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Krylov methods for low-rank commuting

generalized Sylvester equations

Elias Jarlebring ∗, Giampaolo Mele ∗, Davide Palitta †, Emil Ringh ∗

April 14, 2017

Abstract

We consider generalizations of the Sylvester matrix equation, consist-
ing of the sum of a Sylvester operator and a linear operator Π with a
particular structure. More precisely, the commutator of the matrix coef-
ficients of the operator Π and the Sylvester operator coefficients are as-
sumed to be matrices with low rank. We show (under certain additional
conditions) low-rank approximability of this problem, i.e., the solution to
this matrix equation can be approximated with a low-rank matrix. Projec-
tion methods have successfully been used to solve other matrix equations
with low-rank approximability. We propose a new projection method for
this class of matrix equations. The choice of subspace is a crucial ingredi-
ent for any projection method for matrix equations. Our method is based
on an adaption and extension of the extended Krylov subspace method
for Sylvester equations. A constructive choice of the starting vector/block
is derived from the low-rank commutators. We illustrate the effectiveness
of our method by solving large-scale matrix equations arising from appli-
cations in control theory and the discretization of PDEs. The advantages
of our approach in comparison to other methods are also illustrated.

Keywords Generalized Sylvester equation · Low-rank commutation ·
Krylov subspace · projection methods · Iterative solvers · Matrix equation

Mathematics Subject Classification (2000) 39B42 · 65F10 · 58E25 ·
47A46 · 65F30

1 Introduction

Let L : Rn×n → Rn×n denote the Sylvester operator associated with the matri-
ces A,B ∈ Rn×n, i.e.,

L(X) := AX +XBT , (1)

and let Π : Rn×n → Rn×n denote the matrix operator defined by

Π(X) :=

m∑
i=1

NiXM
T
i , (2)
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where m � n. The matrices A,B are assumed to be large and sparse. Given
C1, C2 ∈ Rn×r with r � n, our paper concerns the problem of computing
X ∈ Rn×n such that

L(X) + Π(X) = C1C
T
2 . (3)

This equation is sometimes (e.g. [9]) referred to as the generalized Sylvester
equation.

Let [A,B] := AB − BA denote the commutator of two matrices. The
structure of the operator Π is assumed to be such that the commutator of the
Sylvester coefficients and the coefficients defining the operator Π have low rank.
In other words, we assume that there exist Ui, Ũi ∈ Rn×si and Qi, Q̃i ∈ Rn×ti
such that si, ti � n and the commutators fulfill

[A,Ni] = ANi −NiA = UiŨ
T
i , (4a)

[B,Mi] = BMi −MiB = QiQ̃
T
i , (4b)

for i = 1, . . . ,m.
A recent successful method class for matrix equations defined by large and

sparse matrices, are based on projection, typically called projection methods
[37, 17, 8]. We propose a new projection method for (3) under the low-rank
commutation assumption (4).

Projection methods are typically derived from an assumption on the decay
of the singular values of the solution. More precisely, a necessary condition
for the successful application of a projection method is low-rank approxima-
bility, i.e., the solution can be approximated by a low-rank matrix. We char-
acterize the low-rank approximability of the solution to (3) under the condi-
tion that the Sylvester operator L has a low-rank approximability property
and that ρ(L−1Π) < 1. The low-rank approximability theory is presented
in Section 2. The function ρ(·) denotes the (operator) spectral radius, i.e.,
ρ(L) := sup{|λ| |λ ∈ Λ(L)}.

The choice of the subspace is an important ingredient in any projection
method. We propose a particular choice of projection spaces by identifying cer-
tain properties of the solution to (3) based on our characterization of low-rank
approximability and the low-rank commutation properties (4). More precisely
we use an extended Krylov subspace with an appropriate choice of the start-
ing block. We present and analyse an expansion of the framework of extended
Krylov subspace method for Sylvester equation (K-PIK) [37, 15] to the gener-
alized Sylvester equation (Section 3).

Linear matrix equations of the form (3) arise in different applications. For
example, the generalized Lyapunov equation, which corresponds to the special
case where B = A, Mi = Ni and C1 = C2, arises in model order reduction of
bilinear and stochastic systems, see e.g. [9, 16, 8] and references therein. Many
problems arising from the discretization of PDEs can be formulated as gener-
alized Sylvester equations [35, 33, 32]. Low-rank approximability for matrix
equations has been investigated in different settings: for Sylvester equations
[20, 1, 19], generalized Lyapunov equations with low-rank correction [8] and
more in general for linear systems with tensor product structure [27, 19].

