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Abstract—The ANTAREX project relies on a Domain Specific Lan-
guage (DSL) based on Aspect Oriented Programming (AOP) concepts
to allow applications to enforce extra functional properties such as
energy-efficiency and performance and to optimize Quality of Service
(QoS) in an adaptive way. The DSL approach allows the definition of
energy-efficiency, performance, and adaptivity strategies as well as their
enforcement at runtime through application autotuning and resource
and power management. In this paper, we present an overview of the
ANTAREX DSL and some ofits capabilities through a number of
examples, including how the DSL is applied in the context of one of
the project use cases.

Keywords—High Performance Computing, Autotuning, Adaptivity,
DSL, Compilers, Energy Efficiency

I. I NTRODUCTION

Designing and optimising applications for energy-efficient High

Performance Computing systems up to the Exascale era is an

extremely challenging problem. Exascale supercomputers (reaching

billions of billions of floating point operations per second) cannot

be built by simply expanding the number of processing nodes and

leveraging technology scaling, as power demand would increase

unsustainably (up to hundreds of MW). To reach the DARPA target

of 20MW of Exascale supercomputers for the year 2020, current su-

percomputers (reaching up to 93 PetaFlop/s) must achieve an energy

efficiency “quantum leap”. The Green500 list1 looks at the GigaFlops

per Watt as energy efficiency metric to rank supercomputers by their

energy efficiency. According to the latest Green500 list published in

November 2017, the “most green” supercomputer SHOUBU SystemB

installed in Japan achieves 17 GigaFlops/W during its 842-TeraFlop/s

Linpack performance run. The top positions in Green500 are all occu-

pied by heterogeneous systems based on high-performance processors

and co-processors such as the latest NVIDIA Volta GV100 GPU

and PEZY SC2 accelerator to further accelerate the computation.

The dominance of heterogeneous systems in the Green500 list is

expected to continue for the next coming years to reach the target

of 20MW Exascale supercomputers. To this end, European efforts

have recently been focused on building supercomputers out of the

less power-hungry ARM cores and GPGPUs [1].

Designing and implementing HPC applications are difficult and

complex tasks, which require mastering several specialized languages

and tools for performance tuning. This is incompatible with the

current trend to open HPC infrastructures to a wider range of users.

The current model where the HPC center staff directly supports

the development of applications will become unsustainable in the

1www.green500.org, November 2017

long term. Thus, the availability of effective standard programming

languages and APIs is crucial to provide migration paths towards

novel heterogeneous HPC platforms as well as to guarantee the ability

of developers to work effectively on these platforms.

To fulfil the 20MW target, energy-efficient heterogeneous super-

computers need to be coupled with radically new software stacks to

exploit the benefits offered by heterogeneity at all levels (supercom-

puter, job, node).

The ANTAREX [ 2, 3, 4] project aims at providing a holistic ap-

proach spanning all the decision layers composing the supercomputer

software stack and exploiting effectively the full system capabilities,

including heterogeneity and energy management. The main goal of

ANTAREX is to express by means of a DSL the application self-

adaptivity and to runtime manage and autotune applications for green

heterogeneous HPC systems up to the Exascale level. The use of a

DSL allows the introduction of a separation of concerns, where self-

adaptivity and energy efficient strategies are specified separately from

the application functionalities. The DSL is based on previous efforts

regarding the LARA language [5, 6] and makes possible to express

at compile time the adaptivity/energy/performance strategies and to

enforce at runtime application autotuning and resource and power

management. The goal is to support the parallelism, scalability and

adaptivity in a dynamic workload by exploiting the full system capa-

bilities (including energy management) for emerging large-scale and

extreme-scale systems, while reducing the Total Cost of Ownership

(TCO) for companies and public organizations.

The project is driven by two use cases taken from highly rele-

vant HPC application scenarios: (1) a biopharmaceutical application

for drug discovery deployed on the 1.21 PetaFlops heterogeneous

NeXtScale Intel-based IBM system at CINECA and (2) a self-

adaptive navigation system for smart cities deployed on the server-

side on the 1.46 PetaFlops heterogeneous Intel® Xeon Phi™ based

system provided by IT4Innovations National Supercomputing Center.

The ANTAREX Consortium comprises a wealth of expertise

in all pertinent domains. Four top-ranked academic and research

partners (Politecnico di Milano, ETHZ Zurich, University of Porto

and INRIA) are complemented by the Italian Tier-0 Supercomputing

Center (CINECA), the Tier-1 Czech National Supercomputing Center

(IT4Innovations) and two industrial application providers, one of the

leading biopharmaceutical companies in Europe (Dompé) and the top

European navigation software company (Sygic). The complementar-

ity and deep expertise of the Consortium partners has the potential

to generate a breakthrough innovation from the ANTAREX project.

Moreover, the presence ofleading edge industrial partners will ensure



Fig. 1. The ANTAREX Tool Flow

a relevant impact on direct exploitation paths of ANTAREX results

in industry and society. Politecnico di Milano, the largest Technical

University in Italy, plays the role of Project Coordinator.

