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Indoor Detection and Tracking of Human Targets
with UWB Radar Sensor Networks

Filippo Valmori, Andrea Giorgetti, Matteo Mazzotti, Enrico Paolini, and Marco Chiani

Abstract—In this paper, the whole signal processing chain
for an ultra-wideband (UWB) radar sensor network (RSN) is
presented, starting from real measurements collected by sensor
devices, and ending with the estimation of the target trajectory.
The RSN is composed by one transmitter and six receivers, and
monitors an indoor area of about 70m2 performing tracking of a
human target. The proposed processing chain consists of: clutter
removal, a novel detection scheme, one-dimensional clustering,
trilateration, two-dimensional clustering, particle-based proba-
bility hypothesis density filter tracking, and data association. Nu-
merical results show the remarkable performance of the system,
resulting in a root mean square localization error of 36 cm, a
value smaller than the target size. The presented experimental
study show that it is possible to accurately track human targets
using a UWB RSN in a densely cluttered environment.

I. INTRODUCTION

RADAR SENSOR NETWORKS (RSNs) for localization
and tracking of human targets and objects in indoor

environments have gained an increasing interest, especially for
anti-intrusion applications. In the context of Industry 4.0, for
example, indoor localization in the manufacturing sector will
enable the application of ideas such as geofencing, to check
whether people or vehicles are located in specific areas, such
as in the proximity of machines. RSNs can also support the
optimization of the logistics processes.

These networks often employ the ultra-wideband (UWB)
technology, especially its impulse-radio version, characterized
by the transmission of short pulses (with duration in the
order of nanoseconds) [1]. The extremely large bandwidth of
UWB systems possesses interesting features such as robustness
to jamming, walls and objects penetration, low probability
of interception, excellent multipath resolution, and accurate
localization. The RSNs considered in this paper are UWB
multistatic radar systems aimed at detecting and tracking non-
cooperative targets (e.g., human subjects) moving inside a
surveillance area.

Non-collaborative localization through multistatic UWB
radars is the subject of several works, e.g., [1], [2]. However,
in this field just a few works focus on experimentation in real
environments and propose the analysis of the whole processing
chain. To the authors knowledge, only [3] provides a proof-
of-concept study to show that it is possible to accurately track
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multiple targets using a UWB RSN. Most of the works focus
on specific aspects of the radar system. For example, in the
context of tracking, there are several works proposing non-
linear Bayesian filtering techniques such as particle filters, and
analyze their feasibility in terms of computational complexity
[4]–[6].

In this paper, we propose a complete signal processing chain
for UWB-based RSNs which consists of several processing
steps, performed in part at the single sensor, alleviating the
computational burden due the amount of data exchanged
among sensors, and in part at the fusion centre (FC). The
performance of the overall system is validated using wave-
forms collected in a real indoor environment with a human
being as target, and thus constitute a very important benchmark
to assess the capability of UWB technology to perform non-
collaborative localization in the presence of dense clutter.

II. SYSTEM OVERVIEW

The RSN is a mutistatic radar composed of one transmitter
(TX) and at least three receivers (RXs), often placed along the
perimeter of the monitored area to improve system efficiency
and coverage [1]. During every scan the transmitter emits very
short (on the order of a nanosecond) pulses; the RXs (or
sensors) estimate the time-of-arrival (ToA) of direct and target-
reflected paths, perform proper signal processing algorithms
and finally forward the data to a FC which performs target
detection, localization and tracking. Each RX, as it estimates
the ToA t0 of the target-reflected path, can locate the target on
an ellipse having the transmitter and itself as foci and c t0/2 as
semi-major axis (where c is the speed of light). With at least
three receivers it is possible to estimate the target position
within the monitored area through the intersection of their
ellipses. The proposed signal processing chain consists of tasks
performed at the sensor level (clutter removal, constant false
alarm rate (CFAR) detection, and 1D-clustering), and at the
FC (trilateration, 2D-clustering, and tracking).

III. SINGLE RECEIVER PROCESSING

A. Clutter Removal

The first processing step consists of clutter removal, to
cancel the undesired echoes from static objects. For this step,
we adopt the empty room (ER) technique, which consists of
subtracting from the currently received waveform a waveform
collected when there are no targets within the monitored area
(the ER scan). In particular, after extracting the envelopes,
the ER and the current scan are up-sampled (by a factor of
10), aligned based on their cross-correlation, and subtracted.



The resulting waveform is expected to reveal possible target
echoes, together with a clutter residue. Finally, a half-wave
rectifier is applied to avoid negative values caused by a ghost-
type problem, specifically a target obscuring a clutter echo
which is present in the ER scan.

