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Exploring Shared Virtual Memory for FPGA
Accelerators with a Configurable IOMMU

Pirmin Vogel, Student Member, IEEE, Andrea Marongiu, Member, IEEE, and Luca Benini, Fellow, IEEE

Abstract—A key enabler for the ever-increasing adoption of FPGA accelerators is the availability of frameworks allowing for the
seamless coupling to general-purpose host processors. Embedded FPGA+CPU systems still heavily rely on copy-based
host-to-accelerator communication, which complicates application development.
In this paper, we present a hardware/software framework for enabling transparent, shared virtual memory for FPGA accelerators in
embedded SoCs. It can use a hard-macro IOMMU if available, or a configurable soft-core IOMMU that we provide. We explore different
TLB configurations and provide a comparison with other designs for shared virtual memory to gain insight on performance-critical
IOMMU components. Experimental results using pointer-rich benchmarks show that our framework not only simplifies
FPGA-accelerated application development, it also achieves up to 13x speedup compared to traditional copy-based offloading.

Index Terms—Shared Virtual Memory, FPGA Accelerators, Heterogeneous SoCs, Embedded Systems.

F

1 INTRODUCTION

O VER the past decade, field-programmable gate ar-
rays (FPGAs) have gained importance as a result of the

big shift towards cloud computing, where energy efficiency,
scalability and throughput are critical [1] [2].

Besides substantially increased performance and
logic/memory density, several advancements targeting
usability are at the basis of this success. Modern
FPGA design environments unify the relevant tools in
a single framework and provide a large set of intellectual
property (IP) cores allowing FPGA designers to focus on the
more critical core modules (e.g., custom hardware engines).

In the high-performance computing (HPC) domain so-
phisticated third-party frameworks such as IBM CAPI [3],
Microsoft Project Catapult [4] and Convey’s Hybrid-Core
Architecture [5] allow to seamlessly integrate FPGA op-
eration into the execution model of general-purpose host
processors. By granting the FPGA coherent access to the
virtual memory of the host, these frameworks enable “holis-
tic” approaches to HW/SW partitioning, where the FPGA
accelerates critical parts of applications started on the host,
explicitly addressing the data from the same virtual mem-
ory space. This tremendously simplifies FPGA-accelerated
application development and deployment, and usually also
improves performance, as the need for continuous data
movements between separate address spaces is lifted [3].

In the embedded systems world, the situation is dif-
ferent [6] [7]. While for quite some time the major FPGA
vendors have had devices on the market that combine multi-
core, general-purpose host processors with FPGA fabrics in
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heterogeneous systems-on-chip (SoCs) [8] [9], shared virtual
memory (SVM) is still not widely adopted.

For embedded systems that allow the FPGA accelerator
itself [10] [11] to proactively fetch data from main into local
FPGA memory, the state of the art is still copy-based shared
memory. The main memory is statically split into two sec-
tions: one exclusively accessed by the host via cached, paged
virtual addressing, and a second that is accessed by both
the host and the FPGA via uncached, contiguous physical
addressing. Before and after every computation offloading
to the FPGA, the host must copy the relevant data between
the two memory sections. This approach requires minimal
hardware support, but comes at the expense of several sub-
stantial drawbacks. First, besides the cost for the continuous
data copies, the static splitting of the main memory is far
from optimal, particularly considering the limited memory
capacity of embedded systems and the constraints it poses
on the size of the shareable dataset. Second, copy-based
data sharing is not suitable for the acceleration of pointer-
rich applications, as any virtual-address pointers inside the
shared data need to be modified to point to the copy in
the physically contiguous section, requiring a complete re-
write of the accelerated code and application-specific offload
sequences. Third, the performance of the host code is also
reduced, as to avoid coherency problems mutually exclusive
access to the shared data is usually employed.

Recently, high-end FPGA-based heterogeneous SoCs
like the Xilinx Zynq UltraScale+ MPSoC, the ZynqUS+,
have started appearing on the marketplace – in the
form of engineering samples [12]. These sophisticated sys-
tems feature hardware input/output memory management
units (IOMMU) [13], which could simplify the adoption of
SVM for FPGA accelerators. However, unlike the frame-
works adopted in the HPC domain [3] [4] [5], there is no
infrastructure available to help application programmers
bridging the gap between their user-space applications and
the Linux kernel for leveraging the IOMMU hardware for
SVM. The available software support is limited to just a
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low-level hardware driver exposing a limited set of features
to the kernel. The main usage scenario for the IOMMU is
currently the protection of the host from malicious or faulty
DMA devices and drivers. This is evident from the func-
tionality exposed by the platform development tools [14],
which only contemplate IOMMU operation in combination
with host-initiated DMA transfers. To enable coherent and
direct FPGA access to virtual user-space memory a custom
device driver is needed to interface the actual hardware
driver through the Linux IOMMU API, plus extensions to
the API itself to allow the selection of a specific process’
page table. To hide the low-level details of the internals of
such a driver, more abstract programming interfaces like an
offloading runtime environment must be provided.

In this work, we present a plug-and-play framework for
exploring SVM support for FPGA accelerators in embedded
SoCs. It consists of two core components shown in Fig. 1 a):

1) A software SVM manager running on the host,
consisting of a kernel-level driver module that uses
standard Linux kernel APIs to manage the IOMMU
hardware, and a user-space runtime library inter-
facing this driver with the upper software layers
(e.g., programming models’ runtime libraries) and
ultimately to the application to be accelerated;

2) a parameterized and configurable IOMMU design
that can be deployed on the FPGA and interfaced to
the accelerator to enable SVM communication. This
soft-core IOMMU enables SVM on SoCs that lack an
equivalent hard-macro IOMMU, but can also enable
interesting performance boosts if a hard IOMMU
is available as it supports mappings of flexible size
and non-blocking behavior (see Section 5.3).

This framework enables transparent SVM for FPGA
accelerators. Sharing data becomes as simple as passing a
virtual address pointer to the FPGA accelerator. The accel-
erator itself can fetch the data from SVM, which allows it
to directly operate on pointer-rich data structures without
relying on the host for data management.

Concerning the soft-core IOMMU, we explore different
design choices for the most critical IOMMU building block:
the translation lookaside buffer (TLB). First, we consider
a fully-parallel TLB with optimized look-up latency (1 cy-
cle), in accordance to all state-of-the-art designs. A fully-
associative design enables variable sized mappings for flex-
ible operation. Similar to any fast memory, the downside of
such a solution is poor scalability to large sizes, which ulti-
mately translates in higher page miss rates experienced by
the FPGA accelerator. Motivated by the observation that in
many cases accelerator traffic is more bandwidth-sensitive
than latency-sensitive, we consider a second design that tol-
erates larger look-up times to enable much larger TLB sizes
(lower miss rate). We call these two designs the level-1 (L1)
and level-2 (L2) TLB, respectively, following the traditional
latency/size-based classification in memory hierarchies. We
also explore a third variant, which we call the “hybrid” TLB
and which aims at combining the best of both schemes.

We evaluate the performance of our framework both
when using our own IOMMU or the hard-macro IOMMU
in ZynqUS+. To this end, we interface it to an accelerator
generating the memory access patterns of real-world ap-

plications, including memory-bound, compute-bound, and
pointer-chasing kernels. To broaden the scope of the ex-
ploration we have parameterized such kernels to represent
instances operating on varied input datasets. The evaluation
provides deep insight on SVM design for FPGA accelerators.

1) Compared to copy-based memory sharing, our SVM
framework allows for speedups between 1.5 and 13x
for purely memory-bound kernels.

2) Due to limitations in the low-level drivers and ker-
nel APIs, the performance of hard-macro IOMMUs
can be dominated by page fault handling.

3) Thanks to its higher flexibility, our soft IOMMU
can achieve better performance at negligible FPGA
resource cost even if a hard IOMMU is available.

4) Non-blocking queuing of multiple outstanding
misses and batch-mode handling is beneficial for
parallel accelerator architectures and can improve
performance over designs using costly, dedicated
hardware for low-latency miss handling.

5) TLB look-up latency is not critical for FPGA ac-
celerators as the TLB is not in the critical path of
the accelerator to the internal scratchpad memo-
ries (SPMs). Instead, address translation is primarily
needed for the latency-insensitive DMA transfers
used to copy data between these SPMs and SVM.
Relaxing look-up latency allows for the construction
of larger TLBs and thus lower miss rate (and overall
miss-handling overhead) with less FPGA resources.

The remainder of this paper is as follows. Section 2
discusses related work. The implementation of our design
is presented in Section 3. Section 4 gives the details of our
evaluation platforms. In Section 5, we discuss the results of
our evaluations. Section 6 concludes the paper.