The ANTAREX approach and related tool flow, as shown in

Figure 1, operate both at design-time and runtime. The application

functionality is expressed through C/C++ code (possibly including

legacy code), whereas the extra-functional aspects of the application,

including parallelisation, mapping, and adaptivity strategies, are ex-

pressed through DSL code (based on LARA) developed in the project.

As a result, the expression of such aspects is fully decoupled from

the functional code. TheClava tool is the centerpoint of the compile-

time phase, performing a refactoring of the application code based

on the LARA aspects, and instrumenting it with the necessary calls

to other components of the tool flow.

The ANTAREX compilation flow leverages a runtime phase with

compilation steps, through the use of partial dynamic compilation

techniques enabled bylibVC . The application autotuning, performed

via themARGOt tool, is delayed to the runtime phase, where the soft-

ware knobs (application parameters, code transformations and code

variants) are configured according to the runtime information coming

from application self-monitoring as well as from system monitoring

performed by theExaMon tool. Finally, the runtime power manager,

PowerCapper, is used to control the resource usage for the underlying

computing infrastructure given the changing conditions. At runtime,

the application control code, thanks to the design-time phase, now

contains also runtime monitoring and adaptivity strategy code derived

from the DSL extra-functional specification. Thus, the application

is continuously monitored to guarantee the required Service Level

Agreement (SLA), while communication with the runtime resource-

manager takes place to control the amount of processing resources

needed by the application. The application monitoring and autotuning

is supported by a runtime layer implementing an application level

collect-analyse-decide-act loop.

The rest of this paper is organized as follows. In SectionII we

review the technology portfolio provided by the ANTAREX tool

flow. In Section III we provide an assessment of the impact of the

proposed DSL on application specifications, while SectionIV gives

an overview of how the Tool Flow has been used in one of the use

cases. Finally, in Section V we draw some conclusions.

II. ANTAREX T ECHNOLOGY PORTFOLIO

A. The ANTAREX DSL

HPC applications might profit from adapting to operational and

situational conditions, such as changes in contextual information (e.g.,

workloads), in requirements (e.g., deadlines, energy), and in avail-

ability of resources (e.g., connectivity, number of processor nodes

available). A simplistic approach to both adaptation specification

and implementation (see, e.g., [7]) employs hard coding of, e.g.,

conditional expressions and parameterizations. In our approach, the

specification of runtime adaptability strategies relies on a DSL imple-

menting key concepts from Aspect-Oriented Programming (AOP) [8],

mainly specifying adaptation concerns, targeting specific execution

points, separately from the primary functionality of the application,

with minimum or no changes to the application source code.

Our approach is based on the idea that certain application/system

requirements (e.g., target-dependent optimizations, adaptivity behav-

ior and concerns) should be specified separately from the source code

that defines the main functionality. Those requirements are expressed

as DSL aspects that embody strategies. An extra compilation step,

performed by aweaver, merges the original source code and aspects

into the intended program [9]. Using aspects to separate concerns

from the core objective of the program can result in cleaner programs

and increased productivity (e.g., reusability of strategies). As the

development process of HPC applications typically involves two types

of experts (application-domain experts and HPC system architects)

that split their responsibilities along the boundary offunctional

description and extra-functional aspects, our DSL-aided toolflow

provides a suitable approach for helping to express their concerns.

The ANTAREX DSL relies on the already existing DSL technol-

ogy LARA [ 5, 6]. In particular, the LARA technology provides a

framework that we adopted to implement the ANTAREX aspects and

APIs. Moreover, we developed other LARA-related tools such as the

Clava 2 weaver to leverage the rest of the ANTAREX tool flow.

LARA is a programming language that allows developers to

capture non-functional requirements and concerns in the form of

strategies, which are decoupled from the functional description of

the application. Compared to other approaches that usually focus on

code injection (e.g., [10]), LARA provides access to other types of

actions, e.g., code refactoring, compiler optimizations, and inclusion

of additional information, all of which can guide compilers to

generate more efficient implementations. Additional types of actions

may be defined in the language specification and associated weaver,

such as software/hardware partitioning [11] or compiler optimization

sequences [12]. One important feature of the LARA-aided source-

to-source compiler developed in ANTAREX is the capability to

refactor the code of the application in order to expose adaptivity

behavior and/or adaptivity design points that can be explored by

the ANTAREX autotuning component. In the following sections we

show illustrative examples3 of some of the strategies that can be

specified using LARA in the context of a source-to-source compiler

and currently used for one of the use cases.

