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Na*, K*-ATPase (NKA) activity, which establishes the sodium and potassium gradient across the cell membrane and is
instrumental in the propagation of the nerve impulses, is altered in a number of neurological and neuropsychiatric disor-
ders, including autism spectrum disorders (ASD). In the present work, we examined a wide range of biochemical and cel-
lular parameters in the attempt to understand the reason(s) for the severe decrease in NKA activity in erythrocytes of ASD
children that we reported previously. NKA activity in leukocytes was found to be decreased independently from alteration
in plasma membrane fluidity. The different subunits were evaluated for gene expression in leukocytes and for protein
expression in erythrocytes: small differences in gene expression between ASD and typically developing children were not
apparently paralleled by differences in protein expression. Moreover, no gross difference in erythrocyte plasma mem-
brane oxidative modifications was detectable, although oxidative stress in blood samples from ASD children was con-
firmed by increased expression of NRF2 mRNA. Interestingly, gene expression of some NKA subunits correlated with
clinical features. Excess inhibitory metals or ouabain-like activities, which might account for NKA activity decrease, were
ruled out. Plasma membrane cholesterol, but not phosphatidylcholine and phosphatidlserine, was slighty decreased in
erythrocytes from ASD children. Although no compelling results were obtained, our data suggest that alteration in the
erytrocyte lipid moiety or subtle oxidative modifications in NKA structure are likely candidates for the observed decrease
in NKA activity. These findings are discussed in the light of the relevance of NKA in ASD. Autism Research 2018,
11: 1388-1403. © 2018 The Authors. Autism Research published by International Society for Autism Research and
Wiley Periodicals, Inc.

Lay Summary: The activity of the cell membrane enzyme NKA, which is instrumental in the propagation of the nerve
impulses, is severely decreased in erythrocytes from ASD children and in other brain disorders, yet no explanation has
been provided for this observation. We strived to find a biological/biochemical cause of such alteration, but most queries
went unsolved because of the complexity of NKA regulation. As NKA activity is altered in many brain disorders, we stress
the relevance of studies aimed at understanding its regulation in ASD.
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Introduction

Na+, K + -ATPase (NKA) activity is reduced in a number
of brain pathological disorders, including ischemia,
injury, depression and mood disorders, mania, stress,
neuronal hyperexcitability, and epilepsy [reviewed by de
Lores Arnaiz & Ordieres, 2014] as well as in autism spec-
trum disorders (ASD) [Ghezzo et al., 2013]. These observa-
tions prompted us to follow up our previous study on

ASD to investigate the origin and possibly the relevance
of NKA activity decrease in ASD.

Na*, K*-ATPase Structure and Function

NKA is a protein complex localized at the cell membrane,
first described by Skou [1957], who identified it as the
main factor responsible for the establishment of the
sodium and potassium gradient across the cell
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membrane. For each ATP-driven transport cycle, two K*
ions are imported into the cell while three Na* ions are
exported from it. NKA activity allows molecules to pass
through the cell membrane via indirect active transport,
contributes to establish the membrane electrical potential
and is fundamental in the propagation of nerve impulses.
NKA belongs to the P-type ATPases, a family of enzymes
comprising more than 50 members and characterized by
having a phosphorylated (P) enzyme intermediate in
common. NKA consists of a and p subunits, both required
for enzyme function, whereas a third subunit, referred to
as FXYD, appears to be involved in regulating enzyme
activity in a tissue-specific way. The a subunit is referred
to as the catalytic subunit, as it includes the binding sites
for ATP and for ion occlusion, as well as for the inhibitor
ouabain. It has a relative molecular mass of 100-113 kDa,
according to the different isoforms: o1, a2, a3, or a4, and
crosses the membrane 10 times, forming transmembrane
domains M1-M10, whereas both N- and C-termini are
localized on the cytosolic side. Mutations in the a sub-
units are involved in many (often neurological) diseases
[Clausen, Hilbers, & Poulsen, 2017]. The f subunit is in
direct contact with the a subunit, acting to facilitate the
correct positioning and conformational stability of the a
subunit within the plasma membrane. Moreover, the
B subunit modulates ion affinity and transport, ATP
hydrolysis, and the binding of inhibitors to NKA as a
whole. The mass of the protein moiety of p subunit is
36-38 kDa, depending on the different isoforms — 1, p2, or
B3; however, as it is heavily glycosylated, it has a relative
molecular mass of about 60 kDa. The p subunit crosses the
membrane only once, with the N-terminus localized on the
intracellular side of the membrane. The FXYD subunit is a
type I membrane protein, crossing once the plasma mem-
brane, with the N-terminus localized on the extracellular
side and characterized by the conserved FXYD motif (FXYD
stands for the amino acids phenylalanine, tyrosine, and
aspartate), one conserved serine and two conserved glycine
residues. In mammals, the FXYD protein family contains
seven members, named FXYD 1-7. As the FXYD subunit is
not present in all cell types, it appears not to be essential
for NKA activity, but rather, serves to modulate ion trans-
port function through molecular interactions with specific
enzyme domains [Scheiner-Bobis, 2002]. The expression
pattern of the different isoforms of o, §, and FXYD sub-
units depends on cell type, developmental stage, and spe-
cific signals [Sweadner & Rael, 2000; Hoffman, Wickrema,
Potapova, Milanick, & Yingst, 2002; Blanco, 2005;
Lubarski, Pihakaski-Maunsbach, Karlish, Maunsbach, &
Garty, 2005; de Lores Arnaiz & Ordieres, 2014].

