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Syndrome-Based Encoding of Compressible
Sources for M2M Communication

Ahmed Elzanaty, Andrea Giorgetti, and Marco Chiani

DEI, University of Bologna, ITALY
e-mail:{ahmed.elzanaty, andrea.giorgetti, marco.chiani}@unibo.it

Abstract—Data originating from many devices and sensors
can be modeled as sparse signals. Hence, efficient compression
techniques of such data are essential to reduce bandwidth and
transmission power, especially for energy constrained devices
within machine to machine communication scenarios. This paper
provides accurate analysis of the operational distortion-rate
function (ODR) for syndrome-based source encoders of noisy
sparse sources. We derive the probability density function of
error due to both quantization and pre-quantization noise for
a type of mixed distributed source comprising Bernoulli and an
arbitrary continuous distribution, e.g., Bernoulli-uniform sources.
Then, we derive the ODR for two encoding schemes based on
the syndromes of Reed-Solomon (RS) and Bose, Chaudhuri,
and Hocquenghem (BCH) codes. The presented analysis allows
designing a quantizer such that a target average distortion is
achieved. As confirmed by numerical results, the closed-form
expression for ODR perfectly coincides with the simulation. Also,
the performance loss compared to an entropy based encoder is
tolerable.

I. INTRODUCTION

Most of the signals of interest such as image, audio, video,
and generated data from Internet of Things (IoT) devices have
fewer degrees of freedom compared to their dimension [1]–[3].
Hence, their size can be significantly decreased by exploiting
this sparsity structure, i.e., the ability to describe signals with a
small set of coefficients compared to their dimension in some
domain, e.g., time, frequency, discrete cosine transform, and
wavelet. The ultimate goal of source compression is to reduce
data rate and power consumption during transmission, so that
machine to machine (M2M) communication between energy
constrained devices is feasible. Hence, the main challenge is
minimizing the number of transmitted bits while preserving
the distortion, due to both quantization and pre-quantization
noise, below a predefined threshold.

The key objectives considered while designing lossy source
encoders for sparse sources are:

1) Finding a practical source encoder which exploits sparsity
to minimize the average rate in the presence of noise.

2) Analyzing the theoretical performance of the encoders in
terms of the operational distortion-rate function (ODR),
which is practically important for optimal bit allocation
among sub-bands in wavelet based schemes [4], [5].

This work was supported in part by the European Commission under the
EU-METALIC II project within the framework of Erasmus Mundus Action2
and in part by the European project EuroCPS (grant no. 644090) under the
H2020 framework.

For the first objective, we proposed a signal de-noising
technique comprising a uniform quantizer and a syndrome-
based source encoder to reduce the rate [6]. The performance
was evaluated only through Monte-Carlo simulation, where it
was empirically shown that this scheme is superior to various
encoders including compressed sensing [7]–[10].

Regarding the performance analysis, the ODRs of optimal
scaler quantizers have been analyzed for uniformly and expo-
nentially distributed sources [11], [12]. An increasing attention
has been given to mixed distributed sources (MDSs), adopted
for sparse representation of piecewise smooth signals including
images in the wavelet domain [13]–[15]. In particular, asymp-
totic formulations of the information distortion-rate function
(IDR) for a class of MDSs have been given in [16], [17].
Moreover, approximate asymptotic expressions for the ODR of
uniform quantizers, without considering any saturation effect,
have been derived for Bernoulli-Gaussian sources [14], [18].

On the contrary, this paper provides an accurate perfor-
mance analysis of the proposed lossy source encoder (i.e.,
uniform quantizer followed by syndrome encoding) for MDSs
comprising Bernoulli and an arbitrary continuous distribution
with more practical considerations, e.g.,

• Noisy sources with additive pre-quantization noise are
analyzed, as the acquisition devices usually induce addi-
tional noise. This model fits also the case of not exactly
sparse sources (compressible), where the Gaussian noise
accounts for the insignificant source symbols [15].

• The considered quantizers have a finite number of levels
and they exhibit a saturation effect.

• The achievable syndrome-based encoders are used instead
of those based on theoretical entropy rates.

• A closed form expression for the ODR is derived for
finite rates, in contrast to the asymptotic analysis for low
distortion in the literature.

In particular, we derive the probability density function (PDF)
of error due to both quantization and input noise. Then, we
find the induced distortion and ODR of two lossy source
encoders based on Reed-Solomon (RS) and Bose, Chaudhuri,
and Hocquenghem (BCH) syndrome encoding schemes.