B. Precision Tuning

Error-tolerating applications are increasingly common in the

emerging field of real-time HPC, allowing to trade-off precision for

performance and/or energy. Thus, recent works investigated the use

of customized precision in HPC as a way to provide a breakthrough

2https://github.com/specs-feup/clava
3Complete working versions for all examples can be found in

https://github.com/specs-feup/specs-lara/tree/master/2018%20DSD



in power and performance. We developed a set of LARA aspects

enabling mixed precision tuning on C/C++ and OpenCL kernels. In

our precision tuning we combine an adaptive selection of floating

and fixed point arithmetic, targeting HPC applications.
Figure 2 presents part of a LARA strategy that changes all

declarations of a certain type to a target type (e.g., from double to

float) for a given function. We note, however, that a practical and

reusable aspect needs to deal with further issues, such as the cloning

offunctions whose types we want to change but are also called by

other unrelated functions in the code, assignments of constants, casts,

recursion, changing functions definitions and library functions to the

ones related to the type used (e.g.,sqrtf vs sqrt in Math.h),

etc. In this example,changeType is a function that analyzes and

changes compound types, such asdouble * and double[] . If the

type described in$old is found inside the type of the declaration, it

is replaced with the type described in$new . To be more specific, if

$old is double , $new is float and$decl.type is double * ,
the type of the declaration will be changed tofloat * . If the original

declaration type does not contain the$old type, it is not changed.

1 aspectdef ChangePrecision
2

3 input $func , $old , $new end
4

5 / * change type of variable declarations found
6 * inside the function and parameters * /
7 select $func . decl end
8 apply
9 var changedType = changeType ( $decl . type , $old , $new);
10 def type = changedType ;
11 end
12

13 / * do the same with the function return type ... * /
14 var $returnType = $func . functionType . returnType ;
15 $func . functionType . def returnType =
16 changeType ( $returnType , $old , $new);
17 end

Fig. 2. Example of LARA aspect to change the types of variables declared
inside a given function.

A LARA aspect consists of three main steps. Firstly, one captures

the points ofinterest in the code using aselect statement, which

in this example selects variable declarations. Then, using theapply
statement, one acts over the selected program points. In this case,

it will define the types of the captured declared variables, using the

type attribute. Finally, we can then specify conditions to constrain

the execution of theapply (i.e., only if the declared variable has

a specific type). This can be done via conditional statements (if s)

as well as via special condition blocks that constrain the entire

apply . LARA promotes modularity and aspect reuse, and supports

embedding JavaScript code, to specify more sophisticated strategies.

As shown in [13], we support exploration of mixed precision OpenCL

kernels by using half, single, and double precision floating point data

types. We additionally support fixed point representations through a

custom C++ template-based implementation for HPC systems, which

has already been used in [14]. In both cases the LARA aspects

automatically insert code for proper type conversion before and after

the critical section that has been converted to exploit a reduced

precision data type.
The LARA aspect in Figure 3 shows the generation of different

mixed-precision versions to be dynamically evaluated. It is possible

to specify – as input of the aspect – the number of mix combination

to generate, and a rule set to filter out precision mix combinations

which are very likely to lead to useless and/or not efficient results.

We exploit programmer’s application domain knowledge by relying

on them to define test cases to evaluate the different code versions

at runtime. LARA automatically inserts code to dynamically perform

the exploration over the space of the generated versions with different

precision mix.

1 aspectdef HalfPrecisionOpenCL
2 input
3 combinationFilter = [],
4 maxVersions = undefined
5 end
6

7 // List offloat and double vars in the OpenCL kernel
8 call result : OpenCLVariablesToTest ;
9 var variablesToTest = result . variablesToTest ;

10 // Sequence generator
11 var sequenceGenerator = new SequentialCombinations (
12 variablesToTest . length , maxVersions );
13 var counter = 0;
14 while ( sequenceGenerator . hasNext ()) {
15 Clava . pushAst (); // Save current AST
16

17 // Get a new combination of variables
18 var combination = sequenceGenerator . next ();
19 var lastSeed = sequenceGenerator . getLastSeed ();
20 if (! isCombinationValid ( lastSeed , combinationFilter ))
21 continue ;
22 // Change the builtin type of the variables
23 for ( var index of combination ) {
24 var $vardecl = Clava . findJp ( variablesToTest [ index ]);
25 changeTypeToHalf ( $vardecl );
26 }
27 call addHalfPragma (); // Enable half-precision
28 var outputFolder = createFolder ( lastSeed ,
29 variablesToTest . length , counter );
30 Clava . writeCode ( outputFolder ); // Generate code
31 Clava . popAst (); // Restore previous AST tree
32 counter ++; // Increase counter
33 }
34 end

Fig. 3. Example of LARA aspect that generates different precision mix
versions of the same OpenCL kernel.

C. Code Versioning

One of the strategies supported in the ANTAREX toolflow is the

capability to generate versions of a function and to select the one that

satisfies certain requirements at runtime. Figure4 shows an aspect

that clones a set offunctions and changes the types of the newly

generated clones. Each clone has the same name as the original with

the addition of a provided suffix. We start with a single user-defined

function which is cloned by the aspectCloneFunction (called

in line 13). Then, it recursively traverses calls to other functions

inside the clone and generates a clone for each of them. Inside the

clones, calls to the original functions are changed to calls to the

clones instead, building a new call tree with the generated clones. At

the end of the aspectCreateFloatVersion (lines 16–17,) we

use the previously definedChangePrecision aspect to change

the types of all generate clones.

