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Abstract—Weighted centroid localization (WCL) based on
received signal strength (RSS) measurements is an attractive low-
complexity solution that enables cognitive radios (CRs) to have a
geolocation awareness of the radio environment. In this paper, we
propose a new analytical framework to accurately calculate the
performance of WCL based on the statistical distribution of the
ratio of two quadratic forms in normal variables. In particular,
we derive an exact expression for the cumulative distribution
function (CDF) of the two-dimensional location estimation in
the presence of independent and identically distributed (i.i.d.) as
well as correlated shadowing. Numerical results confirm that the
analytical framework is able to predict the performance of WCL
capturing all the essential aspects of propagation as well as CR
network spatial topology.

I. INTRODUCTION

Cognitive radio (CR) is one of the emerging technologies
that has been developed and studied over the past decade to
enable efficient utilization of the spectrum resources [1]. In
CR networks, geo-location of primary user (PU) is a spectrum
awareness technique that not only plays an important role in
preventing harmful interference to the PU, but allows for better
spectrum resource allocations in the spatial domain [2]–[9].
Bearing in mind the challenges posed by the uncooperative
nature of the PU, weighted centroid localization (WCL) rep-
resents an attractive low complexity solution which can rely
only on e.g., received signal strength (RSS) measurements.

The original coarse-grained centroid localization algorithm
used to estimate the position of the transmitter using only the
coordinates of the receiving devices in an outdoor environment
was proposed in [10]. Subsequently, the WCL technique has
been studied in several papers assuming the secondary users
(SUs) have limited information about the PU, under varying
environment conditions, i.e., factors such as node placement,
node density, shadowing variance and node spacing [10]–
[17]. WCL algorithm in Zigbee sensor networks based on
either RSS or link quality indicator was presented in [11].
Relative span weighted localization and relative span expo-
nential weighted localization (REWL) mechanisms, which
assign linear weights and exponential weights, respectively
were introduced in [12].

Most of the literature analyze the WCL performance in
terms of the root mean square error (RMSE), ignoring the
statistical distribution of the error. However, in many practical

situations e.g., in econometrics or engineering just studying
moments of estimators is not sufficient and in some instances
such moments do not exist [18]. Thus, one can consider the
distribution function as a performance criterion, in which an
estimator with high probabilities of being close to the true
parameter is the most favorable [18], [19]. The first theoretical
framework for WCL analysis using a probabilistic approach
was presented in [13], assuming that the two-dimensional
localization errors are jointly Gaussian, thus requiring the cal-
culation of the error covariance matrix. Recently, an analytical
framework to analyze WCL in the presence of interference
has been proposed in [17], for the case where the cyclic
autocorrelations of the received signals are used as weights. A
closed-form expression for the RMSE of the two-dimensional
location estimation for RSS-based WCL is presented in [20].

In this paper, we propose a new analytical framework to
calculate the exact performance of WCL in the presence
of independent and identically distributed (i.i.d.) as well as
correlated log-normal shadowing, based on the statistical dis-
tribution of the ratio of two quadratic forms in normal variables
[17], [18], [21]. In particular, we derive an expression for
the cumulative distribution function (CDF) of the localization
error based on the inversion formula for an indefinite quadratic
form [18], [22], [23]. In summary, the main contributions of
this paper are the following:

• We derive the exact expression for the CDF of the error
of the two-dimensional location estimation.

• The exact expression is based on the statistical distribu-
tion of the ratio of quadratic forms in normal variables.

• The analytical framework includes the most general case
of correlated shadowing and can be easily simplified to
handle i.i.d. shadowing as well.

• Through the new analytical methodology we quantify the
performance of WCL in different scenarios by varying
the PU locations, the path-loss exponent, the shadowing
parameter, the number of SUs, and their location.

• A key contribution in our analysis is that as well as
presenting the exact performance in terms of the CDF,
our analytical framework takes into consideration the
finite nature of the network, overcoming the limitations
of asymptotic results based on the central limit theorem.

Throughout the paper boldface letters denote matrices and



vectors; G ∼ N (µ,Σ) denotes a Gaussian distributed vector
with mean µ and covariance matrix Σ; F(q) denotes the CDF
of a random variable Q; I is the identity matrix; 1 denotes a
square matrix of ones; (·)T stands for transposition and || · ||l
stands for the l-th norm.