B. CFAR Detection with adaptive threshold

In the proposed processing chain, the next step is aimed
at turning each soft value obtained after clutter removal into
a binary value via comparison with a suitable threshold.
In this paper an innovative CFAR algorithm, named double
threshold and buffer (DTB), is proposed for adaptive threshold
setting. DTB-CFAR, summarized in Algorithm 1, consists of
calculating the threshold, η, with which the current sample
under test (SUT) is compared, as

η = αPL + βPG (1)

where PL and PG are defined as the local and the global power
respectively, whereas α and β are scaling factors. In particular,
PG is the average power of the whole scan, whereas PL is
the average power of a circular buffer filled with the samples
already processed during the same scan that were found to
be below threshold (this way we reduce the misdetection rate
in case of multiple-target scenarios as we keep memory of
the decisions previously taken during the scan). If the SUT
turns out to be below its threshold, before being set to '0', it
is saved in the buffer replacing the oldest sample. Otherwise
the sample is set to '1' and the buffer is not updated.

Keeping the length of the buffer short, it is possible to get a
local estimate of the noise and residual clutter power level for
the near-SUT samples. However, since target presence does
not typically manifest through an instantaneous transient, the
overall threshold (due to PL) increases very quickly when
a waveform peak occurs, causing misdetections. To avoid
such phenomenon, if the increment of the SUT with respect
to the previous sample is larger than a predefined value,
ThrStepUp, for at least ThrCounter consecutive samples,
then PL is not updated. Thus, since residual clutter and
target presence is characterized by similar waveform peaks
with the only difference that the latter ones are generally
significantly larger than the former ones, the overall threshold
is expected to increase quickly enough to avoid false alarms
but also be frozen soon enough to properly detect the target.
Later, PL is unfrozen when a waveform decrease occurs. To
further decrease misdetections, because of the asymmetric
target waveform, DTB-CFAR is applied to the scan twice in
opposite directions. Then, the two outputs are merged through
an element-wise OR operator to form the final vector.

We have experimentally verified that this detection al-
gorithm far improves processing results compared to other
conventional approaches (e.g., cell-averaging CFAR) in case
of multiple human targets in densely cluttered environments.

C. 1D-Clustering and weight-based thresholding

After CFAR detection, scans are generally characterized by
bursts of '1's related to the same target or (to a lesser extent)
to residual clutter.

Algorithm 1 DTB-CFAR
SCANin←flip_and_concatenate(SCANin)
PG ←get_averagepower(SCANin) ; Freeze← 0
for i = 1, . . . , length(SCANin) do

if Freeze = 0 then
PL ← PL_updated

else
PL ← PL_frozen

end if

η ← α · PL + β · PG
if SCANin[i]2 > η then

SCANout[i] = 1
else
BUFFER[i_oldest]← SCANin[i]
PL_updated ←get_averagepower(BUFFER)
update(i_oldest) ; SCANout[i]← 0

end if

if SCANin[i]2 > SCANin[i− 1]2 + ThrStepUp then
Counter← Counter+ 1

else if SCANin[i]2 + ThrStepUp

2
< SCANin[i− 1]2 then

Counter← 0
end if

if Counter > Thr_Counter& Freeze = 0 then

Freeze← 1 ; PL_frozen ← PL_updated

else if Freeze = 1 & PL_updated < PL_frozen then

Freeze← 0 ; Counter← 0
end if

end for

In fact, close '1's, corresponding to comparable times of
arrival, are most likely due to the same pulse which has a
duration of nanoseconds (i.e., several consecutive samples),
while isolated '1's are due to noise and residual clutter. There-
fore, to decrease false alarms and to limit the computational
complexity, a mono-dimensional (1D) clustering is applied
to the binary scans. Since the number of final clusters (i.e.,
number of targets) is not known a-priori, a hierarchical 1D-
clustering approach is considered. At the beginning, each '1'
is associated with a stand-alone cluster. Then, iteratively until
the minimum distance1 between two clusters is less than a
pre-set distance-threshold, those clusters are merged. At the
end, each survived cluster is replaced by a single '1' placed
in the median position. Furthermore, a weight equal to the
number of clusterized ones is associated with every survived
cluster. As the clusters associated with targets typically exhibit
higher weights than those related to clutter or noise, it is
useful to set also a weight-based threshold so that the lightest
survived clusters (having a weight less than this threshold),
are neglected and the corresponding output sample is reset to
'0' to further reduce false alarms.

1We choose the minimum distance among two clusters as the distance
between their centroids (i.e., the median positions among the '1's which
compose those clusters at the current iteration).



IV. FUSION CENTRE PROCESSING

The binary vectors resulting from 1D-clustering performed
by each sensor, are sent to the FC to be further processed.

A. Trilateration and measures reliability

The trilateration is aimed at collecting and processing the
post-clustering data incoming from all sensors to locate targets
in a 2D space. To do so, we adopted a least-squares (LS)
approach applied to all possible triplets of '1's, each associated
with a different RX [7]. When the number of RXs, NR is larger
than 3, even in the ideal situation where noise and residual
clutter are absent (i.e., each sensor output is composed of
an all-'0' vector apart from a '1' for each target in its actual
ToA), this step causes false alarms arising when three times
of arrival not associated with the same target are combined.
For example, when there are Nt targets within the monitored
area, the number of false alarms due to LS trilateration is

Nfa =
NR!

3!(NR − 3)!

(
N3

t −Nt

)
. (2)

Therefore, criteria are needed to understand whether the sev-
eral 2D points obtained from trilateration (referred to as the
measures) correspond to real targets.