The aspectMultiversion – in Figure 5 – adapts the source code

of the application in order to call the original version of a function or a

generated cloned version with a different type, according to the value

of a parameter given by the autotuner at runtime. The main aspect

calls the previously shown aspect,CreateFloatVersion , which

clones the target function and every other function it uses, while also

changing their variable types fromdouble to float (using the

aspects presented in Figure4 and Figure 2). This is performed in

lines 8–9 of the example. From lines 13 to 34, theMultiversion
aspect generates and inserts code in the application that is used as

switching mechanism between the two versions. It starts by declaring

a variable to be used as a knob by the autotuner, then it generates

the code for a switch statement and replaces the statement containing



1 import ChangePrecision ;
2 import clava . ClavaJoinPoints ;
3

4 aspectdef CreateFloatVersion
5 input $func , suffix end
6 output $clonedFunc end
7

8 $double = ClavaJoinPoints . builtinType ( ’double’ );
9 $float = ClavaJoinPoints . builtinType ( ’float’ );
10

11 / * clone the target functions and the child calls * /
12 var clonedFuncs = {};
13 call cloned : CloneFunction ( $func , suffix , clonedFuncs );
14

15 / * change the precision of the cloned function * /
16 for ( $clonedFunc of clonedFuncs )
17 call ChangePrecision ( $clonedFunc , $double , $float );
18

19 $clonedFunc = cloned . $clonedFunc ;
20 end

Fig. 4. Example of LARA aspect to clone an existing function and change
the type of the clone.

the original call with the generated switch code. Finally, in lines 36–

38, the aspect surrounds both calls (original and float version) with

timing code. An excerpt of the resulting C code can bee seen in

Figure 6.

1 import CreateFloatVersion ;
2 import lara . code . Timer ;
3 import clava . ClavaJoinPoints ;
4

5 aspectdef Multiversion
6 input $func , knobName end
7

8 call fVersion : CreateFloatVersion ( $func , "_f" );
9 var $floatFunc = fVersion . $clonedFunc ;
10 var timer = new Timer ();
11

12 / * Identify call by name... * /
13 select function . body . stmt . call { $func . name} end
14 apply
15 / * ... and by type signature * /
16 if (! $func . functionType . equals ( $call . functionType ))
17 continue ;
18

19 / * Add knob for choosing the version * /
20 $int = ClavaJoinPoints . builtinType ( ’int’ );
21 $body . exec addLocal ( knobName , $int , 0);
22

23 / * create float declaration for first argument * /
24 var $arg = createFloatArg ( $call . args [ 0]);
25 / * Create call based on float version offunction * /
26 $floatFunc . exec $fCall : newCall ([ $arg , $call . args [ 1]]);
27 / * Copy current call * /
28 $call . exec $callCopy : copy ();
29

30 / * Create switch * /
31 var $condition = ClavaJoinPoints . exprLiteral ( knobName );
32 var switchCases = { 0: $callCopy , 1: $fCall };
33 call switchJp : CreateSwitch ( $condition , switchCases );
34 $stmt . exec replaceWith ( switchJp . $switch );
35

36 / * Time calls to both original and float functions * /
37 timer . time ( $callCopy , "Original time:" );
38 timer . time ( $fCall , "Float time:" );
39 end
40 end

Fig. 5. Example of LARA aspect that generates an alternative version of a
function and inserts a mechanism in the code to switch between versions.

In the ANTAREX toolflow, the capability of providing several

versions of the same function is not limited to static features.

LIB V ERSIONING COMPILER [15] (abbreviated LIB VC) is an open-

source C++ library designed to support the dynamic generation and

1 switch ( version ) {
2 case 0: {
3 clock_gettime ( CLOCK_MONOTONIC , & time_start_ 0);
4 SumOfInternalDistances ( atoms , 1000 );
5 clock_gettime ( CLOCK_MONOTONIC , & time_end_ 0);
6 double time_ 0 = calc_time ( time_start_ 0, time_end_ 0);
7 printf ( "Original time:%fms\n" , time_ 0);
8 }
9 break ;

10 case 1: {
11 clock_gettime ( CLOCK_MONOTONIC , & time_start_ 1);
12 SumOfInternalDistances_f ( atoms_f , 1000 );
13 clock_gettime ( CLOCK_MONOTONIC , & time_end_ 1);
14 double time_ 1 = calc_time ( time_start_ 1, time_end_ 1);
15 printf ( "Float time::%fms\n" , time_ 1);
16 }
17 break ;
18 }

Fig. 6. Excerpt of the C code resulting from the generation of alternative
code versions.

versioning of multiple versions of the same compute kernel in a HPC

scenario. It can be used to support continuous optimization, code

specialization based on the input data or on workload changes, or

to dynamically adjust the application, without the burden of a full

just-in-time compiler. LIB VC allows a C/C++ compute kernel to be

dynamically compiled multiple times while the program is running,

so that different specialized versions of the code can be generated and

invoked. Each specialized version can be versioned for later reuse.

