditions for the

f(R) gravity simulations. Thus, all our simulations use exactly the

same starting configuration at zi = 99, and evolve according to dif-

ferent gravity theories from then on. CDM particles are treated as

a collisionless fluid, conversely the thermo- and hydrodynamics of

baryons is modelled through the Smoothed Particle Hydrodynamics

(SPH) scheme included in GADGET-III. Besides adiabatic hydrody-

namical forces, the treatment of SPH particles employs the sim-

plified ‘quick-Lyman-α’ approach (Viel et al. 2005) that converts

every gas particle with density contrast above 1000 and tempera-

ture below 105 K into a collisionless star particle. Such treatment is

much less numerically demanding compared to more sophisticated

implementations of star formation and feedback mechanisms, but

is largely sufficient for the purposes of this work.

Since it does not depend directly on gas temperature (see details

in Section 3.3), the kSZ effect of the ionized Universe is weakly

dependent by the details of the feedback mechanisms affecting the

baryonic component (see e.g. Roncarelli et al. 2007; Trac, Bode &

Ostriker 2011; Shaw et al. 2012, and discussions therein), unlike,

for instance, the X-ray emission or the tSZ effect. When modelling

the kSZ effect with hydrodynamical simulations one has to face two

main challenges: (i) accounting for the amount of baryons that does

not reside in the diffuse ionized state (mainly stars) and (ii) sam-

pling a cosmological volume big enough to sample the large-scale

velocity modes. In this work, we use the same approach adopted

in Paper I: we refer the interested reader to its section 4 for the

details of the implementation and for the relative tests with specific

hydrodynamical simulations used to quantify the systematics. We

summarize here the main points.

(i) We compute the star mass fraction as a function of redshift

in our simulation volumes, f⋆,sim(z), shown in Fig. 1. Since our

cooling scheme is known to overpredict this quantity, we take as a

reference the cosmological star mass fraction, f⋆,obs(z), derived by

Ilbert et al. (2013) with UltraVISTA data and correct the density of

our SPH particles in the following way:

ρg(z) = ρg,sim(z)

[

1 − f⋆,obs(z)

1 − f⋆,sim(z)

]

. (8)

As it can be seen from the plot in Fig. 1, this corresponds to cor-

recting the density by ∼1 per cent at z = 3 and ∼5 per cent at

Figure 1. Global star mass fraction (ρ⋆/ρb) in the whole box volume as

a function of redshift for our set of four simulations (solid lines), with

f R,0=(0, −10−6, −10−5, −10−4) shown in black, blue, magenta, and red,

respectively. The green dot–dashed line is derived from the cosmic stellar

mass density estimated by Ilbert et al. (2013).

z = 0. We have shown in Paper I that this approach allows to cor-

rect the kSZ signal mimicking the desired star formation history

without introducing significant systematics (less than 5 per cent

at ℓ < 5000).

(ii) Given the limited volume of our simulations, we need to

correct for the missing velocity power on scales larger than our

box size of 240 h−1 Mpc. By adopting an approach similar (albeit

slightly more conservative) to Iliev et al. (2007), we have shown in

Paper I (Section 4) that we need to increase the amplitude of the kSZ

power computed from our simulations by 25 per cent2 in order to

account for the missing velocity power. Since this paper has its main

focus in studying the impact of modified gravity on the kSZ effect,

we stress that the results presented here on the relative difference

between our four simulations do not depend on this correction.

However, this point clearly becomes crucial when comparing our

results with SPT data, as we do in Section 4.

3.2 Light-cone construction

The study of the kSZ properties requires a full light-cone re-

construction, accounting for the integrated signal up to the EoR

(see Section 3.3). Here, we review our method described also in

Paper I and already adopted in our previous works (Roncarelli

et al. 2006, 2007, 2010, 2012; Roncarelli, Carbone & Moscardini

2015).