NKA Regulatory Roles

Proteins may associate with the cytoplasmic domains of
the enzyme, underlying the fact that NKA carries

regulatory roles beyond ion transport. In fact, NKA activ-
ity is regulated by the so-called cardiotonic steroids (CTS,
mainly digoxin and ouabain); in turn, through its binding
to a variety of cytoplasmic proteins, NKA is involved in the
regulation of a number of signaling processes, which vary
in different tissues and may modulate relevant activities
such as intracellular Ca** concentration, changes in gene
expression, cell proliferation, survival and apoptosis, cell-
cell contacts and communication, synaptic and neural pro-
cesses (Goldstein et al., 2006; Matchkov & Krivoi, 2016;
Reinhard, Tidow, Clausen, & Nissen, 2013; Xie, 2003).

NKA Regulation

CTS are compounds found in a variety of plants and in few
animal species that specifically bind to the extracellular
domains of NKA, where binding serves to stabilize the
enzyme in its E2 conformation, thus inhibiting its ion trans-
port activity. Examples of plant CTS are ouabain, digoxin,
digotoxin, whereas marinobufagenin is the most well-
known among the compounds isolated in toads. Ouabain-
like and digoxin-like compounds have also been found to
be endogenously synthesized in mammals at subnanomolar
concentrations, but increase in some physiological and
pathological conditions, suggesting a role in the modulation
of different processes. The interaction of these compounds
with NKA activates its binding to Src kinase and resulting
signaling cascades [Pierre & Xie, 2006].

Pyridine, urea (Nikezi¢ et al., 1998), some organophos-
phate compounds [Blasiak, 1995; Jovanovi¢, Vasi¢, Nikolic,

Cetkovi¢, & Nikezi¢, 2000] and some metals, notably
vanadium (North & Post, 1984; Ehrenspeck, 1980), cad-
mium and mercury [Vasi¢, Jovanovi¢, Horvat, Momi¢, &
Nikezi¢, 2002] have been reported to inhibit NKA activity.

The lipid moiety of the membrane where the enzyme
is embedded provides an additional source of NKA regula-
tion [Cornelius, Habeck, Kanai, Toyoshima, & Karlish,
2015; Habeck et al., 2015]. In particular, the thickness of
the phospholipid bilayer (related to the acyl chain
lengths), the presence of optimal cholesterol concentra-
tion [Chen et al.,, 2011], omega-3 abundance, and the
percentage of anionic or neutral phospholipids all affect
enzyme stability and activity.

In particular tissues, regulation of NKA activity may
depend on post-translational modifications of the FXYD
subunit [Fuller et al., 2013]. In addition, changes in the cell
redox state and hypoxia/reoxygenation events affect NKA
activity and may play an important role in pathological and
adaptive responses by affecting a variety of redox-sensitive
modifications including S-glutathionylation, S-nitrosylation,
and redox-sensitive phosphorylation. Thiol modifications
are not only protective towards the inactivating action of
oxidants, but may also play regulatory roles [Bogdanova,
Petrushanko, Hernansanz-Agustin, & Martinez-Ruiz, 2016].
Each NKA subunity type contains cysteine residues, which
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are potentially attacked by oxidants and protected
by glutathionylation; however, a2, which is mostly
expressed in the heart and in the brain astrocytes, is
more susceptible than other isoforms to irreversible
oxidation [Xie et al., 1995]. Because of the susceptibil-
ity of the enzyme to react with oxidants and glutathi-
one, NKA activity was found to be decreased in a
number of pathological and physiological circum-
stances [Bogdanova et al., 2016], including chronic
inflammation, which is associated with oxidative stress
[Staron, Makosa, & Koter-Michalak, 2012].

ASD and Oxidative Stress

Our research team contributed to the recognition of oxi-
dative stress as a distinctive feature of ASD [Ghezzo
et al., 2013; Abruzzo et al., 2015] and described a marked
reduction (to about 35% of control values) of NKA activ-
ity in erythrocytes from ASD children; a similar decrease
in NKA activity in ASD subjects was also reported by
Kurup & Kurup, 2003. It should be pointed out that, accord-
ing to many recent studies, many neuropsychiatric disorders
are de facto inflammatory disorders, although the particular
mechanisms underlying this association are still under
debate [Réus et al., 2015; Young et al., 2016]. Undoubt-
edly, neuroinflammation finds a correlate in oxidative
stress [Emiliani, Sedlak, & Sawa, 2014].

The aim of the present work is to elucidate the mecha-
nisms underlying the reduction in NKA activity observed
in ASD children, with reference to the role of NKA in neu-
ropsychiatric and neurodegenerative diseases.

Materials and Methods
Ethics Statement

The present study was conducted according to the
guidelines laid down in the Declaration of Helsinki and
approved by the Local Ethical Committee (Azienda USL
Bologna, Imola, Ferrara, CE 13062, 23/12/2013; Prot.
N.1198/CE).

Subjects

Twenty-two children diagnosed with non-syndromic
ASD (17 males and 5 females, aged (mean + SD) 7.75 +
1.87 years, age range 5.25-11.08 years) and 21 typically
developing children (14 males and 7 females, aged
(mean =+ SD) 9.44 + 1.96 years, age range 5.25-11.83 years)
were recruited by the Child Neuropsychiatric Unit of the
Bellaria Hospital (IRCCS, Bologna). The patients underwent
a clinical diagnostic assessment and a comprehensive neu-
rological work up. The diagnostic evaluation performed by
two expert child neuropsychiatrists included a clinical
observation following DSM-5 criteria (American Psychiatric
Association, 2013), a standardized autism assessment by