The remainder of this paper is organized as follows. Sec-
tion II presents the system model and the performance metric
of WCL. Section III provides the analytical framework for the
exact expression of the CDF of the estimation error. A case
study to quantify the effectiveness of the proposed approach
is analyzed in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

We consider a CR network with N SUs located in a square
area of side length S , and the PU located within the area at
position Lp = [xp, yp]T. The position of the i-th SU node
is defined as Li = [xi, yi]T, i = 1, 2, ..., N . The propagation
environment is characterized by a power-law path-loss channel
model plus log-normal shadowing. The RSS at the i-th SU
node from the PU is thus given by

Pi = PT − p0(d0)− 10α log10

(
||Li − Lp||2

d0

)
+ Si (1)

where PT is the transmit power in dBm, p0(d0) is the path-loss
at a reference distance d0, α is the path-loss exponent, and Si

describes the random shadowing effect. More precisely, in the
general case of correlated shadowing, S = [S1, . . . , SN ]T ∼
N (0,Σs) where Σs is the shadowing covariance matrix. In
the case of independent shadowing among sensors Σs =
diag

(
σ2

s,1, . . . ,σ
2
s,N

)
, which further simplifies in the i.i.d. case

to Σs = σ2
s I. For the correlated shadowing case, we consider

the following model for spatial dependency [24]–[26]

Σs = [Σij ]i,j=1,...,N with Σij = σ2
s e

−β∥Li−Lj∥2

where e−β is the correlation coefficient at 1m, while 1/β =
Dc is the correlation distance in meters.

We begin by presenting the WCL algorithm used to estimate
the location of the PU in two dimensions [11]

L̂p =

∑N
i=1

wiLi
∑N

i=1
wi

=

∑N
i=1

(Pi − Pmin)Li
∑N

i=1
(Pi − Pmin)

(2)

where wi = (Pi −Pmin)/(Pmax −Pmin) is the weighting co-
efficient for the i-th SU node, Pmax is the maximum received
power among sensor nodes, and Pmin is an arbitrary reference
power level which can be e.g., the minimum measurable
received power by the SU. The localization error is defined
as ξ ! L̂p − Lp = [X̂p − xp, Ŷp − yp]T, where X̂p and Ŷp are
the one-dimensional position estimates along the x-axis and
y-axis, respectively

X̂p =

∑N
i=1

Gixi
∑N

i=1
Gi

Ŷp =

∑N
j=1

Gjyj
∑N

j=1
Gj

(3)

with Gi = Pi − Pmin. Finally, the squared distance error is
given by

ξ2 ! (X̂p − xp)
2 + (Ŷp − yp)

2 = ||ξ||22. (4)

For notational convenience we define G = [G1, . . . , GN ]T,
X = [x1, . . . , xN ]T, and Y = [y1, . . . , yN ]T. In the following
section, the square of the distance error (4) will be interpreted
as the ratio of two quadratic forms, leading to a new theoretical
framework for the performance analysis of WCL.

III. CUMULATIVE DISTRIBUTION FUNCTION OF THE

LOCALIZATION ERROR

In this section we derive the CDF expression of the error of
the two-dimensional location estimate. Defining ξx = X̂p −xp

and ξy = Ŷp − yp as the errors in the x-dimension and y-
dimension, respectively, the squared error can be written as

ξ2 = ξ2x + ξ2y

=

(∑N
i=1

Gi(xi − xp)
∑N

i=1
Gi

)2

+

(∑N
i=1

Gj(yj − yp)
∑N

i=1
Gj

)2

=

∑N
i=1

∑N
j=1

GiGjaij
∑N

i=1

∑N
j=1

GiGj

(5)

where aij = (xi − xp)(xj − xp) + (yi − yp)(yj − yp).
Defining x′

i = xi − xp and y′i = yi − yp, the term aij
can be expressed as aij = x′

ix
′
j + y′iy

′
j , and arranged in a

matrix form A = [ai,j ]i,j=1,...,N with A = X′X′T +Y′Y′T,

X′ = [x′
1, x

′
2, . . . , x

′
N ]T, and Y′ = [y′1, y

′
2, . . . , y

′
N ]T. It

should be noted that A is symmetric. Now, using matrix-vector
notation we obtain the following compact form of the squared
error

ξ2 =
GTAG

GTBG

with G ∼ N (µ,Σs), µ = E[G], i.e., µ = [µ1, . . . , µN ]T with
µi = E[Gi] = E[Pi]− Pmin and B = 1.