We stack the simulation outputs along the line of sight up to

z = 15, enough to account for the most conservative upper limits in

zre. With our cosmology, this corresponds to a comoving distance

of 7022 h−1 Mpc. The positions of the SPH particles inside each

volume are randomized to avoid the repetition of the same structure

inside the field of view (see details in Paper I). The randomization

process is implemented using the same random seed for all simu-

lations. Since they also share the phases of the initial conditions,

this ensures that the volumes enclosed by the light-cones reproduce

an identical realization of the same structures, albeit with different

2In Paper I we quoted the value of 20 per cent, referring to the missing power

with respect to the total one. This translates into multiplying the simulation

result by 1/(1 − 0.2) = 1.25, thus increasing it by 25 per cent.
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The kSZ effect and f(R) 2501

f R,0, thus eliminating the effect of cosmic variance in the relative

differences. By varying the initial random seed, we generate 50

light-cone realizations for each simulation: this allows to enhance

the statistical robustness of our final results.

3.3 The kSZ effect model

The kSZ effect (Sunyaev & Zeldovich 1970; Ostriker & Vishniac

1986; Vishniac 1987) is the Doppler shift in the CMB spectrum

induced by the peculiar velocity of the free electrons of the LSS.

Unlike for its thermal counterpart, the shift, .T, in the observed

CMB temperature is the same at all frequencies: for a given direc-

tion, identified by the unit vector γ̂̂γ̂γ , one has

.T (γ̂̂γ̂γ ) = −b(γ̂̂γ̂γ ) TCMB , (9)

where TCMB is the CMB temperature and b(γ̂̂γ̂γ ) is the Doppler b-

parameter, defined as

b(γ̂̂γ̂γ ) ≡ σT

c

∫ zre

0

dχ

dz

dz

1 + z
e−τ (z) ne vvve · γ̂̂γ̂γ . (10)

In the previous equation c is the vacuum light speed and σ T the

Thomson cross-section. The intergalactic medium (IGM) physical

properties enter in the integral along the comoving coordinate χ ,

with ne and vvve being the number density and the proper velocity of

the electrons, respectively. Finally, the Thomson optical depth, τ , is

given by:

τ (z) ≡ σT

∫ z

0

dχ

dz′
dz′

1 + z′ ne(z′) . (11)

As already done in Paper I, in order to compute equation (10)

from our GADGET-III simulations, we apply the following equation:

b(γ̂̂γ̂γ ) =
σTXxe

c mp

∫ zre

0

dχ

dz

dz

1 + z
e−τ (z) ρg vvvg · γ̂̂γ̂γ , (12)

where X = 0.76 is the cosmological hydrogen mass fraction, xe

≃ 1.16 is the electron-to-proton ratio and mp the proton mass. As

said in Section 3.1, to account for the fraction of baryons that are

not ionized, we correct the value of the gas mass density, ρg, with

equation (8).

3.4 The mapping procedure

The kSZ physical model described in Section 3.3 and the light-cone

geometry defined in Section 3.2 are employed to create a set of

b-parameter maps that are then used to compute our results. Here,

we summarize the main points of our method.

For a given SPH particle, the physical variables provided by MG-

GADGET that are relevant for the kSZ effect are its mass, mi, its

peculiar velocity, vi, and its smoothing length, hi. In addition, its

3D position in the light-cone determines its sky coordinate γ̂̂γ̂γ i that is

used both to place it in the map and to determine its radial velocity

component vr,i ≡ vi · γ̂̂γ̂γ i. After selecting all the particles whose

‘SPH-sphere’, i.e. the sphere with radius hi, intersects the light-

cone, their integrated b-parameter is computed with the following

formula:

Bi =
X σT xe

mp c d2
A,i

e−τ (zi ) mi vr,i , (13)

dA, i being the angular diameter distance from the observer, and

zi the corresponding cosmological redshift, used to compute τ (zi)

with equation (11). Finally, equation (12) is converted into a dis-

crete sum over all the values of Bi that are distributed in the map

pixels. To this purpose we take advantage of the mapping proce-

dure defined in Ursino, Galeazzi & Roncarelli (2010) that exploits

two mathematical properties of the SPH smoothing kernel: first, the

variables of the 2D integral are separated assuming that the kernel

approximates a Gaussian function, then, since the kernel is a poly-

nomial, each 1D integral is computed analytically. This ensures both

the accuracy and the computational performance of the calculation.