The so-called low-rank methods, which projection methods belong to, di-
rectly compute a low-rank approximation to the solution of (3). Many algo-
rithms have been developed for the Sylvester equation: projection methods
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[37, 17], low-rank ADI [11, 10], sign function method [4, 5], Riemannian opti-
mization methods [26, 40] and many more. See the thorough presentation in
[38]. For large-scale generalized Sylvester equations, fewer numerical methods
are available in the literature. Moreover, they are often designed only for solv-
ing the generalized Lyapunov equation although they may be adapted to solve
the generalized Sylvester equation. In [8], the authors propose a bilinear ADI
(BilADI) method which naturally extends the low-rank ADI algorithm for stan-
dard Lyapunov problems to generalized Lyapunov equations. A non-stationary
iterative method is derived in [36], and in [25] a greedy low-rank technique is
presented. In principle, it is always possible to consider the n2×n2 linear system
which stems from equation (3) by Kronecker transformations. There are specific
methods for solving linear systems with tensor product structure, see [25, 26, 2]
and references therein. These problems can also be solved employing one of
the many methods for linear systems presented in the literature. In particular,
matrix-equation oriented versions of iterative methods for linear systems, to-
gether with preconditioning techniques, are present in literature. See, e.g., [8,
Section 5], [14, 27, 29]. To our knowledge, the low-rank commutativity proper-
ties (4) have not been considered in the literature in the context of methods for
matrix equations.

The paper is structured as follows. In Section 2 we use a Neumann series (cf.
[28, 34]) with hypothesis ρ(L−1Π) < 1 to characterize the low-rank approxima-
bility of the solution to (3). In Section 3 we further characterize approximation
properties of the solution to (3) by exploiting the low-rank commutation fea-
ture of the coefficients (4). We use this characterization in the derivation of
an efficient projection space. In Section 3.4 we present an efficient procedure
for solving small-scale generalized Sylvester equations (3). Numerical examples
that illustrate the effectiveness of our strategy are reported in Section 4. Our
conclusions are given in Section 5.

We use the following notation. The vectorization operator vec : Rn×n → Rn2

is defined such that vec(A) is the vector obtained by stacking the columns
of the matrix A on top of one another. We denote by ‖ · ‖F the Frobenius
norm, whereas ‖ · ‖ is any submultiplicative matrix norm. For a generic linear
and continuous operator L : Rn×n → Rn×n, the induced norm is defined as
‖L‖ := inf‖A‖=1 ‖L(A)‖. The identity and the zero matrices are respectively
denoted by I and O. We denote by ei the i-th vector of the canonical basis
of Rn while ⊗ corresponds to the Kronecker product. The matrix obtained by
stacking the matrices A1, . . . , An next to each other is denoted by (A1, . . . , An).
In conclusion Range(A) is the vector space generated by the columns of the
matrix A and span(A) is the vector space generated by the vectors in the set
A.

2 Representation and approximation of the
solution

2.1 Representation as Neumann series expansion

The following theorem gives sufficient conditions for the existence of a repre-
sentation of the solution to a generalized Sylvester equation (3) as a convergent
series. This will be needed for the low-rank approximability characterization in
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the following section, as well as in the derivation of a method for small general-
ized Sylvester equations (further described in Section 3.4).

Theorem 2.1 (Solution as a Neumann series). Let L,Π : Rn×n → Rn×n be
linear operators such that L is invertible and ρ(L−1Π) < 1 and let C ∈ Rn×n.
The unique solution of the equation L(X) + Π(X) = C can be represented as

X =

∞∑
j=0

Yj , (5)

where {
Y0 := L−1 (C) ,

Yj+1 := −L−1 (Π (Yj)) , j ≥ 0.
(6)

Proof. By using the invertibility of L we have X = (I + L−1Π)−1L−1(C) and
with the assumption ρ(L−1Π) < 1 we can express the operator (I + L−1Π)−1

as a convergent Neumann series (for operators as, e.g., in [24, Example 4.5]).
In particular, we obtain

X =

∞∑
j=0

(−1)j
(
L−1Π

)j L−1 (C) .

The relation (5) follows by defining Yj := (−1)j
(
L−1Π

)j L−1 (C). By induction
it follows that the relations (6) are fulfilled.

Remark 2.2. Theorem 2.1 can be used to construct an approximation to the
solution of L(X) + Π(X) = C by truncating the series (5) analogous to the
general form in [24, (4.23)]. In particular, let

X(`) :=
∑̀
j=0

Yj , (7)

where Yj are given by (6). The truncation error can be bounded as follows

‖X −X(`)‖ ≤ ‖L−1(C)‖ ρ(L−1Π)`+1

1− ρ(L−1Π)
.