autism diagnostic observation schedule (ADOS) (Lord et al.,
1999) and childhood autism rating scale (CARS) (Short &
Schopler, 1988), and finally a cognitive functioning
through Leiter-R scale (Tsatsanis et al, 2003) for brief non
verbal intelligence quotient (IQ) considering our sample
language impairment. Any medical and neurological
comorbidity was excluded by electroencephalography
(recorded both awake and sleeping), cerebral magnetic reso-
nance imaging, standard clinical and neurological examina-
tion and neurometabolic and genetic investigations
(including 550 band karyotype, and molecular assay for
Fragile X and MECP2). For the ASD group, CARS total scores
ranged from mild to severe autistic features; developmental
scores varied from normal IQ to severe cognitive impair-
ment (Table 1a). Control typically developing (TD) children
were recruited in the same local community and did not
display any sign of cognitive, learning, and psychiatric
involvement, as assessed by two expert child neuropsychia-
trists (Table 1b). All subjects were on the typical Mediterra-
nean diet and did not take any medication or dietary
supplements in the 4 months preceding the biochemical
and clinical evaluations. Dietary habits were assessed by a
food questionnaire, according to the guidelines issued by
the Emilia-Romagna Health Authority. No ASD child was
on a diet free of gluten or casein.

Materials

All chemicals were analytical grade and were purchased from
Sigma-Aldrich (St. Louis MO), unless otherwise specified.

Protein Concentration

Protein concentration was determined as described by
Bradford [1976], using serum albumin as a standard.

Blood and Urine Samples

Blood samples (~14 mL), obtained from ASD and TD
children, were collected in Na,-EDTA vacutainers. Basal
hematological parameters were examined by routine
laboratory techniques using 5 mL whole blood. Erythro-
cyte plasma membrane preparation was carried out
using 1.5 mL of whole blood, according to the method
described by Matte et al. [2013]. The remaining blood
was centrifuged to separate the plasma, which was
stocked at —80 °C. The cell suspension was separated by
Ficoll density gradient to obtain mononuclear white blood
cells (peripheral blood mononuclear cells [PBMC]). Spot
urine samples were collected in sterile containers (FORMESA,
Italy). Proteinuria and creatinine determinations were evalu-
ated using standard laboratory techniques. The remaining
urine was stored at —80 °C before the analytical evaluation of
metal concentration.
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Age (months)

b. Demographic features of the typically developing children
Gender

Continued

Table 1.
No. progr.

120
101
130
123
136

65

«— E E E EE

16
17
18
19
20
21

12).

The study was conducted according to the declaration of Helsinki guidelines and approved by Local Ethical Committee. Written consent was obtained from parents as well as from children through pic-

tures and simplified information.
1 Cognitive level: >70, normal; 55-69, mild cognitive impairment; 44-54, moderate cognitive impairment; <39, severe cognitive impairment.

2 ADOS modules 1 or 2 (Total score autism cut off

NKA Activity Assay in PBMC

Na*/K*-activated Mg>*-dependent ATPase activity was
determined in PBMC cell membranes, as previously
reported [Ghezzo et al., 2013]. The results are expressed
in pmol Pi/mg prot/h.

PBMC Plasma Membrane Fluidity

PBMC plasma membrane fluidity was evaluated as previ-
ously reported [Ghezzo et al., 2013].

Gene Expression

About 4%10° PBMC from 16 ASD and 17 TD children were lysed in
1 mL Trizol® Reagent (Invitrogen, Milan, Italy). Trizol-extracted RNA
was quality controlled and quantified as desaibed by Abruzzo
et al. [2013]. Quantitative real-time polymerase chain reaction (RT-
PCR) was performed in a BioRad CFX96 real-time thermal cydler
using the SsoFast™ EvaGreen® Supermix (Bio-Rad Labora-
tories, Hercules, CA). Custom-designed primer
sequences are reported in Supporting Information of
Table S1. Using CFX Manager ™ Software (Bio-Rad Labo-
ratories) and qBaseplus (http://www.biogazelle.com),
data were analyzed with the 2724“T method, taking into
account the efficiency of the real-time PCR reaction
between 95% and 105%. The stability of housekeeping
genes was validated according to the criteria suggested by
Vandesompele et al., 2002. RT-PCR data are expressed as
means + confidence interval, where a significance level of
0.05 corresponds to the 95% confidence level.

Western Blot (WB) of NKA Subunits in Erythrocyte Plasma
Membranes

Twenty pL of ghost suspension (~55 pg protein) were
assessed. Technical details are reported in the Supporting
Information section. Specific protein band density was
quantified by means of BioRad GelDoc 2000 with reference
to the fluorescence of each sample lane, generated by
exposing the trihalo compounds in the membrane to UV.

Glutathionylation of Erythrocyte Plasma Membrane Proteins

The protocol described by Hill, Ramana, Cai, Bhatnagar,
and Srivastava [2010], was applied with minor modifica-
tions. Electrophoresis was performed on precast gradient
Mini-PROTEAN TGX gels with 10 pL (~30 pg protein) of
ghost suspension, solubilized 1 hr in ice bath in LN buffer
(200 mM Tris-HCI, pH 6.8, 5% SDS, 25% glycerol, 0.04%
Bromophenol blue, 25 mM N-ethylmaleimide. Mem-
branes were probed overnight at 4 °C with the monoclo-
nal primary mouse antibody Glutathione-D8 (Thermo
Scientific, Rockford, IL) diluted 1:100 in 0.1%TBS-Tween,
then exposed to secondary antibody and quantified as
described for NKA subunits.