The interested reader may refer to section 3 of Ursino et al. (2010)

for the details of the implementation.

For our purposes, we compute maps of 1.8◦ per side: at z = 15

the corresponding transverse comoving distance is 221 h−1 Mpc,

so that our box size of 240 h−1 Mpc fully encloses the field of

view. Each map is 1024 pixels per side, corresponding to an angular

resolution of 6.33 arcsec. The mapping procedure is repeated for

the 50 light-cones and for the full set of simulations. Moreover, we

compute separately the contribution to each b-parameter map into

20 logarithmically equi-spaced redshift bins, by varying the limits

in the integral of equation (12). On the whole this makes a total of

1000 b-parameter maps for each simulation.

4 R ESULTS

4.1 Global properties of the Doppler b-parameter

We show in Fig. 2 the b-parameter maps for our four simulations

with f R,0= (0, −10−6, −10−5, −10−4). The maps have been ob-

tained from the same light-cone and considering zre= 8.8, i.e. the

nominal value as measured by Planck Collaboration XIII (2016).

Coherently with our analysis of Paper I, the typical values are of the

order of |b| ≈ 10−6, enough to induce CMB temperature increments

or decrements of several µK (see equation 9). The map peaks, as-

sociated to galaxy clusters, can reach values an order-of-magnitude

larger. The larger modes of the size of ∼10 arcmin are connected to

coherent motions in the LSS.

The effect of the different values of f R,0 is not evident by eye. In

order to highlight these differences, we show in Fig. 3 the distribu-

tion of pixel values computed for the four models from the full 50

light-cones (i.e. a total of 5.2 × 107 pixels each). It is clear that the

effect of f(R) models is to increase the chance of larger b-parameter

values: qualitatively this is expected, since the enhancement of the

gravitational force with respect to the standard GR model has a

direct impact on the velocity field. The effect increases for larger

absolute values of f R,0.

We fit all the four distributions with a Gaussian curve, with fixed

normalization and with mean and dispersion, σ b, as free parameters.

The results for the values of σ b, shown in the top right corner of

Fig. 3, range from 1.27 × 10−6 for the GR model to 1.43 × 10−6

for f R,0=−10−4. We have verified empirically that the scaling of

σ b with f R,0 well follows a power-law form of this type:

σb,f R,0
= σb,GR

(

1 +

√

∣

∣f R,0

∣

∣

)12.5

, (14)

where σ b, GR is the value for the GR model. As we will show in

Section 4.2, the dependence with (1 +

√

|f R,0|) does not describe

only the scaling of σ b, but works well also to trace the variations

of the kSZ power spectrum amplitude. Since this is the attempt to

define the scaling of an observational quantity in f(R) models, a

possible interesting test would be to verify if a formula of this type

works also with other important physical or observational quantities,

such as the halo mass function or the tSZ effect power spectrum.
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2502 M. Roncarelli, M. Baldi and F. Villaescusa-Navarro

Figure 2. Maps of the b-parameter as a function of f R,0. Each map is 1.8◦ per side with a resolution of 6.33 arcsec (10242 pixels) and represents the signal

integrated from z = 0 to zre= 8.8 for the same light-cone assuming general relativity (f R,0=0, top-left) and f R,0= (− 10−6, −10−5, −10−4) (top-right,

bottom-left, and bottom-right, respectively). The colour scale indicates in red the sky regions where, on average, the gas is approaching the observer (b < 0

and increase of observed CMB temperature), and in blue where the gas is receding (b > 0 and decrease of observed CMB temperature).