If L and Π are respectively the operators (1) and (2) that define the gen-
eralized Sylvester equation (3), then the truncated Neumann series (7) can be
efficiently computed for small scale problems. In particular, this approach can
be used in the derivation of a numerical method for solving small scale general-
ized Sylvester equations as illustrated in Section 3.4.

2.2 Low-rank approximability

We now use the result in the previous section to show that the solution to (3) can
often be approximated by a low-rank matrix. We base the reasoning on low-rank
approximability properties of L. Our result requires the explicit use of certain
conditions on the spectrum of matrix coefficients of L. Under these specific

4



conditions, the solution to a Sylvester equation with low-rank right-hand side
can be approximated by a low-rank matrix, see [38, Section 4.1]. In this sense,
we can extend several results concerning the low-rank approximability for the
solution to the Sylvester equation to the case of generalized Sylvester equations
under the assumption ρ(L−1Π) < 1. More precisely, the truncated Neumann
series (7) is obtained by summing the solutions to the Sylvester equations (6).
Note that, under the low-rank approximability assumption of L, the right-hand
side of the Sylvester equations (6) is a low-rank matrix since we assume that
C is a low-rank matrix and m� n. We formalize this argument and present a
new characterization of the low-rank approximability of the solution to (3) by
adapting one of the most commonly used low-rank approximability result for
Sylvester equations [19].

We now briefly recall some results presented in [19], for our purposes. Sup-
pose that the matrix coefficients representing L are such that λ(A)∪λ(B) ⊂ C−.
Let M ∈ Cn×n be such that λ(M) ⊂ C−, then its inverse can be expressed as
M−1 =

∫∞
0

exp(tM)dt. The integral can be approximated with the following
quadrature formula

M−1 =

∫ ∞
0

exp(tM)dt ≈
k∑

j=−k

wj exp(tjM), (8)

where the weights wj and nodes tj are given in [19, Lemma 5]. More precisely,
we have an explicit formula for the approximation error∥∥∥∥∥∥

∫ ∞
0

exp(tM)dt−
k∑

j=−k

wj exp(tjM)

∥∥∥∥∥∥ ≤ Ke−π
√
k, (9)

where K is a constant that only depends on the spectrum of M . The solution to
the Sylvester equation L(X) = C can be explicitly expressed as vec(X) = (I ⊗
A+B⊗I)−1 vec(C). The solution to this linear system can be approximated by
using (8) for approximating the inverse of I⊗A+B⊗I. Let L−1k : Rn×n → Rn×n
be the linear operator such that L−1k (C) corresponds to the approximation (8).
More precisely, the operator L−1k satisfies

vec(L−1k (C)) =

k∑
j=−k

wj [exp(tjB)⊗ exp(tjA)] vec(C).

By using the properties of the Kronecker product, it can be explicitly expressed
as

L−1k (C) =

k∑
j=−k

wj exp(tjA)C exp(tjB
T ). (10)

In terms of operators, the error bound (9) is ‖L−1−L−1k ‖ ≤ Ke−π
√
k. The result

of the above discussion is summarized in the following remark, which directly
follows from (10) or [19, Lemma 7], [8, Lemma 2].

Remark 2.3. The solution to the Sylvester equation L(X) = C can be approx-

imated by X̄ = L−1k (C) where ‖X − X̄‖ ≤ ‖C‖Ke−π
√
k, rank(X̄) ≤ (2k + 1)r,

K is a constant that depends on the spectrum of L and r is the rank of C.
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The following theorem concerns the low-rank approximability of the solution
to (3). More precisely, it provides a generalization of Remark 2.3 to the case of
generalized Sylvester equations by using the Neumann series characterization in
Theorem 2.1.

Theorem 2.4 (Low-rank approximability). Let L be the Sylvester operator (1),
Π the linear operator (2), C1, C2 ∈ Rn×r and k a positive integer. Let X(`) be
the truncated Neumann series (7). Then there exists a matrix X̄(`) such that

rank(X̄(`)) ≤ (2k + 1)r +
∑̀
j=1

(2k + 1)j+1mjr, (11)

and ∥∥∥X(`) − X̄(`)
∥∥∥ ≤ K̄e−π√k, (12)

where K̄ is a constant that does not depend on k and only depends on L and `.