Firstly, all points falling outside the monitored area are
discarded. Moreover, a weight (calculated as the sum of the
post-clustering weights of the three ones combined to get
that measure) is associated with each measure; since points
related to real targets are expected to have higher weights
than measures contributed by noise and clutter, applying a
threshold on the combined weights allows to reduce the false
alarms. Finally, a further filtering based on least square error
(LSE) estimation has been introduced. The LSE represents
an unreliability factor associated with each measure. In fact,
when three '1's related to different targets (or to false alarms)
are combined, ellipses (related to the TX-RXs pairs) do not
intersects in one point, even in the absence of clutter and
noise, resulting in a large LSE. Hence, employing an additional
threshold on the LSE, it is possible to further filter out the most
unreliable measures.

B. 2D-Clustering

The measures generated by the previous steps tend to form
clouds of points inside the monitored area (especially if the
RSN has more than three receivers), so a bi-dimensional (2D)
clustering is used to merge together the observations referring
to the same target. The approach is still hierarchical, iterative,
centroid-based and employs again both distance and weight
thresholds, as 1D-clustering in Section III-C, but considering
Euclidean distances over 2D-space. The weight-based thresh-
old is particularly effective because the residual false alarms
after trilateration are randomly placed within the monitored
area in a sparse manner.

C. PHD tracking and data association

The final step of the processing chain is tracking, composed
by the cascade of a particle-based probability hypothesis
density (PHD) filter and a data association (DA) block.

The PHD filter combines the post-clustering measures and
the past states of the targets in order to calculate their
most likely position at the current scan [8]. The PHD filter
formulation involves nonlinear equations not admitting closed-
form solutions, regardless the kinematic model of the targets,
so a particle filter implementation is adopted to discretize the
PHD and limit the computational complexity [6].

At each scan the PHD filter generates a cloud of Np particles
around each new received measure and also around the most
recent points of the existing tracks. The particle positions
for the new measures are randomly generated according to
a circularly symmetric bivariate Gaussian distribution with
variance σ2

p . The velocities associated with these particles
are generated randomly according to a uniform distribution
U [−vmax, vmax] (independently for both X and Y components),
where vmax is the maximum speed of targets. The particles
associated to recent points of the existing tracks are generated
following the chosen targets dynamic model (here linear Gaus-
sian). Moreover, a constant weight is initially associated with
every particle. Then, the weights are updated to let the most
important particles, which best represent the new received
measures, to be heavier. This way a discrete representation
of the PHD can be obtained and targets states information
can be extracted through its peaks. The PHD peaks estimation
is managed by an expectation-maximization (EM) algorithm,
which iteratively approximates the PHD through a linear
combination of Gaussian functions. Finally the particles are
resampled using a Monte Carlo approach in order to discard
the particles with lowest probability and keep their number
constant during scans.

After the tracking stage, the data association block combines
the PHD peaks with the existing tracks through the evaluation
of suitable association costs and manages other possible cases
(such as the initialization or death of tracks after a fixed
number of scans) which occur when the number of input
measures does not correspond to the number of current tracks.
The implemented algorithm is based on a 0-scan approach and,
in order to find the best measure-track associations, all possible
permutations are tested [9]. In particular, the cost of a single
measure-to-track association at the current scan is calculated
combining the information about position and velocity of the
existing tracks (as estimated at the previous scan) with the cur-
rent measures. So if the minimum cost hypothesis (composed
by the sum of all its single associations) is below an input
cost-threshold, those combinations are applied; otherwise each
measure-track association is singularly checked comparing its
cost to a gating-threshold to be confirmed.

V. EXPERIMENTAL RESULTS

The measurement campaign has been carried out for a single
target scenario in an 11.5m×6m room, with a RSN composed
by one TX and 6 RXs. The sensor nodes are Time Domain’s
PulsOn 410, used to generate and collect UWB waveforms.
The sampling rate is 16.4GHz, the scan duration is of 100ms,
the overall number of scans collected along the trajectory is
61, and the human target (of approximately 90 kg weight and
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Fig. 1. Processing steps at RX4: (a) theoretical ToA of the target; (b) waveforms after clutter removal, where the lighter the color the larger the value of the
corresponding sample; (c) binary waveforms after DTB-CFAR detection; (d) binary waveforms after 1D-clustering.
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Fig. 2. Experimental results: (a) RSN configuration and the estimated track; (b) CDF of the localization error ∥p̂− p∥.

185 cm height) moves with uniform rectilinear motion from
right to left along his trajectory, with velocity vtarget = 1.5m/s.

Fig. 1 shows the processing results up to the 1D-clustering
phase for the receiver RX4. In every subfigure the X-axis
reports the difference (in nanoseconds) between the target-
reflected path ToA and the direct path ToA as a function of
the scan number on the Y-axis. Fig. 2(a), depicts the RSN
configuration and the final points and track estimated after the
whole processing at the FC. Defining the localization error as
the distance between the true and the measured position of
the target (respectively, p and p̂), the points of the estimated
track are characterized by a root mean square error (RMSE) of
36 cm.2 A more detailed behavior of the localization error is
represented by the cumulative density function (CDF) shown
in Fig. 2(b).
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