Throughout the paper, small letters denote scalars and
random variable (r.v.) realizations, bold letters denote vectors,
calligraphic letters indicate r.v.s, N (µ,C) denotes the mul-
tivariate Gaussian distribution with mean µ and covariance
matrix C, IN is the N -dimensional identity matrix, Fq denotes
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Figure 1. The block diagram of the proposed compression schemes for noisy sparse sources.

the Galois field of order q, and b.c and d.e represent the
flooring and ceiling functions, respectively.

II. SIGNAL MODEL

The source emits independent, identically distributed (i.i.d.)
r.v.s collected into a vector of length N , s 2 RN . Each source
symbol, S , is generated as a multiplication of a Bernoulli r.v.
Z (with probability p of generating ones) and Y drawn from
some continuous distribution PY(y). Hence, the corresponding
PDF of S is

PS(s) = pPY(s) + (1� p)�(s). (1)

The acquisition device may induce some noise to the input
signal, thus the noisy source vector can be represented as

x = s+w (2)

where w ⇠ N (0,�2
n IN ) represents the additive noise.

III. THE PROPOSED COMPRESSION SCHEMES BASED ON
SYNDROME ENCODING

In this section, we briefly shed the light on two schemes for
lossy source compression proposed in [6] (see Fig. 1). Let us
consider a random realization of the noiseless source, s, with
k0 non-zero elements in locations identified by the ones in
⇡ 2 {0, 1}N . At first, the locations of the non-zero elements
should be estimated through a support estimation mechanism,
e.g., power detection and model order selection [6], [19], [20].
Assuming perfect support estimation, the encoder nulls out
the N � k0 noise components outside the non-zero elements
support as

x⇤
i
=

⇢
xi, i 2 ⇡,
0, otherwise. (3)

A. Scalar Uniform Quantizer

Due to the large number of zero elements in x⇤, we
consider a scalar mid-tread uniform quantizer, whose zero-
valued reconstruction level prevents the introduction of ad-
ditional quantization noise out of the signal support [21].
This quantizer maps each element x⇤

i
of x⇤ to a discrete

quantization index

Q : R ! {0, 1, · · · , 2b � 2}

where b is the quantization depth indicating the number of
bits per sample. More precisely, the signal x⇤ is uniformly
partitioned into 2b � 1 levels with a step size

� =
2A

2b � 1
(4)

where [�A,A] is the supported range beyond which the output
is saturated. The index vector of the quantized signal is then

gq , Q(x⇤) = (Q(x⇤
1), Q(x⇤

2), · · · , Q(x⇤
N
)) 2 FN

q
.

B. Syndrome-Based Source Encoder

Regarding the RS based source coding (RSSC) approach,
the quantized signal gq is compressed by calculating its
syndrome vector z through the parity check matrix of the k0-
error-correcting RS code at the encoder depicted in Fig.1(a).
The resulting total number of bits required to encode the sparse
vector using RS syndrome coding is

RRS = 2k0b = 2k0 log2(N + 1) (5)

where b � 3, N = 2b � 1. The locations and values of the
non-zero elements can be estimated at the receiver from the
syndrome vector z, which is the sparsest vector satisfying the
computed syndrome, using Berlekamp’s algorithm [22]. This
is attributed to the duality between source and channel coding
problems, where the maximum sparsity order is consistent with
the correcting capability of the chosen channel code.



A further compression gain can be achieved by separately
sending the k0 quantized non-zero elements, then compressing
the binary vector which determines their locations using the
syndrome of a BCH code, as shown in Fig.1(b). In fact, the
required number of bits for the source encoding is

RBCH = m(N, k0) + k0 b  k0 log2(N + 1) + k0 b (6)

where m(N, k0)  k0 log2(N + 1) is the number of parity
check bits calculated from the design table of the BCH code,
for a given sparsity order k0 (i.e., error correcting capability)
and dimension N [23, Appendix C]. Clearly, from (5) and (6),
the rate is upper-bounded by the RS based approach. In the
decoder, the binary location vector can also be recovered using
the Berlekamp’s algorithm, and the quantized non-zero entries
are reconstructed from the quantization indexes as usual.