2 RELATED WORK

Shared virtual memory (SVM) has been widely studied
in the context of heterogeneous embedded SoCs based on
programmable many-core accelerators (PMCAs) such as
graphics processing units, where it is being increasingly
adopted [15], [16]. In this field, the research community
has evaluated commercial designs [17] and also proposed
optimized SVM infrastructure for custom PMCA architec-
tures [18], [19]. In our previous works, we have explored
lightweight SVM support for PMCAs based on a software-
managed IOTLB considering applications based on regu-
lar [20] and irregular (pointer-rich) [21] memory access pat-
terns, and exploring PMCA-local IOTLB management [22].

With this work, we shift our focus on a different type of
accelerator, namely generic, custom hardware accelerators
deployed on FPGA. Where in our previous works we have
used FPGA logic as a substrate to implement an emulator
of a PMCA-based heterogeneous SoC (by deploying RTL
models), in this work we target the FPGA as a medium
for true computation acceleration. While unavoidably there
are some commonalities between this prior work and the
software stack as well as the architecture of the L1 TLB that
we propose in this paper, focusing on FPGA accelerators
requires brand new design solutions and evaluations. The
proposed software stack enables SVM both when using the
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hard-macro IOMMU available on some next-gen high-end
FPGA-based SoCs or our own configurable soft IOMMU.
For this soft IOMMU, we propose a hybrid TLB design
combining a flexible L1 TLB with a new, scalable and con-
figurable L2 TLB optimized for FPGA deployment, and that
supports TLB prefetching transactions. This design allows
to increase TLB capacity by 16x and more compared to
related works, while achieving lower overall resource cost
and higher or comparable clock frequencies. We provide an
in-depth analysis (previously never covered) of i) the effect
of TLB look-up latency and capacity on performance; ii)
the trade-off for cache-coherent accelerator accesses to SVM;
iii) a comparison with hard-macro IOMMUs and alternative
SVM designs from literature that demonstrates the benefits
of our hybrid design, the prefetching transactions and non-
blocking TLB misses for parallel FPGA accelerators.

In the HPC domain, SVM for letting FPGA accelerators
themselves orchestrate data transfers from and to main
memory has proven beneficial both for performance and
programmability [3] [23]. While academic works focus on
SVM solutions consisting of TLBs managed in software
either running on the host [23] or on a dedicated soft
processor core [24], the industry’s approach is that of full-
blown hardware for maximum performance [3] [4] [5]. To
optimize off-chip bandwidth utilization between host and
FPGA, such systems employ FPGA-side data caches, as well
as transaction coalescing and reordering [25], which further
increases design complexity and leads to considerable re-
source utilization. For example, IBM’s CAPI utilizes around
25% of the resources provided by a medium-sized, high-
end FPGA for data centers [26]. The same design would
almost completely occupy even the largest FPGAs found
in embedded SoCs, leaving little resources for the actual
accelerator only. Clearly, the same level of hardware support
is not feasible for embedded systems.

Some HPC systems also use private accelerator DRAM
to avoid the latency and bandwidth bottleneck between host
and FPGA, and they rely on special APIs to allocate pinned
host memory for maximum accelerator performance. This
complicates application development as pinned memory
leads to higher management overheads for the host [25].
In contrast, FPGA fabrics in embedded SoCs are tighter
integrated to the memory system of the host, leading to
lower latency and higher bandwidth to main memory. This
diminishes the benefits of additional, private DRAM but
moves the SVM interface more in the focus for accelerator
performance as it is used for all accesses to off-chip memory.

Current-generation FPGA-enabled, embedded SoCs [8]
[9] do not provide SVM support in the form of IP cores
and associated driver software. To enable SVM for FPGA
accelerators designed with HLS, a recent study [27] pro-
poses an HLS framework extension to provide each shared
data element with its private address translation hardware.
At offload time, a kernel-level driver on the host locks all
memory pages touched by these data elements and creates
an optimized translation table for the hardware. While the
design allows to tailor the SVM subsystem to the application
at hand, it provides only little run-time flexibility and it is
not usable when operating on pointer-rich data structures.

Another approach relies on operating system support
to enable SVM using per-thread hardware IOMMUs [28].

The focus of this large and versatile framework primarily
lies on providing the application developer a uniform view
of software threads executing on the host and hardware
threads mapped to FPGA logic. The SVM subsystem is how-
ever just a little component inside a large framework. As a
consequence, compared to our proposal i) its internals have
not been studied in depth and cannot simply be decoupled
from the rest of the framework to be used with custom
FPGA accelerators; ii) the interaction between hard- and
soft-threads is not as streamlined as ours, being it designed
on top of less lightweight interfaces such as POSIX threads.

Most designs stick to more basic accelerator interaction
and memory sharing models [6] [7], where the shared
data is placed in contiguous memory using a specific user-
space API [18] or by replacing the standard malloc() with
a customized implementation [19]. Address translation is
performed explicitly by the host as part of the DMA transfer
preparation from contiguous main memory to the accel-
erator’s local memories [14] [29] [30]. This model where
the host is responsible for the explicit management of the
accelerator memory is not suitable for applications that
operate on pointer-rich data structures or perform fine to
medium-grained offloads [29]. Moreover, contiguous mem-
ory allocation has several other drawbacks, as the Linux
implementation has shown [31]. For example, if the kernel
must first copy other data out of the pre-allocated, contigu-
ous memory region before it can be used for shared data,
a long latency results. Moreover, there is no guarantee that
the pre-allocated region can be freed and made available at
run time. Finally, CMA returns uncached memory: letting
the host operate on such memory is very inefficient.

Ideally, a full-fledged hardware IOMMU [13] [32] – sim-
ilar to what is nowadays found in high-end SoCs based on
PMCAs [15] [16] – provides the required functionality to
enable true SVM for custom FPGA accelerators in the em-
bedded systems domain. Opting for maximum performance
and complete abstraction of the underlying SVM system,
these designs include hardware page-table walkers, coher-
ent translation caches and large buffers to absorb memory
transactions including DMA transfers missing in the TLB.

While with the ZynqUS+, the next-generation SoC fea-
turing a hard-macro IOMMU is becoming available [12],
embedded SoCs lack in infrastructure software that lets
programmers interface their user-space applications with
the kernel’s IOMMU API and low-level hardware drivers. In
addition, modifications to the ARM-specific implementation
of this kernel API are required to let the IOMMU directly op-
erate on the process page table instead of creating an empty
I/O page table upon IOMMU initialization, similar to some
desktop-class systems with IOMMU support.1 Without the
latter, the handling of page faults in this I/O page table,
which has to be carried out by software running on the
host, can quickly become the major bottleneck. Currently, it
is not foreseen in ZynqUS+ to use the IOMMU for giving

1. ARM has released experimental kernel patches that aim at 1) sup-
porting SVM in ARM-based systems and 2) unifying different AMD-,
Intel- and ARM-specific IOMMU API extensions for SVM. However,
these patches have not yet been merged into mainline Linux and
more importantly, they only target future ARM IOMMU architecture
revisions and are not compatible with current-gen IOMMU devices as
the one in ZynqUS+. See: git://linux-arm.org/linux-jpb.git svm/rfc1
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an FPGA-accelerator direct access to user-space memory.
The IOMMU serves its original purposes of protecting the
host from malicious or faulty DMA devices and drivers [33]
and of providing the DMA engine with the illusion of a
physically contiguous buffer. As such, the host initiates the
data movement from and to the FPGA memory through the
Linux DMA API [14]: the IOMMU is set up as part of every
DMA transfer preparation. This is not sufficient to support
SVM between host and FPGA accelerator. Independent on if
and when these issues might get resolved, the SVM frame-
work we present provides an integrated, full-stack solution
that abstracts away the low-level details and thereby enables
a smooth SVM experience for application developers - also
when using the hard-macro IOMMU in ZynqUS+.

Some recent research papers have highlighted that state-
of-the-art IOMMUs might require modifications to address
the needs of a particular target platform and/or applica-
tion domain. Some point to the fact that a naive IOMMU
configuration cannot meet the requirement of today’s high-
performance customized accelerators, as it lacks efficient
TLB support (no flexibility whatsoever can be expected
from such hard-macro IPs) [34]. The authors propose to
leverage the host per-core MMU to implement the required
additional functionality, as augmenting the hardware design
to that aim would increase the complexity beyond what
is affordable (this is especially true for low-end FPGA-
based SoCs [35]). Other papers consider the problem of
hardware complexity as a showstopper to implementing
SVM in heterogeneous, low-end SoCs, and thus propose
less intrusive solutions consisting of a simple hardware
IOTLB that is completely software-managed by a kernel-
level driver on the host [23] [21] [36]. The obvious downside
of this approach is that the frequent interactions with the
host and the associated interrupt latency can impose con-
siderable overheads at accelerator run-time.

Focusing on IOMMU design for FPGA accelerators in
embedded systems, a recent paper [37] highlighted that
the best performance is achieved by a private, hardware-
managed IOTLB. However, the speedup of roughly 12%
compared to an IOTLB managed by software running on the
host comes at the price of a 106% increase in logic resources
with respect to the software-managed IOTLB. While the use
of larger TLBs can also help to reduce the TLB service time,
especially large and fully-associative TLBs quickly become
costly in terms of resources [38] [39].