Bolotta et al./Decrease of Na/K-ATPase activity in ASD
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Table 2. Inhibitors of NKA Activity

a. Plasma and urine concentration of inhibitory metals

Inhibitory metals D ASD P (Mann-Whitney)
Plasma concentration (ug/L), mean £ SD
Vanadium 0.38 £0.19 0.39 £ 0.31 0.885
Cadmium 0.54 £+ 0.14 0.52 £+ 0.10 0.559
Mercury 0.55 +0.13 0.53 +£0.11 0.587
Urine concentration (pg/mg creatinine), mean £5D
Vanadium 2.90%E™* + 3.89*E™ 4.63%E* £ 4.78*E7 0.204
Cadmium 7.26%E7% £ 44T 1.00%E™ &+ 7.01*E™* 0.133
Mercury 6.13%E™% & 3.83*E™* 5.73%E7% + 3.01%E™ 0.706
b. Plasma concentration of endogenous ouabain
™ ASD
Pool Endogenous ouabain (nM) Mean +CV Pool Endogenous ouabain (nM) Mean £CV
A (4 subjects) 0.263 0.270 + 18.668 D (3 subjects) 0.292 0.270 + 17.545
B (4 subjects) 0.212 E (3 subjects) 0.313
C (3 subjects) 0.335 F (4 subjects) 0.204

The vanadium signal was quantified at m/z 51 in He mode; cadmium signal at 111 m/z in He and mercury signal at 202 m/z in He. The calibration
range was from 0.0025 to 25 pg/kg and limit of quantification (LOQ) for V was 0.001 pg/kg and 0.001 mg/kg for Cd and Hg. High purity deionized water
was obtained by Evoqua Water Technologies (Barbsbuttel, DE); nitric acid was from J.T. Baker (Center Valley PA, USA). Plasma Endogenous Ouabain was
determined by radioimmuneassay. Plasma was mixed overnight with 1:1 methanol to obtain protein precipitation. Protein-depleted plasma was dried out
with a speed vacuum concentrator. Dried samples were diluted in PBS and applied to a C;g column (Agilent Bond Elut C18 sample prep, Variant Ca, USA),
then eluted with a gradient 0-25% PBS:acetonitrile. Eluted Endogenous Ouabain was dried with a speed vacuum concentrator, then reconstituted in radio-
immuneassay buffer; quantification was made with polyclonal rabbit antibody (DBA, Italy). Intra- and inter-assay variability was <10%.

Carbonyl Groups in Erythrocyte Plasma Membrane Proteins

Carbonyl groups were assessed with the OxyBlot™ Pro-
tein Oxidation Detection Kit (Millipore, USA & Canada)
by using 5 pL of ghost preparation for each sample fol-
lowing the manufacturer’s instructions. Protein carbonyl-
ation was quantified using actin as the loading control.

Metal Concentrations in Plasma and Urine

Urine and plasma samples (3 mL) were thawed and
throughly mixed, then 7.5 mL of nitric acid were added
in a screw cap polypropylene 50 mL sample tube (Digi-
Tubes SCP Science); samples were then placed in a
Digi-Prep system (SCP Science) at 75 °C overnight. After
cooling, samples were diluted with 7.5 mL of deionized
water (Evoqua Water Technologies, Barbsbuttel, DE), fol-
lowed by a further 5x dilution with 1 N HCl. Analysis was
carried out according to the method described in
Galimberti et al. [2016], by using an inductively
coupled plasma mass spectrometer (ICP/MS 7700, Agi-
lent Technologies USA) coupled with an ASX-500
CETAC Autosampler (Cetac Technologies, Omaha NE,
USA). Metal concentration in urine was normalized by
creatinine concentration.

Endogenous Ouabain Evaluation

Endogenous ouabain evaluation was possible only for a
subgroup of subjects (TD N = 11; ASD N = 10), whose

blood sample was large enough to allow for the recovery
of an additional 350-450 pL plasma. As the quantifica-
tion of endogenous ouabain required a minimum volume
of 1.3 mL, three or four samples were randomly pooled in
order to be able to analyze three pooled plasma samples
from TD children and three from ASD children. The
method is fully discussed in Ferrandi et al. [1997] and
relies on a radioimmunoassay developed with a custom-
made rabbit polyclonal antiouabain antisera. Details are
reported in the legend of Table 2.

Cholesterol in Erythrocyte Plasma Membrane

Cholesterol was quantified by means of the Fluorimetric
Cholesterol Quantification Kit (Sigma-Aldrich) following
the manufacturer’s instructions, except that the chloro-
form:isopropanol:IGEPAL CA-630 extraction step was
omitted because the starting material was the ghost prep-
aration. For each sample, 2.5 pL of ghost preparation was
used in duplicate. A Perkin-Elmer Victor two plate reader
was used (As7p) to evaluate total membrane cholesterol
concentration, expressed as pg/ug of sample protein.

Phosphatidylserine in Erythrocyte Plasma Membrane

Phosphatidylserine was evaluated according to the
method described by Morita et al. [2012]. Lipids were
extracted from 30 pL of ghost preparation using the Lipid
Extraction Kit (chloroform free) (BioVision Milpitas, CA).
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Lipid extracts were resuspended in 50 pL of aqueous solu-
tion of 1% Triton X-100 (non-ionic, viscous liquid,
Roche). A Perkin-Elmer Victor two plate reader was used
(Aex = 544/Aem = 590 nm). Phosphatidylserine concentra-
tion is expressed as pg/pg of sample protein.

Phosphatidylcholine in Erythrocyte Plasma Membrane

Phosphatidylcholine was evaluated fluorimetrically using
the Phosphatidylcholine Assay kit (Sigma-Aldrich) accord-
ing to the manufacturer’s instructions. The ghost sample
was diluted 1:25 and 2.5 pL/well were used, in duplicate. A
Perkin-Elmer Victor two plate reader was used to assess sam-
ples (Aex = 535/Aem = 587 nm). Phosphatidylcholine con-
centration is expressed as pg/pg of sample protein.