Proof. Let Lk be the operator (10) and consider the sequence{
Ȳ0 := L−1k (C1C

T
2 ),

Ȳj+1 := −L−1k (Π(Ȳj)), j ≥ 0.
(13)

Define β := ‖L−1Π‖ and βk := ‖L−1k Π‖. By using Remark 2.3 we have

‖Yj+1 − Ȳj+1‖ ≤ ‖L−1(Π(Yj))− L−1(Π(Ȳj))‖+ ‖L−1(Π(Ȳj))− L−1k (Π(Ȳj))‖

≤ β‖Yj − Ȳj‖+Ke−π
√
k‖Π‖‖Ȳj‖.

From the above expression, a simple recursive argument shows that

‖Yj+1 − Ȳj+1‖ ≤ βj+1‖Y0 − Ȳ0‖+Ke−π
√
k‖Π‖

j∑
t=0

βj−t‖Ȳt‖. (14)

Using the sub-multiplicativity of the operator norm, it holds that ‖Ȳj‖ =

‖L−1k (Π(Ȳj−1))‖ ≤ βk‖Ȳj−1‖. In particular ‖Ȳj‖ ≤ βjk‖L
−1
k ‖‖C1C

T
2 ‖, and there-

fore, by using Remark 2.3, from (14) it follows that

‖Yj+1 − Ȳj+1‖ ≤ ‖C1C
T
2 ‖K

[
βj+1 + ‖Π‖‖L−1k ‖

j∑
t=0

βj−tβtk

]
e−π
√
k. (15)

Since L−1k converges to L−1, and by using the continuity of the operators, we
have that ‖L−1k ‖ and βk are bounded by a constant independent of k. Therefore
from (15) it follows that there exists a constant Kj+1 independent of k such

that ‖Yj+1− Ȳj+1‖ ≤ Kj+1e
−π
√
k. The relation (12) follows by defining X̄(`) :=∑`

j=0 Ȳj and observing

‖X(`) − X̄(`)‖ ≤
∑̀
j=0

‖Yj − Ȳj‖ ≤ e−π
√
k
∑̀
j=0

Kj = K̄e−π
√
k,

where K̄ :=
∑`
j=0Kj . The upper-bound (11) follows by Remark 2.3 iteratively

applied to (13).
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We want to point out that, although Theorem 2.4 provides an explicit proce-
dure for constructing an approximation to the solution of (3), we later consider
a different class of methods. Theorem 2.4 has only theoretical interest and it
is used to motivate the employment of low-rank methods in the solution of (3).
Moreover, in the numerical simulations (Section 4), we have observed a decay in
the singular values of the solution to (3) that it is faster than the one predicted
by Theorem 2.4.

3 Structure exploiting Krylov methods

3.1 Extended Krylov subspace method

In this section we derive a method for (3) that belongs to the class called pro-
jection methods. We briefly summarize the adaption of the projection method
approach in our setting. Projection methods for matrix equations are iterative
algorithms based on constructing two sequences of nested subspaces of Rn, i.e.,
Kk−1 ⊂ Kk and Hk−1 ⊂ Hk. Justified by the low-rank approximability of the
solution, projection methods construct approximations (of the solution to (3))
of the form

Xk = VkZkWT
k , (16)

where Vk and Wk are matrices with orthonormal columns representing respec-
tively an orthonormal basis of Kk and Hk. Note that low-rank approximability
(in the sense illustrated in, e.g., Theorem 2.4) is a necessary condition for the
success of an approximation of the type (16).

The matrix Zk can be obtained by imposing the Galerkin orthogonality
condition, namely the residual

Rk := AXk +XkB
T +

m∑
i=1

NiXkM
T
i − C1C

T
2 , (17)

is such that VTk RkWk = 0. This condition is equivalent to Zk satisfying the
following small and dense generalized Sylvester equation, usually referred to as
the projected problem,

TkZk + ZkH
T
k +

m∑
i=1

Gk,iZkF
T
k,i = Ek,1E

T
k,2, (18)

where,

Tk := VTk AVk, Hk :=WT
k BWk, Ek,1 = VTk C1, Ek,2 =WT

k C2, (19a)

Gk,i := VTk NiVk, Fk,i :=WT
kMiWk, i = 1, . . . ,m. (19b)

The iterative procedure consists in expanding the spaces Kk and Hk until the
norm of the residual matrix Rk (17) is sufficiently small.