The CDF of the error ξ, F(q0) = Pr[ξ ≤ q0], known as
localization error probability (LEP), can be derived as follows,
noting first that Pr[ξ ≤ q0] = Pr[ξ2 ≤ q20 ], [18]

F(q0) = Pr[ξ ≤ q0]

= Pr

[
GTAG

GTBG
≤ q20

]

= Pr[GT
AG ≤ q20G

T
BG]

= Pr[GT
WG ≤ 0] (6)

where W = A − q20B. The expression (6) shows that the
distribution of the ratio of quadratic forms reduces to the
distribution of an indefinite quadratic form GTWG, where
W is an indefinite matrix. Using Σs, we can also perform a
whitening of the vector G which allows to rewrite (6) in the
following form



F(q0) = Pr[GT
Σs

−1/2
Σs

1/2
WΣs

1/2
Σs

−1/2
G ≤ 0]

= Pr[GT
V

−1
PP

T
VWVPP

T
V

−1
G ≤ 0]

= Pr[ZT
ΛZ ≤ 0] (7)

where V = Σs
1/2, Z = PTV−1G, P is an orthogonal matrix

formed by the eigenvectors of VWV, and Λ = PTVWVP

is a diagonal matrix containing the eigenvalues λ1, ...,λN of
VWV.

Note now that Z ∼ N (µz, I) with µz = PTV−1µ, so the
expression (7) can be casted into

F(q0) = Pr

[
N∑

i=1

λiz
2
i ≤ 0

]

(8)

where z2i ∼ χ2(µ2
zi) is a noncentral chi-squared distributed

random variable with one degree of freedom and noncentral
parameter µ2

zi.
1 A numerical integration representation of (8)

was presented by Imhof [23], which is based on the Gil-Pelaez
inversion formula [22]

F(q0) =
1

2
−

1

π

∫ ∞

0

t−1ℑ{φ(t)}dt (9)

where ℑ{·} represents the imaginary part and

φ(t) =

⎡

⎣
N∏

j=1

(1− 2itλj)
−1/2

⎤

⎦ exp

⎛

⎝i
N∑

j=1

µ2
zjλjt

1− 2itλj

⎞

⎠

is the characteristic function of ZTΛZ. Alternatively, in [23],
it has been shown that (9) can be written as

F(q0) =
1

2
−

1

π

∫ ∞

0

sin θ(v)

vρ(v)
dv (10)

where

θ(v) =
1

2

N∑

j=1

(
rj tan

−1(λjv) + µ2
zjλjv(1 + λ2

jv
2)−1

)

ρ(v) =

⎡

⎣
N∏

j=1

(1 + λ2
jv

2)rj/4

⎤

⎦ exp

⎛

⎝1

2

N∑

j=1

µ2
zjλ

2
jv

2

1 + λ2
jv

2

⎞

⎠

and rj’s are the multiplicities of the nonzero distinct λj’s.
We remark that both (9) and (10) provide the same accuracy,
however, the latter does not involve the use of complex
numbers.

1Note that for the i.i.d. shadow fading case Z ∼ N (µ
z
, I), with µ

z
=

PTµ/σs and V−1 = I/σs.

−40 −20 0 20 40

−40

−20

0

20

40

x [m]

y
[m

]

Fig. 1. The case study considered with randomly located SUs (triangles) and
different PU positions: circle, square and diamond represent locations LA

p , LB
p

and LC
p , respectively.
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Fig. 2. CDF of the error of the two-dimensional position estimation, in the
RF-SU case, when the PU is located at LA

p , LB
p and LC

p , for N = 50. Dashed

lines refer to correlated shadowing with β = 1/30m−1.

IV. CASE STUDY ANALYSIS

In this section, we exploit the methodology provided in
Section III to analyze the performance of WCL in terms of the
LEP, F(q0) = Pr[ξ ≤ q0]. In particular, we compare analytical
and Monte-Carlo simulation results of the CDF of location
estimation in two different settings: 1) random, but fixed,
SU (RF-SU) positions, and 2) random SU (R-SU) positions,
respectively.2

2For random-fixed SUs, we consider a single snapshot of SU positions while
for random SU positions we average the analytical and simulation results over
1000 independent realizations.
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Fig. 3. The CDF of the error of the two-dimensional position estimation, in
the R-SU case, when the PU is located at LA

p , LB
p and LC

p , for N = 10 (solid
lines) and N = 50 (dashed lines).
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Fig. 4. CDF of the error of the two-dimensional position estimation, in the
R-SU case, when the PU is located at LA

p and LB
p , and for two different values

of the path-loss exponent, with N = 10.