Statistical Analysis

Data were tested for normality using the D’Agostino-
Pearson test, following which appropriate parametric tests
(Student’s t for independent data) or the nonparametric
equivalent (Mann-Whitney) were used. Parametric correla-
tion (Pearson) was used to correlate clinical features and
NKA gene expression data in the ASD group. Differences
were considered significant at P < 0.05. To account for mul-
tiple testing we used the Benjamini and Hochberg false dis-
covery rate (FDR). FDR corrected P-values (pFDR) were
evaluated separately for (a) comparisons of biochemical
parameters in ASD and TD, (b) correlations of clinical fea-
tures and NKA gene expression data in ASD group, and
(c) correlations of NKA gene expression and NRF2 expression
in ASD group. RT-PCR data are expressed as means + confi-
dence interval, where a significance level of 0.05 corresponds
to the 95% confidence level.

Results

Subjects

The age range of the two groups studied, TD and ASD chil-
dren, was the same, but the individual ages were not
matched, due to difficulties in sampling control subjects. For
this reason, all results were evaluated for possible age-depen-
dence. For both groups of subjects, none of the results
obtained in the present study were correlated with age.

NKA Activity and Plasma Membrane Fluidity in PBMC

NKA activity in PBMC from ASD children was signifi-
cantly decreased in comparison with that of TD children
(Fig. 1a). Values (mean +SD) were 1.204 +0.314 pmol
Pi/mg prot/h for TD and 0.661 +0.273 for ASD children,
P = 0.0002 by Mann-Whitney, pFDR = 0.0048. NKA
activity was not correlated with clinical features.

The decrease of NKA activity in PBMC of ASD children
was not associated with differences in PBMC plasma

membrane fluidity (Fig. 1b), at variance with previous
results found for erythrocytes, where a marked decrease in
NKA activity was accompanied by a significant decrease in
membrane fluidity [Ghezzo et al., 2013].

Gene Expression in PBMC

Gene expression of isoforms ol, o2, a3, p1l, p2, B3,
FXYD2, FYXDS5, and of Nuclear factor (erythroid-derived
2)-like 2 (NRF2) was evaluated in PBMC from 16 ASD and
17 TD children. The expression of isoform a2 was below
the detection level; among the detectable isoforms, p2
was the least expressed. PBMC from ASD children were
found to express higher levels of mRNA for the iso-
forms al (+19%) and B3 (+31%) and lower levels for
FXYDS (-18%) than PBMC from TD children (Fig. 1c).
NRF2 mRNA expression was found to be 1.56 times
greater in ASD than TD children (95% CI 0.953-2.418,
P < 0.05). Significance was lost after correction for mul-
tiple measurements.

Protein Expression of NKA Subunits and Actin in Erythrocyte
Membranes

NKA subunit protein expression was evaluated by WB
using UV-exposed TGX gels fluorescence, proportional to
the protein loaded in each lane, as the loading control.
For all proteins examined, representative pictures of gels,
nitrocellulose membranes, and target-specific bands are
shown in Figure. S1 a-f. Figure 1d shows the histograms
representing target protein to total lane fluorescence ratio
in the nitrocellulose membrane (mean +SD).

Beta-actin is the most widely used loading control for
Western Blotting, however, we chose TGX gel fluores-
cence based on the observation reported by Cortelazzo
et al. [2014], who found that erythrocytes from children
affected by Rett syndrome (a monogenic disease where
subjects display autistic features) had decreased p-actin
content, as compared to healthy children. However, our
results showed no difference in p-actin content between
TD and ASD children (Fig. 2a—c). This result allowed us to
use f-actin as loading control when assessing protein car-
bonylation (see below).

Both the a and P subunits of erythrocyte NKA were
difficult to detect, as already stressed by Arystarkhova
and Sweadner [1997]. In particular, a1l and o3 subunits,
expected to appear as bands at MW 112 and 110 kDa,
respectively, stained at approximately MW 95 kDa
(Fig. S1a and b). For this reason, a pan-alpha antibody
was additionally used in the attempt to improve the
detection of o subunits. As shown in Figure Slc, such
antibody stained the same band at apparent MW
95 kDa, as expected according to the antibody manufac-
turer; however, the band was as faint as those detected
by antibodies directed against the al and o3 subunits.
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rocytes from TD and ASD children. A: NKA activity in PBMC from TD and ASD children. B: Plasma membrane fluidity of PBMC from TD and
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membrane erythrocytes from TD and ASD children. Histograms show the target protein/total lane fluorescence ratio in the nitrocellulose

membrane (mean =+ SD); 3 stars = P < 0.001.

Moreover, a number of aspecific bands were consistently
stained at different MWs.

The datasheet for the pl antibody shows a single
band around 42 kDa for liver and a band around
55 kDa for kidney; the datasheet for the p2 antibody
shows a single band at 37.84 kDa; the datasheet for the
p3 antibody shows a smear between 40 and 60 KkDa.
However, in our assays, all p subunits displayed multi-
ple bands in the MW range of 34-60 kDa, probably
owing to different levels of glycosylation, and appeared
as rather faint bands (Fig. S1d-f). The optical densities
of these multiple bands were summed for the evalua-
tion of protein expression. Noteworthy, although we
used the same primary antibodies used by Hoffman
et al. [2002], when commercially available, our WB pat-
terns differed from theirs, probably owing to the fact
that we did not extract bulk purified NKA proteins, but
rather, compared the protein expression of single sub-
units in children erythrocytes.

An attempt to quantify FXYD2 was carried out, but
the very low MW of the protein (7 kDa), together with
its low amount, did not allow for a reliable quantifica-
tion by WB; FXYDS is expected to have a very low
expression in erythrocytes (http://biogps.org/#goto=
genereport&id=53827).

With the above-mentioned caveats, our data appear
to suggest that the protein expression level of a3 sub-
units and of B1, 2, and B3 subunits of NKA did not dif-
fer between erythrocytes from TD and ASD children,
whereas al appeared to be 1.2-fold increase in ASD sam-
ples (the difference was not statistically significant after
correction for multiple measurements) (Fig. 1d).