A projection method is efficient only if the subspaces Kk and Hk are selected
in a way that the projected matrix (16) is a good low-rank approximation to
the solution without the dimensions of the spaces being large. One of the most
popular choices of subspace is the extended Krylov subspace (although certainly
not the only choice [22, 17]). Extended Krylov subspaces form the basis of the
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method called Krylov-plus-inverted Krylov (K-PIK) [37, 15]. For our purposes it
is natural to define extended Krylov subspaces with the notation of block Krylov
subspaces used, e.g., in [21, Section 6]. Given an invertible matrix A ∈ Rn×n
and C ∈ Rn×r, an extended block Krylov subspace can be defined as the sum of
two vector spaces, more precisely EK�

k (A,C) := K�
k (A,C) + K�

k (A−1, A−1C),
where

K�
k (A,C) := span ({p(A)Cw | deg(p) ≤ k, w ∈ Rr}) ,

denotes the block Krylov subspace, p ∈ R[x] is a polynomial, and deg(·) is the
degree function. The extended Krylov subspace method is a projection method
where Kk = EK�

k (A, C̄1), Hk = EK�
k (B, C̄2) and C̄1, C̄2 are called the starting

blocks, which we will show how to select in our setting in Sections 3.2 and 3.3.
The procedure is summarized in Algorithm 1 where the matrices L and R are
the low-rank factors of (16), i.e., they are such that Xk = LRT . Notice that in
the case of generalized Lyapunov equations the matrices Vk and Wk are equal
and Algorithm 1 can be optimized accordingly.

Algorithm 1: Extended Krylov subspace method for generalized Sylvester
equations.

input : Matrix coeff.: A,B,N1 . . . , Nm,M1, . . . ,Mm ∈ Rn×n , C1, C2 ∈ Rn×r

Starting blocks: C̄1, C̄2 ∈ Rn×r̄

Maximum number of iterations: d
output: Low-rank factors: L,R

1 Set V1 = orth((C̄1, A
−1C̄1)), W2 = orth((C̄2, B

−1C̄2)), V0 =W0 = ∅
for k = 1, 2, . . . , d do

2 Vk = (Vk−1, Vk) and Wk = (Wk−1,Wk)
3 Compute Tk, Hk, Ek,1, Ek,2, Gk,i, Fk,i according to (19a)-(19b)
4 Solve the projected problem (18)
5 Compute ‖Rk‖F according to (21)

if ‖Rk‖F ≤ tol then
Break

end

6 Set V
(1)
k : first r̄ columns of Vk; Set V

(2)
k : last r̄ columns of Vk

7 Set W
(1)
k : first r̄ columns of Wk; Set W

(2)
k : last r̄ columns of Wk

8 V ′k+1 = (AV
(1)
k , A−1V

(2)
k ) and W ′k+1 = (BW

(1)
k , B−1W

(2)
k )

9 V̂k+1 ← block-orthogonalize V ′k+1 w.r.t. Vk
10 Ŵk+1 ← block-orthogonalize W ′k+1 w.r.t. Wk

11 Vk+1 = orth(V̂k+1) and Wk+1 = orth(Ŵk+1)

end

12 Compute the decomposition Zk = L̂R̂T

13 Return L = VkL̂ and R =WkR̂

Remark 3.1. The output of Algorithm 1 represents the factorization Xk =
LRT . Under the condition that ‖Rk‖ is small, Xk is an approximation of the
solution of the generalized Sylvester equation (3) such that rank(Xk) ≤ 2r̄k. By

construction Range(L) ⊆ EK�
k (A, C̄1) and Range(R) ⊆ EK�

k (B, C̄2). For the
case of the Sylvester equation, m = 0, Algorithm 1 can be employed with the
natural choice of the starting blocks C̄1 = C1 and C̄2 = C2, as it has been shown,
e.g., in [37, 15].

8



A breakdown in Algorithm 1 may occur in two situations. During the gener-
ation of the basis of the extended Krylov subspaces, (numerical) loss of orthog-
onality may occur in Steps 9-11. This issue is present already for the Sylvester
equation [37, 15] and we refer to [21] for a presentation of safeguard strategies
that may mitigate the problem. We assume that the bases Vk and Wk have
full rank. The other situation where a breakdown may occur is in Step 4. It
may happen that the projected problem (18) is not solvable. For the Sylvester
equation the solvability of the projected problem is guaranteed by the condition
that the field of values of A and B are disjoint [38, Section 4.4.1]. We extend
this result, which provides a way to verify the applicability of the method (with-
out carrying out the method). As illustrated in the following proposition, for
the generalized Sylvester equation we need an additional condition. Instead of
using the field of values, it is natural to phrase this condition in terms of the
ratio field of values (defined in, e.g., [18]).