When the optimal parametrization of the compiler depends on the

program workload, the ability to switch at runtime between different

versions of the same code can provide significant benefits [16, 17].

While such versions can be generated statically in the general case,

in HPC execution times can be so long that exhaustive profiling may

not be feasible.LIB VC instead enables the exploration and tuning of

the parameter space of the compiler at runtime.

Figure 7 shows an example of usage ofLIB VC through LARA,

which demonstrates how to specialize a function. The user provides

this aspect with a target function call and a set of compilation options.

These include compiler flags and possible compiler definitions, e.g.,

data discovered at runtime, which is used as a compile-time constant

in the new version. Based on the target function call, the aspect finds

the function definition which is passed to the library. After the options

are set, the original function call is replaced with a call of the newly

compiled and loaded specialized version of the kernel.

1 import antarex . libvc . LibVC ;
2

3 aspectdef SimpleLibVC
4

5 input
6 name, $target , options
7 end
8

9 var $function = $target . definition ;
10 var lvc = new LibVC ( $function , { logFile : "log.txt" }, name);
11

12 var lvcOptions = new LibVCOptions ();
13 for ( var o of options ) {
14 lvcOptions . addOptionLiteral ( o. name, o. value , o. value );
15 }
16 lvc . setOptions ( lvcOptions );
17

18 lvc . setErrorStrategyExit ();
19

20 lvc . replaceCall ( $target );
21 end

Fig. 7. Example of LARA aspect to replace a function call to a kernel with
a call to a dynamically generated version of that kernel.



It is worth noting that the combination of LARA andLIB VC can

also be used to support compiler flag selection and phase-ordering

both statically and dynamically [18, 19].

D. Memoization

Optimising applications for energy-efficiency is a challenge of

the ANTAREX project. We introduce in this section a memoization

technique integrated in the ANTAREX toolflow. Performance can be

improved by caching results of pure functions (i.e. deterministic func-

tions without side effects), and retrieving them instead of recomputing

a result. We have implemented the work of [20] generalized for C++

and aided with extensions regarding user/developer flexibility. We

describe here only the principles of this technique and more details

can be found in [21] [20].

1 float foo ( float p) {
2 / * code offoo without side effects * /
3 }
4

5 float foo_wrapper ( float p)
6 {
7 float r ;
8 / * already in the table ? * /
9 if ( lookup_table ( p, & r )) return r ;

10 / * calling the original function * /
11 r = foo ( p);
12 / * updating the table or not * /
13 update_table ( p, r );
14 return r ;

Fig. 8. A memoizable C function and its wrapper.

Consider a memoizable C functionfoo as shown in Figure8. The

memoization consists in:

1) the insertion of a wrapper functionfoo_wrapper and an

associated table.

2) The substitution of the references tofoo by foo_wrapper in

the application.

This technique has been extended for C++ memoizable methods

and takes into account the mangling, the overloading, and the

references to the objects. Memoization is proposed in the ANTAREX

project by relying on aspects programmed using the DSL. The

advantage of these aspects is that the memoization is integrated into

the application without requiring user modifications of the source

code. The code generated by Clava is then compiled and linked with

the associated generated memoization library.

An example of a LARA aspect for memoization is shown in

Figure 9. It defines the memoization (lines 1-13) of a method

(aMethod ) of a class (aClass ) with nbArg parameters of same

type as the returned type (Type ). Note that the inputsnbArg and

Type are required to manage the overloading of the object-oriented

languages such that C++. Other parameters (from line 4) are provided

to improve several memoization approaches. For examples, the user

can specify (1) the policy in case of conflicts regarding the same table

entry (line 11): replacement or not in case of conflict to the same

entry of the table for different parameters of the memoized function,

and (2) the size of the table (line 15). After some verifications, not

detailed here, on the parameters (lines 14-15), the method is searched

(lines 17-24). Then, in case of success, the code of the wrapper is

added (line 28) to produce the memoization library, and (line 30) the

code of the application is modified for calling the created “wrapper”,

this wrapper is also declared as a new method of the class.

Moreover, some variables are exposed for autotuning in the memo-

ization library. For each function or method, a variable that manages

the dynamical "stop/run" of the memoization is exposed, as well as

1 aspectdef Memoize_Method_overloading_ARGS
2 input
3 aClass , // Name of a class
4 aMethod , // Name of a method of the class aClass
5 pType , // Name of the selected type
6 nbArgs , // Number of parameters of the method
7 fileToLoad , // filename for init of the table, or ’none’
8 FullOffLine , // yes for a fully offline strategy
9 FileToSave , // filemane to save the table, or ’none’
10 Replace , // Always replace in case of collisions
11 approx , // Number of bits to delete for approximation.
12 tsize // Size of the internal table.
13 end
14 // Control on the parameters of the aspect: nbArgs in [ 1, 3]
15 ...
16 // Searching the method.
17 var MethodToMemoize , found =false ;
18 select class { aClass }. method { aMethod } end
19 apply
20 if (! found ) {
21 found = isTheSelectedMethod ( $method , nbArgs , pType );
22 if ( found ) MethodToMemoize =$method ;
23 }
24 end
25 if (! found )
26 { / * message to the user * / }
27 else {
28 GenCode_CPP_Memoization ( aClass , aMethod , pType , nbArgs ,
29 fileToLoad , FullOffLine , FileToSave , Replace , approx , tsize );
30 call CPP_UpdateCallMemoization ( aClass , aMethod , pType , nbArgs );
31 }
32 end