Alternative options for improving SVM performance at
lower cost in FPGA-based heterogeneous embedded SoCs,
such as modifying the architecture of the TLB itself, have
not yet been widely addressed by the research community.
The SVM framework presented in this work enables true
SVM between host and FPGA accelerators by relying on
a plug-and-play approach that allows the instantiation of
a lightweight IOMMU in the FPGA. The framework does
not require modifications to the host architecture nor does
it restrict programmers to specialized memory allocators.
Low-level details are taken care of without additional over-
heads at offload time. It supports coherent accelerator access
to the data caches of the host as well as TLB prefetching
transactions for improved performance. Unlike other de-
signs providing similar capabilities, our design enables fine-
grained control of such features for different address ranges.

3 SHARED VIRTUAL MEMORY DESIGN

The FPGA accelerator is interfaced to the shared main
memory interconnect through the input/output memory
management unit (IOMMU), which translates virtual ad-
dresses as seen by the user-space application and the
FPGA accelerator to the corresponding physical addresses
in main memory. At the heart of any IOMMU design sits an
input/output translation lookaside buffer (IOTLB). Hard-
macro IOMMUs currently employed in high-end SoCs [13]
[15] [16] additionally feature circuitry for TLB management
like hardware page-table walking (PTW) engines.

However, the operation of the page-table walk itself
is bound by the latency to main memory [22]. Moreover,
despite some hardware IOMMUs are capable of directly
and coherently operating on the host page tables, the Linux
IOMMU API and the hardware drivers do not support this
on ARM-based host systems [12].

Instead, a separate and empty I/O page table is gen-
erated at setup time. The first TLB miss to every page
then generates a costly page fault that must be handled
in software by the host by mapping the corresponding
page to the I/O page table. The hardware management
only helps for subsequent TLB misses on pages already
mapped. Alternatively, all pages holding the shared data
must be mapped at offload time, which is impracticable
when operating on pointer-rich data structures. Finally, due
to the decoupling of the I/O and the process’ page table, the
only way to ensure that the IOMMU does not use stale page-
table data at any time is to prevent the mapped pages from
being moved by page pinning, which further aggravates the
cost for mapping and page fault handling.

Therefore, we do not consider hardware PTW and rely
on a fully software-managed design for our soft IOMMU.

In the following, we present the two core components of
our SVM framework. We start with the software infrastruc-
ture used for managing the IOMMU hardware and interfac-
ing it with higher-level software and ultimately the applica-
tion to be accelerated (Section 3.1). This component enables
transparent SVM both when using a hard-macro IOMMU
as available on some next-gen high-end FPGA-based SoCs
(otherwise limited to simple operation in accordance with
host-initiated DMA transfers) as well as when using the
soft-core IOMMU that we provide (Section 3.2). Regarding
this soft IOMMU, our focus is on studying parameterizable
TLB design that allows for larger TLBs (thereby reducing
capacity misses) and higher flexibility. Our design is highly
configurable and efficiently uses the basic building blocks
provided by today’s FPGA devices. This not only enables
SVM for FPGA accelerators on IOMMU-less SoCs, but it also
proves beneficial when a hardware IOMMU is available.
Due to higher flexibility, it can achieve better performance
at negligible FPGA resource cost.

3.1 SVM Management
Fig. 1 visualizes how the hardware and the software layers
of the framework interact. Once the application that needs
to be accelerated is started, the runtime uses a system call
to let the driver module register a kernel worker thread
for handling TLB misses (page faults when using a full-
fledged hard-macro IOMMU) with the concurrency managed
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Fig. 1. a) Overview of the SVM framework with its two core components: software manager (1) and configurable soft-core IOMMU (2). b) Interaction
of hard- and software components in different execution contexts during operation.

workqueue (CMW) API of Linux. The shared data elements
can be allocated in memory by the user-space application
as any other variable using the system’s standard malloc()
function. This allows for simple development and porting
of already existing applications.

When offloading computation to the FPGA accelerator,
the application developer just needs to specify the virtual
address of the shared data elements which is then commu-
nicated to the accelerator, e.g., through a memory mapped
mailbox. The accelerator can then access the shared data
element using the virtual address pointer obtained from
the runtime. In the case of a TLB miss or page fault, the
interrupt handler inside the driver module simply triggers
the execution of the worker thread in normal process context.
Once this worker thread gets scheduled, it first reads the
address and transaction attributes from the IOMMU hard-
ware and pins the requested user-space page in memory
using get user pages(). Then, it maps the pinned page to the
I/O page table in case the hard-macro IOMMU is used, or
performs virtual-to-physical address translation and sets up
a new entry in the TLB if the soft IOMMU is used. If all TLB
entries are in use, the oldest mapping is invalidated and
the corresponding user-space page is unlocked (FIFO re-
placement). Based on the transaction attributes, the worker
thread signals the hardware to repeat the transaction that
previously produced a TLB miss/page fault [21].

In the case of a TLB miss that resulted from a prefetching
transaction (marked in the transaction attributes obtained
from the IOMMU hardware), no signal needs to be sent to
the accelerator and the miss-handling thread can directly
continue handling misses until the miss queue in the hard-
ware is empty. The use of prefetching transactions allows
the accelerator to request the setup of multiple TLB entries
with a single TLB-miss interrupt, for example before setting
up a DMA transfer touching multiple memory pages. This
can improve performance as the miss-handling thread can
handle multiple TLB misses in batch mode and is scheduled
at most once, similar to the page fault handler of some
IOMMUs found in high-end SoCs [17].

In addition, the runtime library allows the application
developer to specify virtual address ranges and associate
them with a specific TLB and an IOMMU master port (see
Section 3.2) at offload time. The miss-handling thread then
sets up new TLB entries within the specified range accord-
ing to these settings. The library also allows for setting up
the TLB statically at offload time and lock the corresponding
TLB entries on a basis of shared data elements, if they can
be completely remapped with the available TLB entries.

Concretely, this allows fine-grained control of which address
ranges (i.e., program data items) are to be looked up in the
host cache and which ones are to be accessed directly in the
dynamic random-access memory (DRAM). To this end, the
runtime only needs the virtual address, size and access per-
missions, similar to the computation offloading directives
of today’s programming models for heterogeneous systems
[40] [41].

3.2 IOTLB Design

Fig. 2 a) shows the block diagram of our soft-core IOMMU.
The FPGA accelerator connects as master device to the
slave port of the IOMMU, using the widely adopted AXI4
protocol on all its interfaces [42]. To enable the accelerator’s
reaction upon TLB misses (and to repeat the missing trans-
action once the IOMMU configuration has been updated
by the host) we assume a similar accelerator wrapping
methodology to [43], where a wrapper core provides the
synchronization infrastructure on the accelerator side (See
Section 4). The virtual address (VA) is fed to the control
block together with meta information (length, transaction
type and ID, AXI User signals) to perform a look-up of
the VA in the TLB. A transaction that hits in the TLB is
forwarded to the corresponding physical address in shared
main memory. Based on the master select flag stored in the
TLB, the transactions are forwarded to either of the two
AXI4 master ports. The double data rate (DDR) port directly
connects to the DRAM controller of the host CPU. The
Accelerator Coherency Port (ACP) offered by FPGA-enabled
SoCs [8] [9] allows the FPGA to directly access the most
recent data copies from the host’s data caches without the
need for the operating system to flush the caches at offload
time.2 Read or write responses are directly forwarded from
the downstream interconnect to the FPGA accelerator.

If a transaction misses in the TLB, its VA, ID and the
AXI User Signals are stored inside the miss first-in, first-out
buffers (FIFOs), and an interrupt is sent to the host CPU.
The host then uses the AXI-Lite interface to read the miss
FIFOs, and reconfigure the TLB accordingly (Section 3.1).
In parallel, the IOMMU drops the transaction and signals
a slave error in the AXI Read/Write Response back to the
wrapper core inside the FPGA. The IOMMU does not block
and can continue to handle address translations from other
transactions to shared memory issued by the accelerator.

2. Next-gen SoCs [12] replace the ACP with more advanced ports
supporting the ACE-Lite coherency extensions of the AXI4 protocol.
Our IOMMU design is also compatible with ACE-Lite-enabled SoCs.
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Fig. 2. a) Block diagram of the IOMMU, b) mapping of TLB entries to 4 VA RAMs, c) proposed L2 TLB architecture using dual-port BRAMs.

Using the AXI User signals, the accelerator also can mark
transactions as TLB prefetches. In this case, the IOMMU
performs the look-up in the TLB and signals back the
result to the accelerator using the AXI Read/Write Response
signals. However, the transaction is not forwarded to shared
main memory in both the miss and the hit case. This allows
the accelerator to request the setup of the TLB ahead of time
without paying the latency to shared memory.

All AXI interfaces support configurable data and address
widths. Also, the number of AXI4 ports is configurable, each
of them having private TLBs.