IV. OPERATIONAL DISTORTION-RATE ANALYSIS

In this section, we derive the ODR for the proposed schemes
in Fig. 1, which is also considered as an upper bound on the
IDR for sparse memoryless sources. The ODR, D(R), is a
function that maps the rate R at which the system is working
(i.e., the average number of bits required to describe a single
source sample) to the mean square error distortion due to both
quantization and pre-quantization noise. More precisely,

D = E
⇣

Ŝ(S,W, R)� S
⌘2
�
=

Z 1

�1
⌧2 PT (⌧) d⌧ (7)

where S ⇠ PS(s), W ⇠ N (0,�2
n ), Ŝ , and T , Ŝ � S are

r.v.s representing the source output, pre-quantization noise,
decoder output, and error due to both the quantization and
pre-quantization noise, respectively.1 Hence, finding the PDF
of error, PT (⌧), is essential for deriving the distortion-rate
function. More precisely, the decoder output can be written,
after off-support de-noising in (3), as

Ŝ = Q�1(Q (X ⇤)) = Q�1(Q (S + ZW))

= Q�1(Q (ZY + ZW)) , S + T (8)

where X ⇤ is the r.v. representing the filtered signal in (3) and
Q�1 (Q (x)) is the scalar mid-tread uniform quantizer with
bounded range which is defined as

Q�1(Q (x))=

8
<

:

�A+�/2, x  �A+�
i�, (i� 1

2 )�x(i+ 1
2 )�

A��/2, x � A��
(9)

with i 2 {imin +1, imin +2, ..., imax � 1}, where imax =
�imin = (2b � 2)/2 = A/� � 1/2. Clearly, the PDF of the
error T can be written as

PT (⌧) =
2X

j=1

PT |Z(⌧ |zj)PZ(zj)

= pPT |Z(⌧ |1) + (1� p)PT |Z(s|0)
= pPT |Z(⌧ |1) + (1� p) �(⌧) (10)

1Since the source is memoryless, scalars rather than vectors are considered
and the subscript i is dropped from the notation.

where the error vanishes for z = 0, as the support is perfectly
estimated at the encoder and mid-tread quantizers do not
introduce distortion to the zero valued source symbol. Hence,
only the non-zero entities are subjected to distortion. The
remaining part is the PDF of error given that the source symbol
is non-zero, which can be written as

PT |Z(⌧ |1) =
imaxX

i=imin

PŜ,Y|Z(ŝi, ŝi � ⌧ |1)

= PŜ|Y,Z(ŝimin |ŝimin� ⌧, 1)PY(ŝimin� ⌧)

+
imax�1X

i=imin+1

PŜ|Y,Z(ŝi|ŝi� ⌧, 1)PY(ŝi� ⌧)

+ PŜ|Y,Z(ŝimax |ŝimax� ⌧, 1)PY(ŝimax� ⌧). (11)

The probability that the decoder selects ŝimin given that the
entry is non-zero and has the value ŝimin � ⌧ equals the
probability that noise is bounded below ⌧ +�/2, i.e.,

PŜ|Y,Z(ŝimin |ŝimin�⌧, 1) = P{ŝimin � ⌧ +W  �A+�}
= P{�A+�/2� ⌧ +W  �A+�}

= P
⇢
W  ⌧ +

�

2

�
= �(⌧) (12)

where �(x) =
⇥
1 + erf

�
(x+�/2)/(

p
2�n)

�⇤
/2 and ŝimin is

obtained from (9). Similarly,

PŜ|Y,Z(ŝimax |ŝimax � ⌧, 1) = P{ŝimax � ⌧ +W � A��}
= P{A��/2� ⌧ +W � A��}

= P
⇢
W � ⌧ � �

2

�
= �(�⌧). (13)

The probability to have s in the output with i 2 {imin+1 :
imax�1} given Y and that the source symbol is non-zero can
be written as

PŜ|Y,Z(ŝi|ŝi � s, 1)

= P{i���/2� ŝi + ⌧ � W � �ŝi + ⌧ + i�+�/2}
= P{⌧ ��/2 � W � ⌧ +�/2} = �(⌧) (14)

where ŝi = i� and

�(x) , 1

2


erf

✓
x+�/2p

2�n

◆
� erf

✓
x��/2p

2�n

◆�
.