The case study scenario is a square area with side S =
100m. Fig. 1 depicts the considered randomly distributed
SUs and the PU located in three different positions: LA

p =
(0m, 0m), LB

p = (20m, 0m) and LC
p = (30m, 30m).

The propagation environment is characterized by (1), where
the PU transmit power is PT = 20 dBW, the shadowing
parameter is σs = 4 dB, 5.5 dB and 8 dB, the path-loss at
reference distance, d0 = 1m, is p0(d0) = 50 dB and the path-
loss exponent is α = 3 and α = 4.

To validate the analytical approach we used Monte-Carlo
simulation with 106 runs. In all figures, lines and symbols refer
to analytical and simulation results, respectively. The discus-
sion of our numerical results will be based on the following
effects: PU location, shadowing and path-loss. Throughout this
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Fig. 5. CDF of the error of the two-dimensional position estimation, in the
R-SU case, when the PU is located at LA

p and LB
p , and for two different values

of shadowing parameter, with N = 10.

section, unless specified otherwise, the case study analysis will
be based on the i.i.d. shadowing assumption. Fig. 2 – Fig. 5
summarize our CDF analysis when considering the RF-SU and
R-SU positions.

Impact of PU location and correlated shadowing. In Fig. 2
we show the relationship of the CDF using the exact analytical
expression (9) and Monte-Carlo simulation results, for differ-
ent PU locations in the RF-SU case, N = 50, α = 4, and
correlated shadowing with σs = 8 dB and β = 1/30m−1. The
curve that refers to PU position LA

p reaches a high probability
faster than the other curves, essentially confirming that the
most favorable location scenario is when the PU is in the
center.

We also investigated the effect of correlated shadowing and
it appears that there are parts of the curves where correlation
improves the performance. Interestingly, for q0 = 6m, q0 =
28m and q0 = 36m the LEP is independent of correlation
distance for locations LA

p , LB
p and LC

p , respectively.

In Fig. 3 we provide results for a scenario similar to the
one considered in Fig. 2, except that now performances are
averaged over R-SU positions, and we also introduce results
for N = 10. The node density appears to improve the
performance of the WCL, especially for high LEPs. However,
for locations LB

p and LC
p we observe a crossing point between

LEP curves at q0 = 13m and q0 = 30m, respectively.

Path-loss analysis. In Fig. 4 we show the impact the
variation of the path-loss exponent α has on the CDF, and we
considered the following scenarios: PU locations LA

p and LB
p ,

R-SU setting, α = 3 and 4, σs = 5.5 dB. The LEP improves
with an increase in α since this induces a node selection
strategy, effectively reducing the impact of the SUs with low
RSS on location estimate [14], [16]. For LA

p scenario, there
is lack of dependency on α as it can be observed from the
tightness of the CDF curves. However, for LB

p scenario, the



impact of α is apparent and the estimation is more senstive to
this parameter.

Shadowing analysis. In Fig. 5 we show the impact the
variation of the shadowing parameter σs has on the CDF, and
we considered σs = 4 dB , σs = 8 dB and α = 4. Interestingly,
as depicted, the CDF is not so senstive to σs as reflected by
the tightness of the curves for variation in σs.

V. CONCLUSION

In this paper, we proposed a new analytical framework to
calculate the accurate performance of WCL in the presence of
i.i.d. as well as correlated log-normal shadowing, based on the
statistical distribution of the ratio of two quadratic forms in
normal variables. In particular, we derived an exact CDF of the
two-dimensional localization error. A case study analysis was
performed to evaluate the accuracy of the proposed methodol-
ogy. Specifically, we analyzed the performance of WCL under
varying PU location, path-loss exponent, shadowing standard
deviation, number of SUs and their location. Results confirm
that the statistical framework is able to predict the performance
of WCL very accurately, capturing all the essential aspects of
propagation, SUs location as well as the finite nature of the
network.
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