Oxidative Modifications of Plasma Membrane Proteins

The evaluation of glutathionylation and carbonylation
of plasma proteins, two relevant protein modifications
due to oxidative stress, was carried out on whole extracts
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Beta-actin protein expression in erythrocytes from TD and ASD children. A: A representative SDS-Gel electrophoresis of ghost

samples. Precast Mini-PROTEAN TGX stain-free protein gel, 4-15% polyacrylamide gels were used. B: Nitrocellulose membrane blotted
from the gel of Figure 2A. The fluorescence produced under UV light by trihalo compounds is proportional to the total protein. Samples
from TD erythrocytes were run in lanes 1-4, samples from ASD erythrocytes were run in lanes 5-8. Lane M: M.W. markers. C: Beta-actin
bands developed from the membrane by an anti-actin antibody marked with Cy5 (see Supporting Information of Table S2). D: Histogram

showing means =+ SD. of B-actin/total lane fluorescence ratio.

of erythrocyte membrane proteins. Glutathione-protein
complexes were quantified relative to the lane fluores-
cence in nitrocellulose membranes (Fig. 3a). Protein car-
bonyl groups were quantified relative to the actin band
density (Fig. 3b). No difference in the amount of
glutathione-protein complexes and in carbonylated
protein residues was found in erythrocyte membranes
of TD and ASD children. Representative gels are shown
in Figure S2a and b.

Metal Concentration in Plasma and Urine

We evaluated the plasma and urine concentration of
vanadium, cadmium, and mercury, which are thought to
inhibit NKA activity [North & Post, 1984; Ehrenspeck,
1980; Vasic et al., 2002]. No difference was found in their
concentration between TD and ASD children (Table 2a).

Endogenous Ouabain Evaluation

The analysis of the three pooled plasma samples from
ASD and from TD children yielded the same mean and
coefficient of variation for the two groups. Data are
reported in Table 2b.

Lipids in Erythrocyte Membranes

Although differences in the composition of erythrocyte
membrane fatty acids between ASD and TD children was
reported previously [Ghezzo et al., 2013], differences in cho-
lesterol, phosphatidylserine, and phosphatidylcholine were
assessed in the present work; the choice of lipids is related to
their regulatory role on NKA activity [Cornelius et al,
2015]. Data, shown in Figure 4a-c, demonstrate that choles-
terol is decreased in erythrocyte membranes from ASD chil-
dren, whereas no difference was found for PS and PC. After
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Figure 3. Glutathione-protein complexes and carbonylated protein
residues in erythrocyte membranes from TD and ASD children. A:
Glutathione-protein complexes in erythrocyte membranes from TD
and ASD children were detected by immunoblotting on membranes
transferred from TGX gels and quantified relative to the lane fluores-
cence in nitrocellulose membranes (Means + SD). B: Carbonylated
protein residues in erythrocyte membranes from TD and ASD children
were immunodetected following their derivatization with DNPH and
quantified relative to the actin band density (Means + SD).

correction for multiple measurements, the difference in cho-
lesterol concentration lost statistical significance.

Statistics and Correlation with Clinical Data

Table 3 reports the correlations between NKA subunit or
NRF2 gene expression and clinical features. Alpha and
Beta NKA subunit gene expression correlated with CARS
total scores and with some clinical features. Correlations
of NRF2 gene expression and the expression of some
NKA subunits are shown in Figure 5.

Discussion

Non-syndromic autism is a complex neurodevelopmental
disorder resulting from a combination of genetic and

environmental factors [Lai, Lombardo, & Baron-Cohen,
2014]. No peripheral ASD biomarkers have thus far been
validated [Abruzzo et al.,, 2015], however, erythrocyte
NKA activity appears very promising in terms of specific-
ity and sensitivity providing motivation for the present
study seeking to elucidate mechanism(s) responsible for
the marked reduction in NKA activity in erythrocytes of
ASD children and to determine, ultimately, whether this
plays a role in the etiopathology of non-syndromic ASD.

Although our results extended to PBMC confirm the
marked reduction in NKA activity previously reported for
erythrocytes [Ghezzo et al.,, 2013], understanding the
underlying mechanisms proved very demanding and elu-
sive. Gene expression of NKA subunits expressed in
PBMC was slightly unbalanced in favor of the o1 and the
B3 isoforms in ASD and of the FXYD-5 isoform in TD sub-
jects. However, the assessment of protein expression of
the NKA subunits, estimated in erythrocyte membranes,
did not convincingly support the gene expression data,
either because of differences between erythrocyte and
PBMC isoform preferences [Clausen et al., 2017] or per-
haps owing to the poor performance of commercial anti-
bodies. On the other hand, gene expression values of
NKA subunits were correlated with clinical data, thus sug-
gesting that the unbalance in the ASD group was not
incidental.

The choice of expressed NKA subunits may be impor-
tant for tissue function [Matchkov & Krivoi, 2016]. In
fact, the individual «, p, and FXYD isoforms are character-
ized not only by different tissue expression but also by
different kinetic/functional properties and by the ability
to interact with tissue-specific proteins. For example, the
a3 isoform is more expressed in neurons and the a2 iso-
form in glial cells; neurons mainly display p1 and B2 iso-
forms, whereas astrocytes, oligodendrocytes, and retinal
photoreceptors preferentially express (3. Moreover,
development-dependent shifts in isoform expression
have been reported: for instance, developing rat brain
cells express more of the a2 isoform whereas adult rat
brain cells express more of the a3 isoform [Blanco,
2005]. In addition, changes in isoform expression, as
well as in ouabain sensitivity, have been reported to
occur in the aging brain of the rat [reviewed in de Lores
Arnaiz & Ordieres, 2014]. Likewise, the above-described
differences in isoform preferences found in PBMC may
play a role in NKA activity but may or may not reflect
similar differences in brain cells that would affect their
function.