Fig. 9. An example of LARA aspect defined for the memoization.

the variable that manages the policy to use in case of conflict to

the table. To be complete about the memoization, a LARA aspect

is proposed to automatically detect the memoizable functions or

methods. Then the user may decide to apply or not the memoization

on these selected elements.

E. Self-Adaptivity & Autotuning

In ANTAREX, we consider each application’s function as a para-

metric function that elaborates input data to produce an output (i.e.,

o = f ( i, k 1 , . . . , k n ) ), with associated extra-functional requirements.

In this context, the parameters of the function (k1 , . . . , k n ) are

software-knobs that modify the behavior of the application (e.g.,

parallelism level or the number of trials in a MonteCarlo simulation).

The main goal of mARGOt 4 [22] is to enhance an application with

an adaptive layer, aiming at tuning the software knobs to satisfy

the application requirements at runtime. To achieve this goal, the

mARGOt dynamic autotuning framework developed in ANTAREX

is based on the MAPE-K feedback loop [23]. In particular, it relies on

an application knowledge, derived either at deploy time or at runtime,

that states the expected behavior of the extra-functional properties of

interest. To adapt, on one hand mARGOt uses runtime observations

as feedback information for reacting to the evolution of the execution

context. On the other hand, it considers features of the actual input

to adapt in a more proactive fashion. Moreover, the framework is

designed to be flexible, defining the application requirements as a

multi-objective constrained optimization problem that might change

at runtime.

To hide the complexity of the application enhancement, we use

LARA aspects for configuring mARGOt and for instrumenting the

code with related API. Figure 10 provides a simple example of a

LARA aspect where mARGOt has been configured (lines 5-20) to

actuate on a software knobKnob1 and targeterror and throughput

metrics [24]. In particular, the optimization problem has been defined

4https://gitlab.com/margot_project/core



as the maximization of thethroughputwhile keeping theerror under

a certain threshold. The last part of the aspect (lines 23-27) is devoted

to the actual code enhancement including the needed mARGOt

call for initializing the framework and for updating the application

configuration. The declarative nature of the LARA library developed

for integrating mARGOt simplifies its usage hiding all the details of

the framework.

1 aspectdef mARGOt_Aspect
2 / * Input: TargetFunctionCall * /
3 input targetCallName end
4 / * mARGOt configuration * /
5 var config = new MargotConfig ();
6 var targetBlock = config . newBlock ( $targetCallName );
7 targetBlock . addKnob ( ’Knob1’ , ’knob1’ , ’int’ );
8 targetBlock . addMetric ( ’error’ , ’float’ );
9 targetBlock . addMetric ( ’throughput’ , ’float’ );
10 targetBlock . addMetricGoal ( ’my_error_goal’ ,
11 MargotCFun . LE , 0.03 , ’error’ );
12

13 / * optimization problem * /
14 var problem = targetBlock . newState ( ’defaultState’ );
15 problem . maximizeMetric ( ’throughput’ );
16 problem . subjectTo ( ’my_error_goal’ );
17

18 / * generate the information needed
19 for enhancing the application code * /
20 codegen = MargotCodeGen . fromConfig ( config , $targetCallName );
21

22 / * Target function call identification * /
23 select stmt . call { targetName } end
24

25 / * Add mARGOt calls * /
26 codegen . init ( $call );
27 codegen . update ( $call );
28 end

Fig. 10. Example of a LARA aspect for autotuner configuration and code
enhancement.

F. Monitoring

Today processing elements embed the capability of monitoring

their current performance efficiency by inspecting the utilization

of the micro-architectural components as well as a set of physical

parameters (i.e., power consumption, temperature, etc). These metrics

are accessible through hardware performance counters which in x86

systems can be read by privilege users, thus creating practical prob-

lems for user-space libraries to access them. Moreover, in addition

to sensors which can be read directly from the software running on

the core itself, supercomputing machines embed sensors external to

the computing elements but relevant to the overall energy-efficiency.