Since this goes beyond the scope of this paper, we leave this for

future works.

4.2 The kSZ effect power spectrum

In order to compare our results with the SPT measurement by

George et al. (2015) we need to calculate the amplitude of the

angular power spectrum of temperature fluctuations induced by the

kSZ effect as a function of the multipole ℓ. We do so by converting

our b-parameter into .T maps with equation (9) and by applying

a Fast Fourier Transform in the flat-sky approximation (see the

detailed explanation in Roncarelli et al. 2007). Following Crawford

et al. (2014), we express the results in terms of

Dℓ ≡ ℓ(ℓ + 1) Cℓ

2π
, (15)

where Cℓ is the definition of power spectrum of temperature fluctu-

ations normally adopted in CMB analyses.

The results of the kSZ power spectrum amplitude as a function

of ℓ for our four models and assuming zre= 8.8 are shown in Fig. 4

(solid lines). Overall the shape of the power spectrum is the same

for all models, with an increase from ℓ = 1000 to 6000 followed by

MNRAS 481, 2497–2506 (2018)
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The kSZ effect and f(R) 2503

Figure 3. Probability distribution function of the b-parameter for different

values of f R,0. Each curve is computed for the whole set of 50 light-cones

(i.e. 50 sets of maps like the ones shown in Fig. 2) with signal integrated up

to zre= 8.8 and pixels of 6.33 arcsec per side. The colour coding is the same

as in Fig. 1. On the top right corner we show the standard deviation of the

best-fitting Gaussian distribution of each curve.

Figure 4. Top panel: angular power spectrum of temperature fluctuations

associated with the kSZ effect (DkSZ
ℓ ) as a function of the multipole ℓ for

different values of f R,0. The curves are computed by averaging over the full

set of 50 light-cones (a total of 162 deg2) and consider the signal integrated

up to zre= 8.8. The colour coding is the same as in Fig. 1. The grey-shaded

area encloses the central 34 light-cones (68 per cent of the total) for the

GR model (f R,0= 0) only. The solid lines indicate values derived directly

from the maps, dashed lines account for the 20 per cent correction due to the

limited box size. The green diamond with error bars shows the measurement

of DkSZ
3000= (2.9 ± 1.3) µK2 by George et al. (2015). Bottom panel: relative

differences with respect to the GR model.

an almost flat ‘plateau’: this is consistent with our previous results

in Paper I and in Roncarelli et al. (2007). As expected, the effect

of modified gravity is to boost the kSZ power: this enhancement

is 2–3 per cent for the FR-6 model, 10–15 per cent for the FR-5,

up to about 50 per cent for the FR-4. Interestingly, the effect of

f(R) appears to be scale-independent, i.e. the relative differences do

not depend on ℓ. On the other hand, the effect of massive neutri-

nos discussed in Paper I showed a clear dependence on the angular

scale, decreasing in intensity for larger ℓ, thus providing a poten-

tial method to remove the degeneracies between the two effects. In

fact, it is now well known that f(R) gravity and massive neutrinos

are strongly degenerate with each other, so that specific combina-

tions of their characteristic parameters (namely f R,0 and 2mν) may

be hardly distinguishable from the standard $CDM model for a

wide range of basic cosmological observables (see e.g. He 2013;

Motohashi, Starobinsky & Yokoyama 2013; ; Baldi et al. 2014;

Wright, Winther & Koyama 2017) and more sophisticated statistics

are needed to disentangle their effects (see e.g. the recent outcomes

of Peel et al. 2018).