TABLE 1
Hardware configuration parameters.

IOMMU L1 TLBa L2 TLBa

#Ports #Entries yes/no
Input Address Width #Ways
Output Address Width #Sets
Data Width #VA RAMs
AXI ID Width Page Size

a Configurable on a per-port basis.

3.2.1 Flexible, Single-Cycle L1 TLB
The first TLB design is optimized for low look-up latency
and high flexibility. To this end, it is implemented using
look-up table (LUT) and register slices of the FPGA [44]
instead of block RAM (BRAM) hard macros [45]. It has a
look-up latency of 1 clock cycle, is fully parallel and fully
associative, and allows for arbitrary sized mappings, i.e.,
multiple memory pages can be remapped using a single
TLB entry if they are contiguous in virtual as well as in
physical memory. This allows to efficiently support tech-
niques targeting at reducing the host TLB miss rate such as
transparent huge pages 3 and contiguous physical memory
obtained, e.g., through the CMA 4. Low TLB look-up latency
and high associativity are important whenever virtual-to-
physical address translation is in the critical path, such as for
CPUs where every memory transaction has to be translated.
However, such designs do not scale well to larger sizes and
quickly become very costly in terms of resources [38] [39].
In practice, they are limited to sizes up to 64 entries.

3.2.2 Set-Associative, Multi-Cycle L2 TLB
To overcome the limitations of traditional fully-parallel,
fully-associative FPGA TLB designs [24] [32] [39], we pro-
pose a new and scalable TLB architecture for FPGAs. It

3. Refer to https://lwn.net/Articles/423584/
4. Refer to https://lwn.net/Articles/486301/

relies on sequentially searched BRAM to allow for high-
capacity TLBs and thus reduced overall TLB service time
at reasonable FPGA resource cost. To achieve look-up la-
tencies comparable to fully-parallel, pipelined TLB designs,
our architecture 1) is n-way set associative, 2) parallelizes
the look-up using multiple dual-port BRAM cells, and 3)
starts the look-up at the position of the last TLB hit, which
brings the effective look-up latency down to the minimum
of 3 cycles for bandwidth critical workloads. The maximum
look-up latency is

Lmax = 2 +
nways

2 · nRAMs

where nRAMs is the number of BRAMs searched in parallel.
Typically, Lmax is between 4 to 18 clock cycles. How the sets
are distributed over the parallel RAMs is shown in Fig. 2 b).
The mapping of VAs to sets is based on the least-significant
bits (LSBs) of the page frame number (PFN). In contrast
to the flexible L1 TLB, this design is restricted to page-
sized mappings, but its architecture is highly configurable
at compile time. Table 1 lists the configuration parameters.

The architecture of this TLB is visualized in Fig. 2 c).
Upon receiving an input VA and a start signal from the top-
level control block of the IOMMU, the set index is deter-
mined and forwarded to the parallel search units together
with the virtual PFN. Every search unit is connected to
a dual-port BRAM cell holding the VAs (VA RAMs). Per
cycle, every search unit reads two entries of the current set
from the VA RAM (using both ports of the BRAM cell), and
compares the PFNs stored in these entries with the PFN
of the input VA. If a matching entry is found, its index is
forwarded to the control block together with a hit signal.
The control block aborts the search, reads the corresponding
physical PFN from the single physical address (PA) RAM,
and then outputs the PA together with control flags to the
top-level control block. The offset of the matching entry is
stored in a set-specific register in the control unit. The next
search in the set is then started at this position to speed up
the search and exploit possible locality of reference.

In case the entire set is searched without finding a valid
entry or if a valid entry is found that does not allow
the required transaction type, the search is aborted and a
corresponding signal is sent back to the top-level control
block. The VA RAMs are configured through Port 1.

3.2.3 Hybrid TLB
A real system can benefit from a combination of the two
TLB designs to form a hybrid architecture. A small L1 TLB
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with 4 to 8 variable sized entries, e.g., to efficiently support
techniques designed to reduce host TLB misses such as
CMA, and a large L2 TLB with higher look-up latency and
page-sized but much cheaper entries for regularly allocated
memory pages. Thus, our design supports the instantiation
of both TLB blocks.

To allow for parallel look-ups of the two TLBs in the
hybrid architecture, our design supports the hit-under-
miss (HUM) feature, which can lead to reordering of trans-
actions. To ensure correct ordering in both the AXI Write
Address and Write Data channels, typical hardware IOM-
MUs [13] buffer the entire write data burst, which can
require a considerable amount of buffer memory (an AXI4
burst can comprise up to 256 data beats). Instead, our
IOMMU just uses a FIFO buffer with the size equal to the
maximum look-up latency of the L2 TLB (HUM FIFO in
Fig. 2 a) ). As visualized in Fig. 3, for a missing transaction
AW0 with a burst length lower than or equal to the L2 TLB
latency, the data W0 is buffered by the HUM FIFO. In the
meantime, Transaction AW1 hits in the L1 TLB and is fed to
the output. Once the associated data W1 arrives at the input,
it bypasses the HUM FIFO and is directly fed to the output.
When the physical address for AW0 has been found in the
L2 TLB, the transaction is fed to the output and data W0 is
retrieved from the FIFO.

If the burst length of the transaction missing in the L1
TLB is larger than the L2 TLB latency, there is no reordering.
Even if the next transaction hits in the L1 TLB while the
L2 TLB is busy, there is little benefit only in forwarding it
downstream – independent of the buffering capability. The
corresponding write data will only arrive at the input after
the L2 TLB look-up is finished (due to the burst length of
the missing transaction) and write-data interleaving is not
allowed in AXI4. If a transaction misses in the L1 TLB while
the L2 TLB is busy, the input address channels are stalled
until the L2 TLB becomes available again.

Note that our SVM framework does not block the accel-
erator’s traffic to shared memory in case of outstanding TLB
misses, independently of the selected TLB architecture and
organization. The purpose of the HUM feature is just to al-
low for parallel look-ups if both TLBs are being instantiated
inside the IOMMU.

4 EVALUATION PLATFORM

To evaluate the performance of our SVM framework and
explore the different TLB designs in a real system, we set up
two platforms: one based on the Xilinx Zynq-7000 SoC [8]
and one based on the Xilinx Zynq UltraScale+ MPSoC [12].
For simplicity, we will refer to them as Zynq and ZynqUS+
in the following. Fig. 4 shows the Zynq platform.

TABLE 2
Effective and relative FPGA resource utilization of the IOMMU

configuration selected for the experimental evaluation.

Sub Block LUTs FFs BRAM

L1 TLBs a 6.63 k 4.67 k 0.00 kbit
L2 TLB b 0.29 k 0.14 k 45.05 kbit
Buffers & Control 1.71 k 2.75 k 1.09 kbit

Total 8.64 k 7.56 k 46.14 kbit

Rel. Zynq-7020 16.24 % 7.11 % 0.94 %
Rel. Zynq-7045 3.95 % 1.73 % 0.24 %
Rel. Zynq US+ 9EG 3.15 % 1.38 % 0.14 %

a 32 entries (accelerator to host), 4 entries (host to accelerator)
b 1024 entries (4 VA RAMs with 32 sets, accelerator to host)

Both SoCs feature an ARM Cortex-A host CPU running
Xilinx Linux 4.9. On Zynq, this is a dual-core A9 whereas
ZynqUS+ uses a quad-core A53. The coherent interconnect
has additional slave ports, which allow hardware blocks
implemented in the programmable logic to access the data
caches inside the CPU. Zynq uses ACP whereas ZynqUS+
uses a more advanced ACE-Lite port. For simplicity, we re-
fer to the coherent port as ACP both for Zynq and ZynqUS+
in the following. In case the requested data is not held in
cache, the transaction is sent to main memory using the
DRAM controller of the host. The system features 1 GiB of
DDR DRAM, which is shared between host and FPGA.

To interface the programmable logic of the with the host,
we instantiate an IOMMU configuration with two ports.
The first port is used for host-to-accelerator communication
and uses an L1 TLB with 4 entries only. The second port
is used for accelerator-to-shared-memory communication.
It features two master ports: One connected to the DDR
DRAM controller of the host and one connected to the ACP.
Also, it is used to instantiate both TLB designs. The L1 TLB
is instantiated with 32 entries, i.e., the maximum size for
which clock frequencies above 100 MHz are achievable on
Zynq (see Section 5.1). The L2 TLB is instantiated with 4
parallel VA RAMs with 32 sets and 1024 entries in total, and
a max look-up latency of 6 cycles.

In addition, ZynqUS+ features an ARM SMMU, i.e., a
full-fledged, hard-macro IOMMU [13] that can be leveraged
for SVM using the software components of our framework.
The SMMU has 6 ports with a private, fully-associative L1
TLB each. These ports connect to a shared management unit
through an AXI Stream interface. The management unit
features a shared L2 TLB, a multi-thread hardware PTW
engine, PTW caches and prefetching buffers. The SMMU is
clocked at 533 MHz. In both platforms, the host is config-
ured to run at 666 MHz and the FPGA at 100 MHz.