Next, we concentrated on the possibility that NKA
activity was impaired by oxidative stress, which is now
recognized as a distinctive trait of ASD [reviewed in Ros-
signol & Frye, 2014]. To support the evidence of oxidative
stress, gene expression of NRF2, a transcription factor
triggered by oxidative stress and inducing antioxidant
proteins, was evaluated; although it increased 1.56-fold
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Figure 4. Concentration of selected lipids in erythrocyte membranes from TD and ASD children (pg /pg of sample protein). A: Choles-
terol (mean = SD). B: Phosphatidylcholine (mean £ SD). C: Phosphatidylserine (mean £ SD).

in the PBMC of the ASD children examined here, the dif-
ference lost significance after FDR analysis. Whereas all
NKA subunits are potentially subject to [inhibitory] oxi-
dative modifications, the subunit more susceptible to
irreversible oxidation [Xie et al., 1995] is the a2 isoform,
which is richer in cysteine residues but is not expressed
in blood cells. Although we did not observe an increase
in oxidative modifications of ASD erythrocytes’ mem-
brane proteins, subunit-specific differences might have
gone undetected due to the fact that we assessed whole
extracts of the membrane. However, we decided against
enriching our extracts by immunoprecipitation of NKA
subunits, due to the low amount of each subunit and a
lack of confidence in the specificity of the commercially
available antibodies.

Many investigations of the environmental con-
causes of ASD have reported an increase of toxic
metals in biological tissues and fluids of ASD patients
[reviewed by Kalkbrenner, Schmidt, & Penlesky, 2014;
Rossignol, Genuis, & Frye, 2014], and attention was
drawn in particular to heavy metals such as mercury,
lead and cadmium, whereas vanadium was not men-
tioned. As vanadium, mercury, and cadmium are
known inhibitors of NKA activity [North & Post, 1984;
Ehrenspeck, 1980; Vasic et al., 2002], we evaluated the
concentration of these metals in plasma and urine
samples. In particular, 3 mL of plasma were used to
increase the reliability of the detection, but no differ-
ences were found between TD and ASD samples.

Table 3. Gene Expression Fold Change and Correlations With Clinical Features

CARS body
Fold change CARS activity use (stereotypies) Brief
(ratio ASD/TD) CARS total score level item score item score non-verbal IQ
NKA Alpha 1 subunit 1.18 P =0.0004 P =0.0076 P =0.0038 P=0.031
R=0.78 R=0.63 R=0.68 R =0.54
pFDR = 0.0042 pFDR = 0.02 pFDR = 0.02 pFDR = 0.07
NKA Alpha 3 subunit 1.03 P=0.0013 P=0.011 P =0.045 P =0.0061
R=0.73 R=0.62 R=0.50 R=0.68
pFDR = 0.010 pFDR = 0.03 pFDR = 0.08 pFDR = 0.02
NKA Beta 1 subunit 0.86 P < 0.0001 P =0.0003 P =0.0040 P =0.07
R=0.84 R=0.79 R=0.68 R=0.45
pFDR = 0.0032 pFDR = 0.0048 pFDR = 0.018
NKA Beta 2 subunit 0.65 P =0.0063 P =0.0029 P=0.037 P=0.09
R =0.65 R =0.69 R=0.50 R=0.42
pFDR = 0.02 pFDR = 0.018 pFDR =0.07
NKA Beta 3 subunit 1.31 P =0.024 P=0.163 P=0.141 P =0.025
R=0.56 R=0.36 R=0.38 R=0.55
pFDR = 0.06 pFDR = 0.06
NKA FXYD2 subunit 1.21 P=0.22 P=0.144 P=0.62 P=0.81
R=0.32 R=0.38 R=0.13 R=0.03
NKA FXYD5 subunit 0.82 P=0.079 P=0.131 P=0.31 P=0.11
R=0.45 R=0.39 R=0.26 R=0.41
NRF2 1.56 P=10.022 P =0.044 P=0.72 P=0.38
R=0.56 R=0.51 R=0.09 R=0.23
pFDR = 0.06 pFDR = 0.09

Statistically significant values are shown in bold.
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Figure 5. Correlation between gene expression of NRF2 and NKA subunits. pFDR = Benjamini-Hochberg FDR corrected P values.

In humans, all NKA isozymes are sensitive to ouabain,
whereas the sensitivity to digoxin is more isozyme-selec-
tive. In addition, it has been shown that ouabain and
digoxin or digitoxin can have opposite effects on blood
pressure [Manunta, Hamilton, Rogowski, Hamilton, &
Hamlyn, 2000; Zulian et al., 2013]. Endogenous ouabain
levels in blood plasma had never been evaluated in ASD
patients. Our results showed no difference in the plasma
levels of this potent inhibitor of NKA activity between
TD and ASD subijects.