Apart from relative differences, a comparison with observational

results requires to apply the correction due to the limited simulation

volume detailed in Section 3.1, that we estimate in an increase of 25

per cent. The corresponding curves with this corrections are shown

with dashed lines in Fig. 4. Most importantly, we predict a value

of DkSZ
3000= 4.1µK2 for the $CDM-GR model, consistent with our

previous result of = 4.0µK2 in Paper I (N0 run, volume corrected),

enough to account for all of the signal of DkSZ
3000= (2.9 ± 1.3)µK2

measured by George et al. (2015), and close to its +1σ limit, even

without including the contribution from patchy reionization. We

discuss the implications of our result on these type of models in

Section 4.4. As expected, our three modified gravity models predict

larger values, with D
kSZ
3000= (4.3, 4.6, 6.2)µK2 for f R,0= (− 10−6,

−10−5, −10−4), respectively. Only the f R,0=−10−4 model is ruled

out at a significant level (2.5σ ), indicating that differences associ-

ated with realistic f(R) model would be difficult to measure with

current CMB instruments.

The predictions on the kSZ effect observables depend on the cos-

mological assumptions (Shaw et al. 2012). Therefore, our results

on f R,0 are degenerate with respect to the standard cosmological

parameters and with the value of the neutrino mass fraction, fν ,

as studied in Paper I. With our set of data it is easy to show the

dependence of our results on the value of zre that, given the cur-

rent measurements errors, constitutes one of the main sources of

uncertainty.

Fig. 5 shows the values of DkSZ
3000 as a function of zre for our four

simulations (solid lines) obtained by varying iteratively the upper

limit in the integral of equation (12). We also show with dashed

lines the volume-corrected values that can be directly compared

with the SPT measurements, with uncertainties, by George et al.

(2015) and the estimate of zre by Planck Collaboration XIII (2016)

(green point with shaded region). These curves show how the kSZ

effect receives significant contribution from both low- and high-

redshift gas, as already discussed in Paper I (see also Roncarelli

et al. 2007; Shaw et al. 2012). Most notably, we observe that the

differences induced by modified gravity are particularly relevant at

later epochs, where non-linear effects play an important role. As

an example, in the 0 < z < 1 range the value of D
kSZ
3000 for the

FR-4 model is double with respect to the GR one: 1.8 and 3.6 µK2

(volume corrected), respectively. On the contrary, differences in the

contribution at earlier epochs are less pronounced.

Following our analysis in Paper I, we provide a more direct

estimate of the dependence with respect to zre and f R,0 by defining

an analytical expression. We observe that our results can be fit with

the following formula:

D
kSZ
ℓ = D

kSZ
GR,ℓ

( zre

8.8

)α
(

1 +

√

∣

∣f R,0

∣

∣

)γ

, (16)

where D
kSZ
GR,ℓ is the result for our GR model. The best-fitting val-

ues of α and γ for the different multipoles are shown in Table 2,

together with the corresponding values of DkSZ
ℓ , with and without

volume correction. These results confirm our previous findings of

MNRAS 481, 2497–2506 (2018)
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2504 M. Roncarelli, M. Baldi and F. Villaescusa-Navarro

Figure 5. Top panel: amplitude of the kSZ power spectrum at ℓ = 3000

(DkSZ
3000) as a function of zre for different values of f R,0. The colour coding

is the same as in Fig. 1. The grey-shaded area encloses the central 34 light-

cones (68 per cent of the total) for the GR model (f R,0= 0) only. The solid

lines indicate values derived directly from the maps, dashed lines account for

the 25 per cent correction due to the limited box size. The green diamond with

error bars (1σ ) and green-shaded area shows the results of zre= 8.8+1.7
−1.4 and

D
kSZ
3000= (2.9 ± 1.3) µK2 by Planck Collaboration XIII (2016) and George

et al. (2015), respectively. Bottom panel: relative differences with respect to

the GR model.