These elements include the node and rack cooling components as

well as environmental parameters such as the room and ambient

temperature. In ANTAREX, we developed ExaMon[ 25] (Exascale

Monitoring) to virtualise the performance and power monitoring

access in a distributed environment. ExaMon decouples the sensor

readings from the sensor value usage. Indeed, ExaMon uses a scalable

approach were each sensor is associated to a sensing agent which

periodically collects the metrics and sends the measured value with a

synchronized time-stamp to an external data broker. The data broker

organises the incoming data in communication channels with an

associated topic. Every new message on a specific topic is then

broadcast to the related subscribers, according to a list kept by the

broker. The subscriber registers a callback function to the given

topic which is called every time a new message is received. To

let LARA take advantage of this monitoring mechanism we have

designed the Collector API, which allow the initialization of the

Collector component associated with a specific topic that keeps an

internal state of the remote sensor updated. This internal state can

then be queried asynchronously by the Collector API to gather its

value. LARA aspects have been designed to embed the Collector

API and to make the application code self-aware.
Figure 11 shows a usage example of ExaMon through LARA,

which subscribes to a topic on a given broker and inserts a logging

message in the application. To define the connection information,

the user needs to provide the address to connect to, as well as the

name of the topic to subscribe. As for the integration in the original

application code the user needs to provide a target function, where

the collector will be managed, and a target statement, where the query

of the data and logging will be performed.

1 import antarex . examon . Examon ;
2 import lara . code . Logger ;
3

4 aspectdef SimpleExamon
5

6 input
7 name, ip , topic , $manageFunction , $targetStmt
8 end
9

10 var broker = new ExamonBroker ( ip );
11

12 var exa = new ExamonCollector ( name, topic );
13

14 // manage the collector on the target function
15 select $manageFunction . body end
16 apply
17 exa . init ( broker , $body );
18 exa . start ( $body );
19

20 exa . end ( $body );
21 exa . clean ( $body );
22 end
23

24 // get the value and use it in the target stmt
25 exa . get ( $targetStmt );
26

27 // get the last stmt of the scope of the target stmt
28 var $lastStmt = $targetStmt . ancestor ( "scope" ). lastStmt ;
29 // Create printffor time and data
30 var logger = new Logger ();
31 logger . ln (). text ( "Time=" ). double ( getTimeExpr ( exa ))
32 . text ( "[s], data=" ). double ( exa . getMean ()). ln ();
33 // Add printf after last stmt
34 logger . log ( $lastStmt );
35 end

Fig. 11. Example of a LARA aspect integrate an ExaMon collector into an
application.

G. Power Capping

Today’s computing elements and nodes are power limited. For this

reason, state-of-the-art processing elements embed the capability of

fine-tuning their performance to control dynamically their power con-

sumption. This includes dynamic scaling of voltage and frequency,

and power gating for the main architectural blocks of the processing

elements, but also some feedback control logic to keep the total

power consumption of the processing element within a safe power

budget. This logic in x86 systems is named RAPL [26]. Demanding

the power control of the processing element entirely to RAPL may

not be the best choice. Indeed, it has been recently discovered

that RAPL is application agnostic and thus tends to waist power

in application phases which exhibit IOs or memory slacks. Under

these circumstances there are operating points that proved to be more

energy efficient than the ones selected by RAPL while still respecting

the same power budget [27]. However, these are only viable if the

power capping logic is aware of the application requirements. To do

so, we have developed a new power capping run-time based on a set

of user space APIs which can be used to define a relative priority

for the given task currently in execution on a given core. Thanks to



this priority, the run-time is capable of allocating more power to the

higher priority process [28, 29]. In ANTAREX, these APIs can be

inserted by LARA aspects in the application code.

III. E VALUATION

Tables I and II show static and dynamic metrics collected for the

weaving process of the presented examples. In TableI , we can see

the number oflogical lines of source code for the LARA strategies,

as well as for the input code and generated output code (the SLoC-L

columns). In the last two columns we report the difference in SLoC

and functions between the input and output code (the delta columns).

Note the woven and delta results for the HalfPrecisionOpenCL

strategy are the sum of all generated code, totaling 31 versions.

An inspection of columns LARA SLoC-L and Delta SLoC-L

reveals that, in most examples, there is a large overhead in terms

of LARA SLoC-L over application SLoC-L. While this may seem

a problem, we need to consider that a large part of the work

being performed by these strategies is code analysis, which does not

translate directly to SLoC-L in the final application. Furthermore,

the Delta SLoC-L metric does not account for removed application

code and for these cases a metric based on the similarity degree

among code versions could be of more interest. Also, in real-world

applications, the ratio of LARA SLoC-L to application SLoC-L

would be definitely more favorable, thanks to aspect reuse.

To better understand the impact of analysis, we report in the first

two columns of Table II the number of code points and of their

attributes analysed, which can be compared with the last three column

of the same table, which instead report the corresponding effects, in

terms of the number of modified points and lines of code inserted.

To understand the impact of removed lines of code, we look at the

Inserts and Actions columns, which show that circa one half of the

actions do not insert code. The end line is that the analysis work

exceeds the transformation work by an order of magnitude, and the

insertions only underestimate significantly the work performed.

Another benefit for user productivity when using LARA is how

the techniques presented in the examples can scale into large-scale

applications and scenarios. Most of the presented strategies are

parameterized by function, i.e., they receive a function join point or

name and act on the corresponding function. This could be performed

manually, albeit crudely, using a search function of an IDE. Consider

the case where we instead want to target a set offunctions, whose

names we may not know, based on their function signatures, or based

on the characteristics of the variables declared inside their scope.