Proposition 3.2. Consider the generalized Sylvester equation (3) and assume
that the field of values of A and B are disjoint, and that the ratio field of values
of
∑m
i=1Mi ⊗Ni and B ⊗ I + I ⊗A, i.e.,

R

(
m∑
i=1

Mi ⊗Ni, B ⊗ I + I ⊗A

)
:=

{
yH
(∑m

i=1 Mi ⊗Ni

)
y

yH (B ⊗ I + I ⊗A) y

∣∣∣∣ y ∈ Cn2

\ {0}

}
,

is strictly contained in the open unit disk. Then the projected problem (18) has
a unique solution.

Proof. Let Lproj(Z) := TkZ+ZHT
k and Πproj(Z) :=

∑m
i=1Gk,iZF

T
k,i. The pro-

jected problem (18) is equivalently written as Lproj(Zk)+Πproj(Zk) = Ek,1E
T
k,2.

Since A and B have disjoint fields of values, Lproj is invertible [38, Section
4.4.1]. From Theorem 2.1 we know that it exists a unique solution Zk to
(18) if ρ

(
L−1projΠproj

)
< 1. This condition is equivalent to |λ| < 1, where

(λ, v) ∈ C × C(kr)2 \ {0} is an eigenpair of the following generalized eigenvalue
problem (

m∑
i=1

Fk,i ⊗Gk,i

)
v = λ(Hk ⊗ I + I ⊗ Tk)v. (20)

Using the properties of the Kronecker product, equation (20) can be written as

m∑
i=1

(WT
k ⊗ V T

k ) (Mi ⊗Ni) (Wk ⊗ Vk) v = λ(WT
k ⊗ V T

k ) (B ⊗ I + I ⊗A) (Wk ⊗ Vk) v.

By multiplying the above equation from the left with vH we have that

|λ| =
∣∣∣∣xH (

∑m
i=1Mi ⊗Ni)x

xH (B ⊗ I + I ⊗A)x

∣∣∣∣ , x := (Wk ⊗ Vk) v.

By using that R (
∑m
i=1Mi ⊗Ni, B ⊗ I + I ⊗A) is strictly contained in the unit

circle we conclude that |λ| < 1.

Observation 3.3. The computation of the matrices Tk, Hk (Step 3) and the
orthogonalization of the new blocks Vk+1,Wk+1 (Steps 9-11) can be efficiently
performed as in [37, Section 3] where a modified Gram-Schmidt method is em-
ployed in the orthogonalization. The matrices Gk,i and Fk,i (Step 3) can be
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computed by extending the matrices Gk−1,i and Fk−1,i with a block-column and
a block-row. Moreover, the matrix Xk is never explicitly formed. In particular,
the Frobenius norm of the residual (17) can be computed as

‖Rk‖2F = ‖τk+1(ek ⊗ I2r)TZk‖2F + ‖Zk(ek ⊗ I2r)ThTk+1‖2F . (21)

This follows by replacing in (17) the following Arnoldi-like relations [39, equa-
tion (4)]

AVk = VkTk + Vk+1τk+1(ek ⊗ I2r)T , BWk =WkHk +Wk+1hk+1(ek ⊗ I2r)T .

3.2 Krylov subspace and low-rank commuting matrices

The starting blocks C̄1 and C̄2 in Algorithm 1 need to be selected such that
the generated subspaces have good approximation properties. We now present
an appropriate way to select these matrices by using certain approximation
properties of the solution to (3), under the low-rank commutation property (4).

We first need a technical result which shows that if the commutator of two
matrices has low rank, then the corresponding commutator, where one matrix
is taken to a given power, has also low rank. The rank increases with the power
of the matrix.

Lemma 3.4. Suppose A and N are matrices such that [A,N ] = UŨT . Then,

[Aj , N ] =

j−1∑
k=0

AkUŨTAj−k−1.

Proof. The proof is by induction. The basis of induction is trivially verified for
j = 1. Assume that the claim is valid for j, then the induction step follows by
observing that

[Aj+1, N ] = Aj+1N −NAj+1 = AjUŨT + (AjN −NAj)A,

and applying the induction hypothesis on AjN −NAj .