Table 2. Amplitude of the kSZ effect power spectrum, DkSZ
ℓ , and its depen-

dence with zre and f R,0. First column: multipole ℓ. Second column: value

of DkSZ
ℓ , in µK2, obtained assuming GR (f R,0= 0), computed averaging

over the 50 light-cones (3.24 deg2 each). Third column: DkSZ
ℓ after applying

a correction that accounts for the 25 per cent correction (i.e. 20 per cent of

missing signal) due to the limited box size. The last two columns show the

dependence of DkSZ
ℓ on the redshift of reionization and f R,0, in terms of

best-fitting values of the exponents α and γ as in equation (16).

ℓ D
kSZ
ℓ

(

µK2
) (

zre
8.8

)α

(

1 +

√

∣

∣f R,0

∣

∣

)γ

Uncorr. Vol. corr. α γ

2000 2.73 3.4 0.30 41

3000 3.30 4.1 0.28 41

4000 3.66 4.6 0.24 43

5000 3.80 4.8 0.22 43

6000 4.20 5.2 0.21 41

8000 4.37 5.5 0.17 41

10 000 4.35 5.4 0.19 43

15 000 4.31 5.4 0.15 42

20 000 4.06 5.1 0.13 42

Paper I (see Table 2), with the values of DkSZ
ℓ consistent in the range

of a few per cent, and with almost identical values of α. This cor-

roborates the fact that the dependence on zre decreases substantially

at smaller angular scales, going from α = 0.30 at ℓ = 2000, down

to 0.13 at ℓ = 20 000. The results on the scaling with f R,0 confirm

in a more quantitative way to be scale independent, with scaling in

the range (1 +

√

|f R,0|)
41−43 with no significant trend with ℓ. Since

the scaling with σ 8 is expected to vary, albeit mildly, with angular

scale (see e.g. Shaw et al. 2012), this suggests that the combina-

tion of DkSZ
ℓ measurements at different ℓ may break the σ 8–f R,0

degeneracy.

Finally, by combining the results presented here with the ones of

Paper I, we can provide a comprehensive formula for the scaling of

the amplitude of the kSZ power spectrum for a combination of f(R)

modified gravity and massive neutrinos:3

D
kSZ
ℓ = D

kSZ
0,ℓ

( zre

8.8

)α

(1 − fν)β
(

1 +

√

∣

∣f R,0

∣

∣

)γ

. (17)

This expression accounts for the dependence on zre, the neutrino

mass fraction fν (see the values of β in Table 2 of Paper I) and

modified gravity through f R,0, and is valid from ℓ = 2000 to 20 000,

under the assumption that the two effects are decoupled. Although

the last statement seems to be supported by the tight degeneracy

between the respective observational effects (see again Baldi et al.

2014; Peel et al. 2018) it was certainly not yet demonstrated for

kSZ observations, which would require running a dedicated suite of

combined hydrodynamical simulations. This goes beyond the scope

of this paper, and we leave such analysis for future work.

4.3 Comparison with the literature

The effect of modified gravity on the kSZ power spectrum is a

pioneer topic, that has not been much explored in the literature. The

only work so far is by Bianchini & Silvestri (2016), who provide a set

of analytical estimates of the post-ionization kSZ power spectrum

shape with a family of modified gravity models similar to the ones

adopted here, i.e. following the Hu & Sawicki (2007) formalism

with n = 1. A comparison of our works is therefore very interesting,

in particular to test the possibile differences associated to their

analytical approach, using power spectra obtained with MG-CAMB

(Zhao et al. 2009) and MG-HALOFIT (Zhao 2014), with respect to

our numerical method with MG-GADGET.

In agreement with our results, Bianchini & Silvestri (2016) ob-

serve an increase of the kSZ that does not depend on the angular

scale. This confirms that the scale dependence induced in the den-

sity and velocity power spectrum by modified gravity is washed

away with the projection along the line of sight. On the other hand,

while their prediction for f R,0=−10−5 of a 10 per cent increase

in D
kSZ
ℓ is consistent with our findings (magenta line in the bottom

panel of Fig. 4), albeit slightly smaller, for f R,0=−10−4 they pre-

dict a boost in D
kSZ
ℓ by 30 per cent against our 50 per cent (red line).