Table 2 gives the absolute FPGA resource utilization
of the IOMMU configuration used for the evaluation on
Zynq. The table also gives the relative utilization on a
small- and medium-sized, mid-end device, as well as on
a medium-sized, high-end UltraScale+ device. The selected
configuration uses less than 4% of the available resources
on the medium-sized devices and leaves plenty of space for
actual accelerators.5

5. For example, the implementation of an accelerator for sparse
matrix-vector multiplication [46] would use roughly 60% of the LUTs
and FFs, and 57% of the BRAMs offered by the Zynq-7045 device.
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Attached to the IOMMU, there is a programmable FPGA
accelerator [43]. Eight accelerator engines can directly access
a local SPM (256 KiB) and the main memory via both single-
word loads/stores and more efficient DMA burst accesses.
The accelerator uses a soft core for higher-level control tasks.
These include the configuration of the accelerator engines,
the management of DMA transfers between scratchpad and
main memory, and the synchronization with the host. This
core can also be used to ensure that the corresponding TLB
entries are set up in our IOMMU. This is achieved by issuing
prefetching accesses to the memory pages touched by the
DMA transfer and evaluating the response returned by the
IOMMU [21]. In the case of a miss, it goes to sleep and
waits for the host to set up the TLB. After handling the miss,
the host wakes up the soft core that generated the miss. To
avoid cache pollution by the accelerator when accessing the
shared memory through the ACP, DMA transactions are not
allocated in the data caches of the host in the case of cache
misses. The maximum DMA burst size is 256 B, and the
accelerator’s peak bandwidth to main memory is 6.4 Gb/s.

The accelerator engines generate the memory access
patterns of four real applications, which have been parame-
terized to capture the effect of varied input datasets. A brief
description of these application kernels follows.

Pointer Chasing (PC): This kernel is characteristic of a
wide variety of pointer-based applications such as PageR-
ank, breadth-first search, shortest path search, clustering,
and nearest neighbor search [47]. The host builds up a
linked list in virtual memory. Every list element represents a
graph vertex and stores the number of successors, a pointer
to a list of successor-vertex pointers, and a configurable
amount of payload data. The host passes a pointer to the
list to the FPGA accelerator, which then starts traversing the
graph. If the number of successor vertices is greater than
zero, it sets up DMA transfers to copy the payload data
and the successor pointers to local memory. Then, it does
a configurable number of computation cycles, and writes
the payload data to the successor vertices in shared main
memory again using DMA. The traversal is parallelized on a
vertex level, leading to parallel, independent DMA streams.

Random Forest Traversal (RFT): This kernel is typically
used for pattern recognition as well as regression and clas-
sification algorithms based on binary decisions trees [48],
[49]. The host generates regular decision trees of config-
urable size in virtual memory and passes pointers to the
root vertices as well as to the input samples to the FPGA.
The accelerator classifies every sample with every tree. The
decision trees are stored using a large, 1-dimensional array.

For every vertex, the array holds the limit for the binary
decision as well as a configurable amount of payload data.
When a sample arrives at a vertex, the accelerator first
loads the payload data using DMA and then performs a
configurable number of computation cycles. Based on the
result of this computation, the sample is passed either to the
left or to the right successor vertex. When arriving at a leaf
vertex, the corresponding index is returned to the host.

Because of irregular, data-dependent memory access
patterns with low locality of reference, PC and RFT rep-
resent worst-case scenarios for (virtual) memory systems.
However, it is for such pointer-rich kernels that SVM is so
beneficial as it reduces design time efforts for heterogeneous
implementations. Without SVM, programmers must rethink
communication patterns, data structures and their manage-
ment on the host, which results in complete redesigns of
whole applications instead of just porting critical kernels to
the FPGA. That said, such kernels are effectively accelerated
using FPGAs thanks to high degrees of parallelism [1], [2].

Sparse Matrix-Vector Multiplication (SMVM): This is a
typical example application amenable to FPGA acceleration.
The host encodes a potentially very large, sparse matrix in
Condensed Interleaved Sparse Representation (CISR) [46]
and then passes virtual address pointers to the matrix as
well as to the input and output vector to the accelerator.
The CISR format statically schedules the computation to
8 parallel accelerator pipelines on a row basis, thereby
allowing for load balancing at low communication overhead
and resource cost [50]. The accelerator uses DMA transfers
to first fetch the dense input vector and then continuously
streams in the sparse matrix.

Memory Copy (MC): This application’s access patterns
to shared memory are highly regular. The host allocates
a buffer of configurable size in virtual memory and then
passes a virtual address pointer to the FPGA. The FPGA
accelerator uses DMA transfers to copy the buffer from
shared memory into the local SPM at maximum bandwidth.
MC is a representative example for streaming applications
with low operational intensity.

5 RESULTS

5.1 Resource Utilization
To evaluate the resource utilization and performance of the
TLB designs we have implemented various configurations
for a XC7Z045FFG900-3 device using Xilinx Vivado 2016.3.
The system uses 32-bit address width, 64-bit data width and
a page size of 4 KiB.

Fig. 5 a) compares the resource utilization and the TLB
look-up time for different configurations of the two TLB de-
signs when targeting maximum clock speed. For the flexible,
single-cycle L1 TLB design we varied the number of entries.
The resource utilization of the L1 TLB increases linearly with
the number of entries. The same holds for the longest path
delay, as the comparator network for performing the single-
cycle TLB look-up does not map well to FPGA logic.

The multi-cycle L2 TLB design outperforms the L1 TLB
in terms of resource utilization and longest path delay.
For example, using the L2 TLB design to build a fully-
associative TLB with 32 entries allows to reduce the logic
resource utilization by more than 17x compared to the L1
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TLB (1). This comes at the price of a larger and variable TLB
look-up latency and the restriction to page-sized mappings.
The minimum look-up latency for this TLB is 3 clock cycles
whereas the maximum latency depends on the number of
parallel VA RAMs. The longest path runs from the output
of the VA RAMs through the search units into the PA RAM.
The main advantage of this design is that it enables the
construction of high-capacity TLBs at low resource cost. As
shown in Fig. 5 a), switching from a fully-associative to a 32-
way set-associative configuration allows for a 32x increase
in TLB capacity at an increase in logic resource utilization
and longest path delay of just 20% and 4%, respectively (2).

By varying the number of parallel VA RAMs, the design
of the L2 TLB allows for a trade-off between maximum look-
up latency in cycles and resource utilization while keeping
the number of entries constant. This trade-off is also visual-
ized in Fig. 5 b) for the same configuration with 1024 entries
divided into 32 sets. As shown in the figure, the number
of slice LUTs increases logarithmically with the number
of VA RAMs whereas the number of slice flip-flops (FFs)
decreases with more VA RAMs. The reason for this decrease
in FFs is that as the number parallel VA RAMs increases,
the number of bits required to store the offset of the last hit
decreases. Using 4 parallel VA RAMs offers a good trade-
off between maximum look-up latency of 6 cycles and logic
resource utilization. Note that, as the number of parallel VA
RAMs increases from 1 to 4, the utilization of the individual
BRAM cells decreases by a factor of 4x from 75% to 19%.6

How the logic resource utilization with 4 VA RAMs changes
with the number of sets and the number of ways (set size)
is shown in Fig. 5 c). The configuration using 32 sets and
32 ways (1024 entries) offers a good trade-off. For TLB sizes
greater than 1024 entries, either the logic resource utilization
or the maximum look-up latency increases sharply.

5.2 Microbenchmarks & Profiling

5.2.1 Software Primitives for SVM Management

We have evaluated the cost of the software primitives of
our design using a synthetic benchmark. The host passes a
pointer to an array in virtual memory to the accelerator. The
accelerator reads the pointer and performs accesses to the
array. Using performance counters inside the host and the

6. Xilinx 7 Series devices feature BRAM cells with fixed dimensions
of 16 or 32×1024 bit (not including parity bits) [8].

TABLE 3
Average delay in host cycles for sharing a single 4 KiB memory page.

Response Schedule Handling Total

TLB Miss, DDR 4,400 9,900 14,000 28,300
TLB Miss, ACP 4,400 9,900 8,900 23,200

Copy Page Out to Shared Memory 43,500
Copy Page In to Virtual Memory 87,500

Copy Page From SVM to SPM, DMA Read 5,100
Copy Page From SPM to SVM, DMA Write 4,400

accelerator, the duration of the various phases during miss
handling can be profiled. The results are shown in Table 3.

The average cost for handling a TLB miss is 28,300 cycles
when the accelerator accesses the data from DRAM. Using
the ACP avoids the need to flush the host’s data caches
and allows for 18% faster miss handling. Most of the time
is spent on waiting for the kernel worker thread to get
scheduled (51 or 62% for DDR and ACP, respectively).
This is required as the routine walking the page table and
pinning the pages uses a kernel API which may sleep and,
therefore, cannot be executed in interrupt context.