As pointed out in Remark 3.1, C1 and C2 are natural starting blocks for
the Sylvester equation. If we apply this result to the sequence of Sylvester
equations in Theorem 2.1, with L and Π defined as (1)-(2), we obtain sub-
spaces with a particular structure. For example, the approximation L0R

T
0

to Y0 provided by Algorithm 1 is such that Range(L0) ⊆ EK�
k (A,C1) and

Range(R0) ⊆ EK�
k (B,C2). Since Y0 is contained in the right-hand side of the

definition of Y1, in order to compute an approximation of Y1, we should consider
the subspaces Ni · EK�

k (A,C1) and Mi · EK�
k (B,C2) for i = 1, . . . ,m. By us-

ing the low-rank commutation property (4) such subspaces can be characterized
by the following result.

Theorem 3.5. Assume that A ∈ Rn×n is nonsingular and let N ∈ Rn×n such
that [A,N ] = UŨT with U, Ũ ∈ Rn×s. Let C ∈ Rn×r, then

N · EK�
k (A,C) ⊆ EK�

k (A, (NC,U)).

10



Proof. Let Np(A)Cw + Nq(A−1)Cv be a generator of N · EK�
k (A,C), where

p(x) =
∑k
j=0 αjx

j . Then, with a direct usage of Lemma 3.4, the vector

Np(A)Cw can be expressed as an element of EK�
k (A, (NC,U)) in the following

way

Np(A)Cw = N

k∑
j=0

αjA
jCw = p(A)NCw −

k∑
j=0

j−1∑
`=0

αjA
`U
(
ŨTAj−1−`Cw

)
.

We can show that Nq(A−1)Cv belongs to the subspace EK�
k (A, (NC,U)) with

the same procedure and by using that [A−1, N ] = −(A−1U)(A−T Ũ)T .

In order to ease the notation and improve conciseness of the results that
follow, we introduce the following multivariate generalization of the Krylov sub-
space for more matrices

Gd(N1, . . . , Nm;U) := span {p(N1, . . . , Nm)Uz|deg(p) ≤ d, z ∈ Rr} ,

where U ∈ Rn×r and p is a non-commutative multivariate polynomial in the
free algebra R < x1, . . . , xN > (in the sense of [12, Chapter 10]).

Observation 3.6. Observe that Gd(N1, . . . , Nm;U) is the space generated by
the columns of the matrices obtained multiplying (in any order) s ≤ d matrices
Ni and the matrix U . In particular this space can be equivalently characterized
as

Gd(N1, . . . , Nm;U) = span {Ni1 · · ·NisUz|1 ≤ ij ≤ m, 0 ≤ s ≤ d, z ∈ Rr} .

This definition generalizes the definition of the standard block Krylov subspace
in the sense that Gd(N ;U) = K�

d (N,U).

The solution to the generalized Sylvester equation (3) can be approximated
by constructing an approximation of X(`). In particular, by subsequentially
computing low-rank approximations to the Sylvester equations (6). In the fol-
lowing theorem we illustrate some properties that this approximation of X(`)

fulfills. In order to state the theorem we need the result of the application of
the extended Krylov method to the (standard) Sylvester equations of the form

AY + YBT = C1C
T
2 , (22a)

AY + YBT = −
m∑
i=1

(NiLj)(MiRj)
T , (22b)

as described in [37, 15]. As already stated in Remark 3.1, this is identical to
applying Algorithm 1 with m = 0.

Theorem 3.7. Consider the generalized Sylvester equation (3), with coefficients
commuting according to (4). Let Ỹ0 = L0R

T
0 be the result of Algorithm 1 ap-

plied to the (standard) Sylvester equation (22a) with starting blocks C̄1 = C1

and C̄2 = C2. Moreover, for j = 0, . . . , ` − 1, let Ỹj+1 = Lj+1R
T
j+1 be the

result of Algorithm 1 applied to the Sylvester equation (22b) with starting blocks

11



C̄1 = (N1Lj , . . . , NmLj) and C̄2 = (M1Rj , . . . ,MmRj). Let X̃(`) be the approx-
imation of the truncated Neumann series (7) given by

X̃(`) :=
∑̀
j=0

Ỹj .

Then, there exist matrices L,R, Ĉ
(`)
1 , Ĉ

(`)
2 such that Range(L) ⊆ EK�

(`+1)d(A, Ĉ
(`)
1 )

and Range(R) ⊆ EK�
(`+1)d(B, Ĉ

(`)
2 ) and

X̃(`) = LRT ,

where

Range(Ĉ
(`)
1 ) ⊆ G`(N1, . . . , Nm;C1) + G`−1(N1, . . . , Nm;U), (23a)

Range(Ĉ
(`)
2 ) ⊆ G`(M1, . . . ,Mm;C2) + G`−1(M1, . . . ,Mm;Q), (23b)

and U := (U1, . . . , Um), Q := (Q1, . . . , Qm).