This discrepancy is likely an indication that Bianchini & Silvestri

(2016) are underestimating the non-linear contribution of the low-

z LSS to the kSZ effect. This is also the possible explanation of

their lower value of DkSZ
3000 for the GR model. In detail, they predict

D
kSZ
3000≃3.85µK2, with cosmological parameters almost identical to

ours, except for the assumption zre= 9.9 instead of our more con-

servative zre= 8.8. When adopting the same value, our prediction

rises to D
kSZ
3000= 4.2µK2 (zre= 9.9, volume corrected), thus about

10 per cent higher.

Regarding this point, in a recent work Park et al. (2016) pro-

vided a detailed study on the importance of including the con-

nected four-point term in the transverse momentum power spec-

trum (see also Park, Alvarez & Bond 2018). This term, which is

usually neglected in analytical predictions, becomes non-negligible

at wave numbers k " 1 h Mpc−1 at low redshift, enough to con-

tribute to about 10 per cent the of the kSZ effect signal of the

LSS computed with the unconnected terms alone. Our numeri-

cal approach considers both the linear and non-linear regime at

3The formula that appears in equation (11) of Paper I mistakenly reports

zre
α instead of the correct

(

zre
8.8

)α
.
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The kSZ effect and f(R) 2505

high precision, therefore confirming the results of Park et al.

(2016). We stress that this aspect is crucial when comparing

kSZ power spectrum predictions with observational data, making

our results potentially interesting to provide constraints on both

cosmology and reionization models (see also the discussion in

Paper I).

4.4 Implications for patchy reionization scenarios

Since we are considering only the contribution of the ionized IGM

after the EoR, if the reionization process is non-homogeneous then

the presence of ionized bubbles would produce an additional kSZ

effect adding to the total value of DkSZ
ℓ . Being the expected size of

these ‘patches’ of the order of ∼10 Mpc (comoving), this would

contribute in particular at ℓ= 3000, i.e. at the angular scale measured

by SPT.

By combining our results for the GR simulation with the SPT

measurement, we obtain an upper limit on the additional kSZ power

associated to patchy reionization of D
kSZ,patchy

3000 < 0.9µK2 (95 per

cent C.L.), valid under the assumption of zre= 8.8 and with the cos-

mological parameters quoted in Table 1. This limit is very stringent

and favours homogeneous and/or fast reionization scenarios. Un-

fortunately, only a few works on reionization models provide fore-

casts for the corresponding contribution to the kSZ power spectrum.

Among those, the models described in Iliev et al. (2007) predict val-

ues in the rangeD
kSZ,patchy

3000 ∼2.2 − 3.7µK2, depending on the photon

production efficiency of the ionizing sources, well above the upper

limits reported here. The same applies to the models of Mesinger

et al. (2012), with predictions of D
kSZ,patchy

3000 = 1.5 − 3.5µK2. More-

over, most of the models described in Mesinger et al. (2013), with

D
kSZ,patchy

3000 = 1.2 − 2.3µK2, are also ruled out. Only the model that

assumes a large contribution of X-ray ionizing sources indicates a

significantly smaller D
kSZ,patchy

3000 = 0.95µK2, thus close to the upper

limit presented in this work. On the other hand, the reionization

models by Park et al. (2013) predict D
kSZ,patchy

3000 = 0.66 − 0.83µK2:

these more conservative forecasts are below our upper limit, albeit

very close.