Copying a 4 KiB memory page of data from virtual
memory to the physically contiguous, uncached memory
reserved for the accelerator in case the platform does not
support SVM takes 43,500 host cycles. Copying back a page
that the accelerator has modified costs at least 87,500 cycles.

While the implementation of a routine to copy raw data
is straight forward, the traversal and translation step in
case the shared data contains virtual address pointers is
application dependent and left to the programmer. The asso-
ciated design time overheads are high and usually require
the programmer to completely rethink and restructure the
application. Also, the traversal and translation step incurs
a big run-time overhead at offload time, which is much
larger than that of copying raw data. However, once the
costly offload including the data copying has been done,
the accelerator’s accesses to the shared data come at no
overhead. In contrast, the cost for setting up a TLB entry
have to be paid on every miss to a particular page. Thus,
if data reuse is high, copy-shared memory can out-perform
SVM. This will be highlighted by the exploration in Sec. 5.3.

For maximum performance, the accelerator operates on
data residing in its local SPM. This memory is physically
addressed and managed by the accelerator itself, which
uses high-bandwidth DMA transfers to copy data between
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Fig. 6. Maximum DMA bandwidth to SVM for a) read and b) write
transfers of 32 KiB when using different TLB configurations.

SVM and the SPM. The latency of setting up a single DMA
transfer is 6 accelerator-clock cycles. Table 3 also lists the full
cost for transferring a single 4 KiB memory page between
SVM and the SPM using the DMA engine.

5.2.2 Hard-Macro IOMMU Profiling
A similar microbenchmark was designed to determine un-
specified architectural key parameters of the hard-macro
IOMMU available on the Xilinx UltraScale+ MPSoC [13] and
profile the management primitives.

The per-port private, fully-associative L1 TLBs have a
size of 64 entries and a look-up latency of 1 clock cycle (at
533 MHz). The shared L2 TLB has a size of 512 entries and
a look-up latency of 39 cycles. This also includes the com-
munication latency from the per-port L1 TLB to the shared
management unit over the shared AXI Stream interface.
Thanks to the hardware PTW engine, prefetch buffers and
PTW caches, handling a TLB miss takes just 31 clock cycles
on average (not including TLB look-up latencies). However,
this only holds for capacity misses. The first access to every
page leads to a compulsory TLB miss and a page fault as the
requested user-space page has not yet been mapped to the
I/O page table traversed by the hardware PTW engine. To
handle this page fault, the host needs to pin the user-space
page in memory and create the corresponding mapping in
the I/O page table. This takes 12,400 host clock cycles on
average (90,400 cycles max). During that time, the IOMMU
completely blocks any memory transactions.

In contrast, our own IOMMU design allows to overlap
TLB miss handling on the host with actual IOMMU oper-
ation. In addition, multiple TLB misses can be handled in
batch mode, which can bring down the effective TLB miss
latency as the host needs to handle a single interrupt only
and schedule the miss handling routine just once.

5.2.3 DMA Peak Performance
To evaluate possible effects of the TLB configuration and
look-up latency on the maximum DMA bandwidth, we used
another synthetic benchmark that lets the accelerator issue
DMA transfers with the maximum size of 32 KiB. The TLB
is statically set up for this measurement and the host is idle
during the measurement. As shown in Fig. 6 a), the highest
bandwidth for read transfers (90% of the peak bandwidth of
the interconnect) is achieved when using the ACP and if the
requested data is in the data caches of the host (ACP hit).

If the data is not in the caches (ACP miss), the effective
bandwidth is substantially reduced as the data has to be
retrieved from DRAM using the same physical interconnect
used by the host. In case the host is heavily loaded, the

traffic injected by the accelerator can lead to additional con-
tention and performance degradation. Compared to using
the DDR port, the achievable bandwidth is roughly 45%
lower. Letting the FPGA coherently access data from the
caches of the host is not always beneficial.

For write transfers, the maximum bandwidth is between
85 and 90% of the peak bandwidth as shown in Fig. 6 b).

The TLB configuration and maximum look-up latency
do not have an impact on the maximum bandwidth. This is
a result of the proposed L2 TLB design starting the look-up
at the position of the last TLB hit.

5.3 Real Traffic Patterns

In this section we evaluate the performance of the SVM
framework on ZynqUS+ when using our IOMMU and the
various TLB designs (L1, L2, hybrid) as well the hard-macro
IOMMU (SMMU). The accelerator is used with eight en-
gines and under various workload conditions (Table 4). The
selected parameters represent a mix of real use cases [47]
[48] [49] [51], problem sizes suitable for embedded systems
and performance crossover points of the system.

For Pointer Chasing (PC), we used an Erdős-Rényi
graph [52] with 10 k vertices (input data is randomized).
During our experiments, we found that graphs with differ-
ent vertex count do not lead to big differences in the results
as long as the total graph size is larger than the TLB capacity.

Random Forest Traversal (RFT) operates on random input
numbers which are sorted by the tree. Therefore, the ob-
tained access patterns to shared main memory are highly
irregular and randomized, and the benchmarks represent a
worst-case scenario for an SVM sub-system.

Comparing with copy-based shared memory, data reuse
matters. Therefore, we varied the number of input samples
fed to RFT as well as the number of iterations performed
in PC. The number of iterations performed varies between
1 and 6 for most applications, while some require up to
70 [47]. In many cases, the execution is stopped after 5
iterations, where 95% of the vertices have converged [51].

For Memory Copy (MC) we consider as main parameters
the size of the data chunks (64 KiB and 1024 KiB) and the
number of compute iterations executed on the offloaded
data (data reuse). For Sparse Matrix-Vector Multiplication
(SMVM), we have used four matrices with different sizes
and numbers of non-zero entries from the University of
Florida Sparse Matrix Collection [53], as shown in Table 4.

TABLE 4
Benchmark parameter sets.

Pointer Chasing

#Vertices 10 k
Vertex Size [B] 44 - 2,060
#Cycles per V. 10 - 10,000
#Iterations 1 - 64

Random Forest Traversal

#Tree Levels 4 - 16
Vertex Size [B] 28 - 268
#Cycles per V. 10 - 1,000
#Input Samples 256 - 2,048

Sparse Matrix Vector Multiplication [53]

Matrix Name #Rows #Cols #Non-Zero Entries Data Size [KiB]

power 4,941 4,941 13,188 180
ca-HepTh 9,877 9,877 51,996 561
Dubcova1 16,129 16,129 269,138 2,355
olafu 16,146 16,146 1,031,302 8,309
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We have measured the accelerator run time (including
offloading time) for the different schemes and normalized
results to the copy-based memory sharing, the state of the
art in embedded heterogeneous systems. The accelerator
uses prefetching transactions before setting up DMA trans-
fers touching multiple pages. This improves performance as
the host needs to handle at most one TLB-miss interrupt and
schedule the miss-handling thread at most once per DMA.

With our design, the application developer has fine-
grained control of the IOMMU settings on the basis of
virtual address ranges and/or data elements. For example,
this allows to associate a specific address range with the L2
TLB and the DDR port for maximum bandwidth, while the
ACP is used for other shared data elements. As MC and PC
both share a single data element only, we have evaluated
the different settings in isolation without the hybrid TLB
configuration for these two benchmarks.

In contrast, the data sizes for RFT and SMVM quickly
exceed the size of the data cache of the host. This reduces the
efficiency of DMA transfers on the ACP. Thus, we always
used the DDR port only for these two benchmarks.

5.3.1 Pointer-Chasing (PC)

Fig. 7 shows the performance of PC (different curves rep-
resent run-time for different TLB schemes), normalized to
the performance of the baseline copy-based shared memory.
The x-axes of the plots show the total graph size when in-
creasing the vertex size from 44 B to 2 KiB. The two leftmost
plots refer to a configuration where for each vertex loaded
from memory, 10 cycles are spent doing computation. For
the two rightmost plots the computation cycles per vertex
are 10 k. Typical PC applications perform 1 to 6 iterations
on the graph [47], [51], thus we report results for 1 iteration
(plots a and c) and 4 iterations (plots b and d).

For a single iteration, using the L2 TLB allows to
achieve speedups of up to 2.2x. L2 DDR performs better
for graph sizes below 4 MiB, i.e., when the entire graph
can be remapped by the L2 TLB and the execution is thus
bandwidth limited. As the graph size increases, the number
of TLB misses increases. The execution time becomes more
dominated by handling capacity misses in the TLB, while
the ACP performs better as no cache flushes are required.

As the number of iterations on the graph increases, the
offload cycles in the case of copy-based shared memory are

less predominant. The relative performance of L2 DDR and
L2 ACP deteriorates for graph sizes above the TLB capacity.
In contrast, the SMMU performs better for larger graph
sizes. The multi-threaded hardware PTW can deal with the
increasing number of capacity misses in the TLB. For small
graph sizes, the performance of the SMMU is dominated by
page fault handling. Upon the first access to every page, the
SMMU interrupts the host, which must map the requested
page to the SMMU’s page table. During that time, the
SMMU blocks any traffic which prevents exploiting the full
potential of the SMMU hardware.