Altogether, (10)-(14) give the error density function for an
arbitrary distribution of the non-zero elements PY(y) as

PT (⌧) = (1� p) �(⌧) + p

 
�(⌧)

A/��3/2X

i=�A/�+3/2

PY(ŝi � ⌧)

| {z }
P3

+ �(⌧)PY(ŝimin � ⌧)| {z }
P1

+�(�⌧)PY(ŝimax � ⌧)| {z }
P2

!
. (15)



Let us consider Bernoulli-uniform (BU) sources, where the
non-zero elements are drawn from a uniform distribution with

PY(y) =

⇢
1
2A , |y|  A
0, otherwise. (16)

The most important consideration while substituting (16) into
(15) is to find the proper intervals adherent with r.v. Y support.
For ease of clarity, each part of (15) will be treated separately.
In particular, P1 and P2 can be found such that |ŝimin�⌧ |  A
and |ŝimax � ⌧ |  A, respectively, as

P1 =
1

2A

⇢
�(⌧), � 2A+ �

2  ⌧  �
2

0 , otherwise (17)

P2 =
1

2A

⇢
�(�⌧), ��

2  ⌧  2A� �
2

0 , otherwise. (18)

Regarding P3, two conditions should be satisfied while finding
the range of ⌧ such that P3 is non-zero, i.e., |ŝi � ⌧ |  A
leading to

⌧ �A  ŝi  A+ ⌧

d(⌧ �A)/�e  i  b(A+ ⌧)/�c
and the second constraint from the summation limits in (15)

�A/�+ 3/2  i  A/�� 3/2.

By considering the inequalities of i, we get

PY(ŝi � ⌧) =
1

2A

⇢
1, �2A+ 3

2 �  ⌧  2A� 3
2 �

0, otherwise

with i : iL(⌧)  i  iH(⌧), where

iL , max {d(⌧ �A)/�e ,�A/�+ 3/2}
iH , min {b(A+ ⌧)/�c , A/�� 3/2} .

Since the distribution is uniform, the summation in (15) re-
duces to (iH(⌧)� iL(⌧) + 1)/2A. It has three distinct values
depending on ⌧ range, therefore P3 can be represented as

P3 =
1

2A

8
>>>>>>>>>>><

>>>>>>>>>>>:

(b(A+ ⌧)/�c+A/�� 0.5)�(⌧),

if � 2A+ 1.5�  ⌧ < �1.5�

(2A/�� 2)�(⌧),

if � 1.5�  ⌧ < 1.5�

(�d(⌧ �A)/�e+A/�� 0.5)�(⌧),

if 1.5�  ⌧ < 2A� 1.5�

0, otherwise.

(19)

From (15) to (19), the PDF of pre-quantization plus quantiza-
tion noise error can be written as

PT (⌧) = (1� p) �(⌧)+

p

2A

8
>>>>>>>><

>>>>>>>>:

(2A/�� 1)�(⌧), if |⌧ | < �/2

(2A/��2)�(⌧)+�(�⌧),

if �/2  |⌧ | <3�/2

� (⌧) (A/�+ b(A�⌧)/�c�1/2) + � (�⌧) ,

if 3�/2  |⌧ | < 2A�3�/2

�(�⌧), if 2A�3�/2 |⌧ |<2A��/2.

(20)

�0.2 �0.1 0 0.1 0.2
0

1

2

3

(1� p) �(⌧)

⌧

P
(⌧
)

SNR = 50dB, b = 3, �n/� = �57 dB

SNR = 13dB, b = 6, �n/� = �1 dB

SNR = 6dB, b = 10, �n/� = 30dB

Figure 2. The PDF of error both analytical (solid) and empirical (dashed with
hashed area), for various SNRs and bit depths b.

Regarding the induced distortion at the decoder output, from
(7) and (20) we have

D ' bD(�) ,
Z 1

�1
⌧2 P̃T (⌧) d⌧ (21)

' p

✓
�2

12
+�2

n

◆
= p

 
A2

3 (2b�1)2
+�2

n

!
(22)

where P̃T (⌧) is an accurate approximation of the PDF in (20)
by considering that bxc ' x�1/2. The integral (21) is exactly
calculated and reported in (27) at the bottom of the last page.

Now, the ODR for RSSC in Fig. 1(a) can be derived by
reformulating the distortion in terms of the average rate. At
first, the system expected rate is calculated as

R = E [RRS/N ] = 2 bRS E [K0/N ] = 2 bRS p (23)

where K0 is a r.v. distributed as a binomial distribution with
mean p and it represents the number of non-zero elements.
Hence, the ODR can be written from (4), (22), and (23) as

DRS(R)' bD
✓

2A

2bRS�1

◆
'p

✓
A2

3

⇣
2R/2p�1

⌘�2
+�2

n

◆
. (24)

Similarly, the expected rate for BCH based encoder is

R = E [RBCH/N ] = E [( bBCH K0 +m(N, K0) )/N ]

= p bBCH +m(N, pN)/N  p(bBCH + log2(N + 1)). (25)

Finally, the ODR of the BCH based scheme is found as

DBCH(R) ' bD
✓

2A

2bBCH�1

◆
(26)

' p

✓
A2

3

⇣
2R/p�m(N, pN)/(pN)�1

⌘�2
+ �2

n

◆

 p

✓
A2

3

⇣
2R/p� log2(N+1) � 1

⌘�2
+ �2

n

◆
.
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Figure 4. The ODR for the proposed BCHSC (solid) and RSSC (dashed)
schemes, for b 2 {4, 5, ..., 12} and SNR 2 {5, 15, 20, 30} dB.