In addition, we stress that when including f(R) gravity the

corresponding upper limits on D
kSZ,patchy

3000 shrink to < 0.7 and

< 0.4µK2 (95 per cent C.L.) for f R,0=10−6 and 10−5, respec-

tively. With f R,0=10−4 D
kSZ,patchy

3000 is consistent with zero at

99.5 per cent.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we presented the first prediction of the properties of

the kSZ effect of the post-reionization LSS derived from a set of

hydrodynamical simulations that include the effect of f(R) modi-

fied gravity. Using MG-GADGET (Puchwein et al. 2013), we run a

set of four simulations in a Lbox = 240 h−1 Mpc comoving box

with the same cosmology but with different modified gravity pa-

rameters, namely f R,0= (0, −10−6, −10−5, −10−4), where f R,0

is defined according to the Hu & Sawicki (2007) formalism and

f R,0= 0 corresponds to the standard GR case. Starting from the

simulation outputs, we compute a set of 50 Doppler b-parameter

maps derived from different light-cone realizations that we use to

predict the properties of the kSZ effect signal, most notably its

power spectrum, and quantify how the f R,0 parameter affects them.

By keeping track of the line-of-sight information, we are able to

provide the redshift distribution of the kSZ signal, allowing us to

study the dependence with zre, the redshift at which reionization

occurs.

As in Roncarelli et al. (2017, our previous study on the ef-

fect of massive neutrinos, i.e. Paper I) we correct for the miss-

ing velocity power due to the limited simulation volume with

a calibrated analytical formula. We also account for the cosmo-

logical star mass fraction relying on observational results (Ilbert

et al. 2013). This allows us to compare our results on the kSZ ef-

fect with the recent SPT measurement of DkSZ
3000= (2.9 ± 1.3)µK2

by George et al. (2015) and to provide stringent upper lim-

its on the possible contribution to the kSZ power by patchy

reionization.

Our main findings can be summarized as follows.

(i) As in Paper I, we infer that the distribution of the Doppler-b-

parameter can be described by a Gaussian curve, centred in 0. Its

dispersion increases for larger absolute values of f R,0, scaling as

σb ∝ (1 +

√

|f R,0|)
12.5.

(ii) The amplitude of the kSZ power spectrum is boosted by

the presence of modified gravity. The increase with respect to the

GR scenario is about 2–3 per cent for f R,0= 10−6 and rises up

to 50 per cent for f R,0= 10−4, almost independent on the angular

scale.

(iii) For our fiducial GR model we predict an amplitude of

the kSZ power spectrum due to the ionized LSS at ℓ = 3000

of D
kSZ
3000= 4.1µK2(zre=8.8), consistent with our findings of Pa-

per I. By combining it with SPT results (George et al. 2015),

we confirm a stringent upper limit to the kSZ contribution due

to patchy reionization of D
kSZ,patchy

3000 < 0.9µK2 (95 per cent C.

L.), thus favouring homogeneous and fast reionization scenar-

ios and ruling out many of the current models of the EoR

history.

(iv) In the presence of modified gravity consistent with current

constraints, these limits shrink to D
kSZ,patchy

3000 < 0.7 for f R,0= 10−6,

and < 0.4µK2 (95 per cent C.L.) for 10−5.

(v) Finally, we studied the scaling of the kSZ power spectrum

with zre and f R,0 and provide a fitting formula, equation (16),

that works for 2000 < ℓ < 20 000. The best-fitting parametres

are shown in Table 2. The scaling with f R,0 is approximately

D
kSZ
ℓ ∝ (1 +

√

|f R,0|)
42.

Our work confirms that the kSZ effect of the LSS is an ex-

tremely promising probe of the high-redshift Universe. In fact,

despite the little observational data available, with an accurate

modelling of the LSS after the EoR it is already possible to ob-

tain interesting constraints on both non-standard cosmology and

reionization models. We also show the importance of hydrody-

namical simulations that prove to be competitive with analytical

estimates.

In future we plan to extend our work with other non-standard

cosmological models, such as quintessence and coupled dark en-

ergy. Since these scenarios are expected to enhance the amplitude

of the kSZ power spectrum (see e.g. Ma & Zhao 2014), this will

allow to obtain further constraints on the nature of dark energy,

complementary with other probes, as well as studying the degenera-

cies with the different cosmological parameters beyond the $CDM

model.
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