As the number of compute cycles per vertex increases to
10 k, the relative speedup when using the L2 TLB decreases
as shown in Fig. 7 c) and d), respectively. Due to the
increased operational intensity, the time spent for memory
transfers accounts for a smaller portion of the total run
time. For larger vertex and graph sizes, more computation
cycles help to overlap the miss-handling time with useful
computation. In contrast, copy-based shared memory does
not allow to overlap the costly offload procedure with accel-
erator computations. The relative performance saturates at
around 60% even when using the much smaller L1 TLB.

It is important to underline that, while SVM can perform
worse than copy-based memory sharing in some scenarios,
its programmability is always much better. This is particu-
larly true for PC, where running the copy-based approach
required a complete rewrite of the original program.

5.3.2 Random Forest Traversal (RFT)
Fig. 8 a) and b) plot the performance versus increasing
tree depth for different vertex sizes but a fixed operational
intensity of 0.2 cycles/Byte. Since during the offload of
this application only few pointers need to be adjusted and
since the accelerator only performs read accesses to the data
structure, already little data reuse amortizes the offload cost.
In contrast, the access pattern to the tree is highly irregular.
This creates many capacity misses.

Due to the irregular pattern and the small vertex size,
there is little temporal locality, which unveils the higher
maximum look-up latency of the L2 TLB compared to the L1
TLB in a). The relative performance increases for growing
tree depths where the higher look-up latency of the L2
TLB is compensated by the higher overall hit rate.

Larger vertex sizes let SVM become more beneficial as
they amortize the miss handling cost (more data is accessed
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Fig. 7. PC performance for varying vertex/graph size, number of iterations: 10 cycles per vertex in a) and b), 10,000 cycles per vertex in c) and d).
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Fig. 8. RFT performance for an operational intensity of 0.2 cycles per Byte when varying the tree depth a) and b), and when varying the number of
samples fed to the tree c) and d).

per miss). This effect increases with the tree depth as on the
lower levels, almost every access to the tree is a miss. Also, a
lot of data is copied when using copy-based shared memory
that is potentially never accessed by the accelerator. This can
lead to very high speedups of up to 13x as shown in b).

The speedup decreases as the number of samples fed
to the tree increases as shown in Fig. 8 c) and d). The
highest performance is achieved when using the hybrid
design and allocating the trees in physically contiguous
memory. Accesses to the trees then always hit in the
L1 TLB. However, the hybrid design is not suitable for
on-line learning [49] as the host needs to regularly access
the physically contiguous, uncached memory to update the
trees. In this case, the L2 TLB only or the SMMU should be
used. It performs better for up to 768 samples (tree updates
usually have to performed earlier).

5.3.3 Mem Copy (MC)

Fig. 9 shows the performance of MC normalized to copy-
based shared memory for a data size of 64 KiB and 1024 KiB.
The maximum speedup is 2.2x (L2 ACP). As the size of the
SPM might not suffice to hold all the required data for a
specific accelerator kernel, multiple iterations over the same
input data might be required, e.g., to apply a set of filter
kernels on a given input image. The x-axes of the plots
denote the number of iterations performed on the data.

There are multiple reasons for the drop in relative perfor-
mance with increasing number of iterations. First, in the case
of copy-based shared memory, more accesses to the copied
data amortize the initial offload cost. Second, with more
iterations, the execution time becomes less dominated TLB
misses but by the effective main memory bandwidth if the
data size is below the TLB capacity. Using the ACP should
be avoided in this case due to the lower bandwidth resulting
from cache misses and contention. Fig. 9 a) shows that while
the ACP gives the best performance for few iterations, the
performance using the ACP saturates at 60% of the DDR
port in the bandwidth dominated regime.

The L1 TLB performs equally well as the L2 TLB, but it
does not outperform it, despite the lower look-up latency.
The FPGA uses latency-insensitive DMA transfers to access
main memory. The actual computations are performed on
local SPMs for which address translation is not required.

Unlike for CPUs, the TLB is not in the critical path for
FPGA accelerators. Instead of optimizing the TLB for low
look-up latency, the available FPGA resources are better
invested in building a TLB with larger capacity. As the
data size and the number of iterations increase (Fig. 9 b),
only the configuration using the large L2 TLB and the DDR
port can compete with copy-based shared memory. The
performance of the SMMU is dominated by the interrupt la-
tency due to page fault handling. While the host is handling
an IOMMU page fault, the SMMU completely blocks any
traffic. In contrast, our design allows multiple outstanding
misses to be handled using a single host interrupt.

5.3.4 Sparse Matrix-Vector Multiplication (SMVM)
Independent of the problem size, the performance with our
design is at least 1.5x higher compared to copy-based shared
memory as shown in Fig. 10. SMVM features a linear access
pattern to shared memory. Every input and output data
element is read and written exactly once by the accelerator,
respectively. Only compulsory TLB misses happen and the
speedup is proportional to the cost ratio between handling a
TLB miss and copying a memory page between contiguous
and virtual memory. The only benefit of a larger TLB (L2)
is that it allows for larger DMA transfers, which leads to a
slight increase in performance.

The use of a hybrid configuration leads to a significant
increase in performance. In such a configuration, the matrix
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is allocated in a virtually and physically contiguous memory
region remapped using a single but variable sized entry
in the L1 TLB, and where the input and output vectors
are remapped using the page-sized entries of the L2 TLB.
Accesses to the matrix thus never miss in the L1 TLB.
Since for many practical applications of SMVM, the same
matrix is multiplied many times with varying input data
and exclusively accessed by the accelerator, it pays off to let
the host once place the matrix in a contiguous but uncached
memory region, e.g., obtained through CMA. In contrast,
the input and output vectors also processed by the host but
accessed only once by the accelerator should be allocated in
normal, cached memory remapped using the L2 TLB.

The performance of the SMMU is dominated by han-
dling page faults. Similar to MC, the access pattern is linear
and every data element is accessed once. There are only
compulsory but no capacity TLB misses. This does not allow
to amortize the cost for the page faults and prevents the
exploitation of the SMMU hardware.

5.4 Comparison with Related Works
5.4.1 Hardware Comparison with Related Works
Table 5 compares relevant IOMMU FPGA implementations
reported in the literature with a hybrid configuration of our
design featuring 4 variable-sized L1 TLB entries and an L2
TLB (4 parallel VA RAMs, 1024 entries, 32 ways). The max-
imum clock frequency of this configuration is 185 MHz. To
further increase the performance of our design, e.g., when
used to interface an FPGA accelerator running at faster clock
speeds or that saturates the available bandwidth, our design
can still be adapted by adjusting the data width of the AXI4
interfaces which is a configurable design parameter.

Only three of the considered FPGA IOMMUs run faster
than our design, whereas in terms of effective look-up time

and relative latency compared to the corresponding host
ours is the best. The software-managed MMU for soft pro-
cessors from Shamani et al. [39] is comparable to our design
in terms of FPGA technology, speed and resource utilization.
Its two TLB levels are fully-associative and implemented
using fully-parallel, pipelined FPGA logic. This enables high
clock speeds but makes the TLB resource hungry7 and
limits it to substantially smaller capacities. To achieve high
clock frequencies, the two fastest designs both implement
a (heavily) pipelined TLB using BRAM cells. This leads to
a higher resource utilization and a look-up latency which
is comparable [32] or much higher [24] than that of our
IOMMU, despite the much smaller TLB capacity.

Using private, HLS-generated translation hardware for
every shared data element [27] might lead to a better re-
source utilization in some cases, but this clearly heavily
depends of the target application. In the worst reported case
the use of resources is higher than ours, for a design that
runs significantly slower. The pipelined page-table walker
engine from Winterstein et al. is equipped with two interme-
diate TLBs and a physically-addressed data cache [54]. This
RTL module enables SVM for HLS accelerators described in
OpenCL. It uses more resources and runs slower than our
proposal, despite the use of direct-mapped TLBs of lower
capacity. The smallest of all the considered designs employs
a software-managed TLB, but its performance is not among
the best, as the TLB is searched sequentially [37]. Relying
on a hardware-managed, virtually-addressed data cache
to reduce the pressure on the low-capacity TLB and the
memory [23] results in the highest memory consumption.

It has to be underlined that all the approaches that we
compare to block memory traffic upon encountering the
first (or second [32]) TLB miss, and until this miss has
been handled. In contrast, our design delivers non-blocking
operation. It simply enqueues the missing request, drops the
transaction and continues to translate requests.

5.4.2 Alternative SVM Designs
The focus of previous work on SVM for FPGA accelerators
lies on reducing the TLB service time by using either a
soft processor [22], [24] or dedicated hardware [18], [19],
[27], [28], [32], [37], [54] for managing the TLB with a
size of 64 entries at most. As opposed to letting the host

7. The L2 TLB alone uses more than 60% of the resources.

TABLE 5
Comparison of different IOMMU FPGA implementations.