V. NUMERICAL RESULTS

In this section, numerical results and Monte-Carlo sim-
ulations are presented to illustrate the performance of the
proposed RSSC and BCHSC schemes. We also compare the
ODR of such encoders with an entropy-based bound. The
signal-to-noise ratio (SNR) is the signal power to the pre-
quantization noise power at the encoder which is defined as
SNR , 10 log10

�
E
�
s sT

 
/E

�
wwT

 �
dB. In all numerical

results p = 0.15, A = 1, and N = 2b � 1, respectively.
In Fig. 2, we show the PDF of error due to both quantization

and pre-quantization noise for SNR 2 {50, 13, 6} dB and
b 2 {3, 6, 10} bits per sample. As we can see the theo-
retical PDF in (20) agrees with the normalized histogram
obtained from simulation. Note also that the PDF is a mixture

1.5 2 2.5 3 3.5 4
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10�7

10�6

10�5

10�4

10�3

R (bits/sample)

D

RSSC Analytical
RSSC Simulation
BCHSC Analytical
BCHSC Simulation
Upper bound on D(R)

Figure 5. The ODR of BCHSC and RSSC along with an upper bound on the
IDR, with b 2 {5, ..., 13} and SNR = 1.

distribution with a Dirac delta function at zero with weight
1 � p representing a perfect recovery of the zero elements
at the decoder. On the other hand, the PDF of the non-zero
entries is a combination of error due to quantization only
(uniform distribution from ��/2 to �/2) and distortion from
the pre-quantization noise (zero mean Gaussian distribution
with variance �2

n ). The resulting shape depends on �n/�, e.g.,
P (⌧) tends more to uniform distribution for small ratios.

Fig. 3 shows the MSE distortion (27) vs step size � of the
uniform quantizer with b 2 {4, 5, ..., 12}, for noisy BU sources
with SNR 2 {7, 10, 15, 30} dB. The distortion increases with
both the step size and noise variance. Moreover, the minimum
distortion that one can achieve depends on the amount of pre-
quantization noise, e.g, decreasing � from 10�2 to 10�3 has
negligible effect on the distortion for SNR  15 dB.

Fig. 4 illustrates the operational distortion-rate function
of RSSC (24) (dashed) and BCHSC (26) (solid) schemes
with b 2 {4, 5, ..., 12} and SNR 2 {5, 15, 20, 30} dB. Note
the analytical performance for (RSSC ⇤) and (BCHSC •)
perfectly coincides with simulation (⇧, ⇤). It is evident that
DBCH(R)  DRS(R) with quite differences at high SNRs
which is attributed to RBCH  RRS from (5) and (6). Also,
the distortion tends approximately to p�2

n as � ! 0, for
instance, increasing the rate from 2 to 3 bits/sample does not
significantly decrease the distortion for low SNRs.

We presents in Fig. 5 upper bounds on the information
distortion-rate function through several source compression
schemes noting that any achievable ODR provides an upper
bound on IDR. In particular, we compare the BCHSC and
RSSC with an entropy based encoder, where the location
vector is coded with a minimal number of bits indicated by the
Bernoulli source entropy and the non-zero values are encoded
using a uniform quantizer. More precisely, its average rate is
R = �p log2(p) � (1 � p) log2(1 � p) + p bentropy with ODR



bD
�
2A/(2bentropy�1)

�
. We can see that the gap between the

BCHSC and entropy based scheme is small, especially in the
region of low-rate high-distortion.

VI. CONCLUSION

This paper provided the distortion rate analysis of two
novel schemes for efficient encoding of noisy sparse sources,
i.e., Bernoulli-uniform sources. These schemes are particularly
important for M2M communication scenarios involving the
exchange of sparse signals, e.g, images and data from wearable
sensors, to reduce both the consumed power and bandwidth.
The analytical performance of the proposed methods perfectly
coincides with the simulation results. Additionally, we point
out that the ODR of BCHSC is better than that of RSSC. As
illustrated by numerical results, the gap between an entropy
based source encoder and the proposed approaches is small.
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