This kind of search and filtering based on syntactic and semantic

information available in the program is one of the key features of

LARA and it cannot be easily attained with other tools. As the aspects

presented here illustrate, LARA strategies can be made reusable and

applied over large applications, greatly out scaling the effort needed

to develop them.

IV. C ASE STUDY : S ELF -A DAPTIVE NAVIGATION SYSTEM

In this section, we provide an overview of the application of

the ANTAREX tool flow to the Self-Adaptive Navigation System

developed in Use Case 2. The system is designed to process large

volumes of data for the global view computation and to handle

dynamic loads represented by incoming routing requests from users

of the system. Both disciplines require HPC infrastructure in order to

operate efficiently while maintaining contracted SLA. Integration of

the ANTAREX self-adaptive holistic approach can help the system

to meet the mentioned requirements and pave the way to scaling its

operation to future Exascale systems.

Core of the system is a routing pipeline with several stages

which uses our custom algorithm library written in C++. The library

provides an API for the individual routing algorithms and for data

access layer, which provides abstraction of a graph representation

of the road network. The graph is stored in a HDF5 file, which is

a well known and convenient storage format for structured data on

HPC clusters.

As an example, we are using LARA aspects to generate C++ code

for mapping native data types to types defined by the HDF5 API. The

aspects are applied using theClava tool which is a C++ frontend for

the LARA toolchain. The Clava tool is integrated in our CMake-

based build process as a custom build step, which parses the C++

structures representing the routing graph in memory and produces

part of the HDF5 data access API. Details of the implementation

can be found in [30]. Using the same process, other LARA aspects

can be easily applied on the source code of the library, which greatly

simplifies integration of other tools of the ANTAREX toolchain, such

as mARGOt [ 22].

Furthermore, the mARGOt [22] autotuner is used in the Probabilis-

tic Time-Dependent routing (PTDR) algorithm [31] to dynamically

adjust the number of Monte Carlo samples used for the particular

routing request. This parameter directly affects load generated by

the PTDR stage and precision ofits output. The autotuner uses

operation point lists generated by a Design Space Exploration phase.

The operation points in the context of PTDR are represented by a

number of MC samples as an adjustable algorithm parameter and

expected values of various metrics. The autotuner then dynamically

selects the operation point according to the current request input.

This approach can significantly reduce computational load generated

by the PTDR phase, contributing to the overall efficient operation of

the system.

Currently, our codebase is ready to use the DSL to integrate other

tools from the ANTAREX tool flow. The autotuner is manually

integrated in the routing pipeline, while verification ofits correct

function is ongoing. The next step is to use LARA to integrate the

autotuner to the target application and evaluate its impact.

We have developed a server-side routing dashboard web application

which is used to monitor the current status of the routing service.

The application also provides a consistent environment for testing

the service performance. It provides a way to execute a benchmark

of the service by adjusting its parameters and sending a pre-defined

set of routing requests. The service performance is then measured and

results of the testing are stored for further analysis. The application

also provides a consistent visualisation of the results which can be

used for further analysis. This infrastructure will be used for valida-

tion of the ANTAREX tools integrated in the routing service [32].

V. C ONCLUSIONS

To fully exploit the heterogeneous resources offuture Exascale

HPC systems, new software stacks are needed to provide power

management, optimization, and autotuning to the parallel applica-

tions deployed on such systems. The ANTAREX project provides

a holistic system-wide adaptive approach for next generation HPC

systems, centered around a domain specific language that allows a full

decoupling offunctional and extra-functional specifications for each

application, providing integration with a wide range of support tools.

We have shown how the ANTAREX tool flow allows developers

to control the precision of a computation, to manage dynamic code

specialization, monitoring, power capping, and dynamic autotuning.

The impact and benefits of such technology are far reaching, beyond

traditional HPC domains.
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TABLE I
STATIC M ETRICS

Strategy LARA LARA Input Input Woven Woven Delta Delta
SLoC-L Aspects SLoC-L Func SLoC-L Func SLoC-L Func

ChangePrecision 27 1 12 3 13 3 1 0
SimpleExamon 20 1 12 3 23 5 11 2
Multiversion 46 2 12 3 43 5 31 2
CreateFloatVersion 28 2 12 3 24 3 12 0
SimpleLibVC 12 1 12 3 39 4 27 1
HalfPrecisionOpenCL* 93 3 9 1 279 31 270 30
Total 226 10 69 16 421 51 352 35

TABLE II
DYNAMIC M ETRICS

File Selects Attributes Actions Inserts Native
SLoC

ChangePrecision 4 109 2 1 0
SimpleExamon 4 131 18 7 0
Multiversion 8 477 27 16 9
HalfPrecisionOpenCL 125 2211 381 159 31
CreateFloatVersion 2 170 6 3 0
SimpleLibVC 7 93 13 8 36
Total 150 3191 447 194 76
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