LUTs * FFs BRAM #TLB Latency Freq. Time Latency FPGA Family
[k] [k] [kbit] Entries [Cycles] [MHz] [ns] [Host Cycles] (Tech.)

This work 4.12 4.69 46.14 4& 4 + 1024 1, 3 − 6 185 5.4, 16.2 − 32.4 3.6, 10.8 − 21.6 Kintex-7 (28 nm)

Estibals [27] 0.07 - 4.06 0.14 - 8.76 ≤ 32 n/a 2 100 20.0 13.3 Artix-7 (28 nm)

Winterstein [54] 3.70 14.18 804.22 64 + 64 n/a 114 n/a n/a Cyclone-V (28 nm)

Shamani [39] 7.06 5.26 n/a 8& 4 + 64 2, 5 200 10.0, 25.0 n/a Stratix-V (28 nm)

Mirian [37] 1.55 2.67 ≤ 32 64 64 n/a n/a n/a Virtex-6 (40 nm)

Kornaros [32] 10.62 407.65 64 6 225 26.7 26.7 Virtex-6 (40 nm)

Ammendola [24] 10.70 8.30 566.54 32 31 250 124.0 297.6 Stratix-IV (40 nm)

Ng [23] 2.74 2.84 1622.02 16 2 62 32.3 100.0 Virtex-5 (65 nm)
* Logic utilization on a Kintex-7 device. The scaling factors were obtained by synthesizing an FPGA accelerator design for the various device families.
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Fig. 11. Normalized performance of different SVM designs for a) PC, b) RFT, c) MC and d) SMVM.

manage the TLB, this reduces the latency of TLB misses
substantially. However, the host is still required to pin the
shared memory pages either on the first and compulsory
TLB miss to a page (causing a page fault), or to all shared
memory pages at offload time. Otherwise, the OS might at
some point move the shared page in physical memory or to
swap space, thereby causing the corresponding TLB entry
to become invalid and causing the accelerator to corrupt
the memory of other processes or the OS itself. In addition,
most proposed designs support no outstanding TLB misses
[23], [24], [27], [28], [37], [39], [54] – or just a single one [32] –
without blocking any traffic. Compared to our design which
simply enqueues outstanding TLB misses and in parallel
continues to serve hitting memory transactions, this leads to
a complete serialization of the traffic. Thus, the full interrupt
latency has to be paid for every page fault.

To estimate the performance of such designs in real
applications and compare them with our design, we have
run our benchmarks on our Zynq-based evaluation plat-
form using an L1 TLB with 64 entries and profiled the
number of compulsory misses and capacity misses in the
TLB. The total run time is then estimated by summing
up the accelerator run time in the copy-based memory
sharing configuration (no SVM-related overheads during
accelerator execution) and the SVM-related overheads for
the accelerator execution and the offloading sequence.

The cost of a page fault (compulsory miss, first miss to
every page) is equal to the total TLB miss-handling cost in
our scheme (Table 3). Further TLB misses (capacity misses)
can be handled directly on the FPGA and take 1350 host
clock cycles in the case of a soft processor managing the
TLB [24] or 540 host clock cycles when the TLB is managed
in hardware [28]. In case the shared memory pages can be
pinned at offload time, there are no page faults. Note how-
ever that page pinning at offload time is only an option if
the application does not make extensive use of pointer-rich
data structures. Otherwise, an application-specific offload
sequence is required to traverse the data structure (as with
copy-based shared memory). The cost of pinning a single
memory page at offload time is equal to the cost of handling

a TLB miss in our scheme (Table 3, without response and
scheduling latency) [20].

The accelerator engines have been configured as follows:
For PC, we used a vertex size of 44 B, 10 cycles per vertex,
and 1 to 4 iterations on the graph similar to PageRank [55].
We used 3 different graphs with 10 k, 40 k and 100 k vertices
to vary the total data size. For RFT, we chose 16 tree levels,
28 B for the vertex size, 10 computation cycles per vertex and
256 or 2048 samples. MC was run with a data size of 64 KiB
for 1 iteration to match the loading of the multi-channel
image patches prior to an RFT-like classification phase [48].
For SMVM, we used the four matrices listed in Table 4.

PC: As shown in Fig. 11 a), the use of a soft processor
(SW MGMT) or dedicated hardware (HW MGMT) together
with a single-cycle, 64-entry TLB does not necessarily lead to
higher performance. The reason is mainly that compulsory
TLB misses lead to page faults, which need to be handled
by the host, even if the TLB is managed by the accelerator.
Independent of the SVM scheme, the speedup compared to
copy-based shared memory decreases as the number of iter-
ations on the graph increases which amortizes the initially
high offload cost. Only as the graph size increases beyond
the capacity of the large TLB (100 k vertices), managing
the TLB on the FPGA starts to pay off. This is due to the
much smaller latency for handling capacity misses directly
on the FPGA. Selecting a larger TLB size (L2, 2048 Entries, 10
Cycles) in our system allows to avoid capacity TLB misses
and the associated performance degradation. The higher
maximum look-up latency does not affect performance
also for smaller graphs in PC.

RFT: Since RFT does not make heavy use of virtual
address pointers, the shared data can be pinned at offload
time to avoid page faults. In this case, all TLB misses can be
handled on the FPGA (64 Entries, 1 Cycle, SW/HW MGMT,
No Faults) as shown in Fig. 11 b). The performance is close
to that of copy-based shared memory also for larger num-
bers of samples. The highest performance is achieved by the
hybrid design. A larger TLB with 10 instead of 6 cycles max
look-up latency has little impact on performance (2%) only.

MC: MC features a linear access pattern to SVM and thus
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only produces compulsory TLB misses and page faults but
no capacity misses. In our design, the IOMMU does not
block on the first TLB miss. Together with the prefetching
transactions, this allows to queue multiple TLB misses,
which can be handled by the host in one batch. This
allows to increase performance by roughly 60% compared to
when managing the TLB on the FPGA as shown in Fig. 11 c).
Pinning the memory pages at offload time improves perfor-
mance of such designs but it does so at most slightly beyond
what is achievable with our framework.

SMVM: For SMVM, the performance is bound by han-
dling compulsory misses/page faults as shown in Fig. 11 d).
Pinning the shared data at offload time helps to improve
performance. However, the performance of the designs
managing the TLB on the FPGA is always below that of our
design. The reason is twofold: First, these designs support
neither queueing of page faults nor multiple outstanding
TLB misses. While either of the two is being handled,
the IOMMU blocks any traffic to SVM. Second, SMVM
uses multiple parallel DMA streams to stream in the
sparse matrix in CISR format, which further amplifies the
benefits of supporting multiple outstanding TLB misses.
The highest performance is achieved when using a hybrid
design as enabled by our SVM framework.

6 CONCLUSION

In this paper, we have presented a plug-and-play frame-
work for exploring shared virtual memory (SVM) for FPGA
accelerators in heterogeneous embedded SoCs. It consists of
a software component for interfacing the user-space appli-
cation with the OS kernel and the address translation hard-
ware. To perform the virtual-to-physical address translation
of the accelerator’s accesses to shared memory, it can use
either our configurable IOMMU IP core or the hard-macro
IOMMU provided by some next-gen high-end SoCs. The
design allows the application programmer to simply share
virtual address pointers with the FPGA accelerator without
the need to use specialized memory allocators and the like.
The low-level details are handled by the framework without
incurring any offload-time overheads. We have evaluated
the design using applications operating on pointer-rich data
structures for which SVM is a must to enable reasonable de-
sign time effort, and that heavily stress the SVM subsystem.

The proposed design allows for speedups between 1.5
and 13x, compared to copy-based shared memory – which
is still the state of the art for embedded, heterogeneous
systems. Our results show that, due to limitations in the
low-level drivers and kernel APIs, the performance of hard-
macro IOMMUs can be dominated by handling page faults.
Using our configurable soft IOMMU we have found that,
unlike for CPUs, TLB look-up latency is not critical for
FPGA accelerators – as the TLB is not in the accelerator’s
critical path to the scratchpad memory, but mainly used
for latency-insensitive DMA transfers. Relaxing look-up la-
tency allows for the construction of larger TLBs and thus
lower miss rate and overall miss-handling overhead with
less FPGA resources. Non-blocking support for multiple
outstanding misses and batch-mode handling as well as
flexible sized mappings are the capabilities of our design

that proved the most beneficial for the performance of par-
allel FPGA accelerator architectures. The presented results
further show that coherent access to the host’s data caches
is not always beneficial. While avoiding costly cache flushes,
the effective bandwidth can be 45% lower compared access-
ing the data directly through a dedicated port on the DDR
memory controller. For optimal performance and flexibility,
our framework allows to optionally specify the interface to
use on an address range or shared data element basis.

The presented framework is part of the open-source
HERO platform (see https://pulp-platform.org).
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