We observed a decrease of plasma membrane cholesterol
in the erythrocytes from ASD children, thus confirming a
previous finding by Schengrund, Ali-Rahmani, and Ramer
[2012], who also observed a decrease in monosialotetra-
hexosylganglioside (GM1) content, and no difference in
phosphatidylcholine and phosphatidylserine content. Pet-
rov, Kasimov, and Zefirov [2017] recently pointed out that
cholesterol dysfunctions have been detected in many neu-
rodegenerative disorders, however neither Schengrund’ or
Petrov’ groups related these findings to NKA activity.
Membrane lipid moiety plays a very important regulatory
role on NKA, as pointed out by Cornelius et al. [2015] and
Habeck et al. [2015], who in particular draw attention to

cholesterol and phosphatidylserine for their stabilization
roles and to sphingomyelin and phosphatidylcholine for
their inhibitory functions. In particular, cholesterol specifi-
cally binds to three different NKA lipid-binding sites.
Omega-3 lipids, and notably DHA, tend to inhibit NKA
activity, especially in cholesterol-poor membranes. Note-
worthy, Cornelius et al. stressed that, because cholesterol
does not mix well with DHA, the effect of the two lipids
on the conformation of NKA is the opposite; cholesterol
increases the lateral pressure in the middle of the bilayer
and decreases it near the interfaces, whereas DHA has the
opposite effects. Because erythrocyte membranes from
ASD patients show depleted DHA [Ghezzo et al., 2013;
Giacometti et al., 2017], the effect of a relative depletion in
both cholesterol and DHA could have on NKA activity may
be worth examining in a future work. Likewise, contrary
to what we have observed, in kidney cells a decrease in
membrane cholesterol was reported to cause a reduction
in al expression and viceversa [Chen et al., 2011]. NAK
activity is impaired in both PBMC and erythrocytes, yet
we showed that only erythrocytes display a decrease in
membrane fluidity. In order to help to resolve these
seemingly discrepant results, we suggest that future
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studies compare the lipid composition of TD and ASD
PBMC membranes .

The observed reduction in NKA activity in erythro-
cytes from ASD patients apparently does not impact
some important cellular functions; in particular, no
impairment in immune functions or in oxygen trans-
port or delivery has been reported. However, blood
cells may be just the peripheral spyhole on events
occurring in the central nervous system, where the rel-
evance of NKA activity cannot be underestimated. NKA
plays a crucial role in the maintenance and propaga-
tion of the action potential, controls glutamate release
in spinal cord [Li & Stys, 2001], mediates glutamate
transporter activity [Rose et al., 2009], affects dopa-
mine receptor densities [Hazelwood, Free, Cabrera,
Skinbjerg, & Sibley, 2008], regulates ionotropic gluta-
matergic AMPA receptor turnover [Zhang et al., 2009],
interacts with 8-opioid receptor [Deng et al., 2009] and
with adenosine A2A receptors controlling glutamate
uptake in astrocytes [Matos, Augusto, Agostinho, Cunha, &
Chen, 2013]. Findings of decreased brain NKA activity
in aging and in many pathological conditions have
been reviewed by de Lores Arnaiz et al., (2014), who
pointed out that there may be as many mechanisms
leading to NKA activity impairment as there are patho-
logical conditions where NKA activity is depressed. Taken
as a whole, these findings underscore the relevance of
the impairment of NKA activity in neuropsychiatric
disorders.
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Table S1: Primer sequences and amplicon length of the
genes studied by qRT-PCR

Table $2: Primary and secondary antibodies used in WBs
Figure S1. NKA subunit expression in erythrocyte mem-
branes. Representative pictures of gels, nitrocellulose
membranes and Western Blots. TD erythrocytes: lanes
1-4; ASD erythrocytes: lanes 5-8. M: MW markers. a:
Anti-alpha 1 subunit antibody; b: Anti-alpha 3 subunit
antibody; c¢: Anti-pan alpha subunit antibody; d: Anti-
beta 1 subunit antibody; e: Anti-beta 2 subunit antibody;
f: Anti-beta 3 subunit antibody. Details of antibodies are
reported in Table S2 and histograms in Figure 1D. Ghost
suspensions were solubilized 1 hr in ice bath in Laemmli
buffer 4x. Precast gradient gels (Mini-PROTEAN TGX
Stain-Free Protein Gel, 4-15% polyacrylamide, Bio-Rad
Laboratories, Hercules, CA) and Bio-Rad nitrocellulose
membranes were used. After blocking in Tris-Buffered
Saline containing 0.05% Tween-20 (TBS-T) and 1% BSA
for 1 h at room temperature, membranes were probed
overnight at 4 °C with primary antibodies, washed three
times with TBS-T and incubated with CyS-conjugated sec-
ondary antibodies, dissolved in TBS-Tween and 0.2%
BSA. TGX gels contain trihalo compounds, which, under
UV-light, react with tryptophan residues producing fluo-
rescence, proportional to the total protein amount.
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Although the ratio gel-to-membrane fluorescence did not
substantially differ from one lane to the next, the mem-
brane fluorescence was considered to be more representa-
tive and used as loading control.

Figure S2. a: A representative gel and its nitrocellulose
membrane of glutathione-protein complexes in eryth-
rocyte membranes from TD and ASD children. TGX gels
were exposed to UV light and then electroblotted.
Membranes were probed overnight at 4 °C with the
monoclonal primary mouse antibody Glutathione-D8§
(Thermo Scientific, Rockford, IL) diluted 1:100 in 0.1%
TBS-Tween, then exposed to secondary antibody. The
lane fluorescence was used for quantification of the
glutathione-protein complexes (Fig. 2a). Samples from

TD erythrocytes were run in lanes 1-4, samples from
ASD erythrocytes were run in lanes 5-8. Lane M: MW
markers. b: A representative gel reacted with anti-
DPNH antibody to detect carbonylated protein residues
in erythrocyte membranes from TD and ASD children.
Each sample was DNPH-derivatized (D) (lanes 1, 3,
5, and 7) or not derivatized (ND)(lanes 2,4, 6, and 8).
Lanes 1-4: samples from TD erythrocytes; lanes 5-8:
samples from ASD erythrocytes; lane DM: DPNH-
derivatized MW markers. On the right, a detail showing
the p-actin bands, where HPRT-conjugated secondary
antibody was used (See Table S2). Protein carbonyl
groups in DNPH-derivatized lanes were quantified rela-
tive to their actin band density (Fig. 2b).
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