Proof. We start proving that for j = 0, . . . , `, there exists a matrix Sj such that

Range(Lj) ⊆ EK�
(j+1)d(A,Sj) and

Range(Sj)⊆

span

{(
j∏

i=1

Nji

)
C1w+p(N1,...,Nm)Uz

∣∣∣∣∣w∈Rr,z∈Rs,1≤ji≤m,deg(p)≤j−1

}
, (24)

where s =
∑m
i=1 si and si denotes the number of columns of Ui. We prove this

claim by induction. The basis of induction is trivially verified with S0 := C1 and
using Remark 3.1. We now assume that the claim is valid for j and we perform
the induction step. Remark 3.1 implies that Range(Lj+1) ⊆ EK�

d (A, (N1Lj ,
. . . , NmLj)). From Theorem 3.5 and the induction hypothesis we have that

Range(NiLj) ⊆ EK�
(j+1)d(A, (Ni, SjUi)) for any i = 1, . . . ,m. Therefore we

have that Range(Lj+1) ⊆ EK�
(j+2)d(A, (N1Sj , . . . , NmSj , U)). We define Sj+1 :=

(NSj , . . . , NmSj , U) which concludes the induction.
From (24) we now obtain the relation

Range((S1, . . . , Sj)) ⊆ Gj(N1, . . . , Nm;C1) + Gj−1(N1, . . . , Nm;U),

that directly implies (23a) by setting Ĉ
(`)
1 := (S1, . . . , S`). Equation (23b)

follows from completely analogous reasoning. The final conclusion follows by
defining L := (L0, . . . , L`) and R := (R0, . . . , R`).

The main message of the previous theorem can be summarized as follows.
The low-rank factors of the approximation of X(`) (7) obtained by solving the
Sylvester equations (6) with K-PIK [37, 15] (that it is equivalent to Algorithm 1
as discussed in Remark 3.1), are contained in an extended Krylov subspace with
a specific choice of the starting blocks. In particular the starting blocks are

selected as C̄1 = Ĉ
(`)
1 , C̄2 = Ĉ

(`)
2 where Ĉ

(`)
1 and Ĉ

(`)
2 fulfill (23a)-(23b). There-

fore Algorithm 1 can be used directly to the generalized Sylvester equation (3)
with this choice of the starting blocks. It is computationally more attractive to

12



use Algorithm 1 directly on the generalized Sylvester equation (3) if the start-
ing blocks are low-rank matrices. A practical procedure that generates starting
blocks that fulfill (23) consists in selecting C̄1 and C̄2 such that their columns are
respectively a basis of the subspaces G`(N1, . . . , Nm;C1) + G`−1(N1, . . . , Nm;U)
and G`(M1, . . . ,Mm;C2) +G`−1(M1, . . . ,Mm;Q). A basis of such spaces can be
computed by using Observation 3.6. For example a basis of G2(N1, N2;U) is
given by the columns of the matrix

(U, N1U, N2U, N1N2U, N2N1U, N
2
1U, N

2
2U).

Observe that this approach can take advantage of many different features of
the original generalized Sylvester equation (3). In certain cases the dimension
of the subspaces G` is bounded for all the `. This condition is satisfied, e.g.,
if the matrix coefficients Ni, Mi are nilpotent/idempotent or in general if they
have low degree minimal polynomials. Therefore, it is possible to select the
starting blocks such that Algorithm 1 provides an approximation of X(`) for all
`, i.e., the full series (5) is approximated. These situations naturally appear in
applications, see the numerical example in Section 4.3.

3.3 Krylov subspace method and low-rank matrices

Our numerical method can be improved for the following special case. We now
consider a generalized Sylvester equation (3) where Ni = UiŨTi and Mi = QiQ̃Ti
are low-rank matrices. Obviously, the commutators [A,Ni] and [B,Mi] also have
low rank and the theory and the procedure presented in the previous section
cover this case. However, the solution to (3) can be further characterized and an
efficient (and different) choice of the starting blocks C̄1, C̄2 can be derived. The
assumption ρ(L−1 Π) < 1 is no longer needed in order to justify the low-rank
approximability. This property can be illustrated with a Sherman-Morrison-
Woodbury formula as proposed in [8]. The following proposition shows that,
the generalized Sylvester equation (3) can be implicitly written as a Sylvester
equation with right-hand side involving the matrices Ui and Qi for i = 1, . . . ,m.
By using Remark 3.1 this leads to the natural choice of the starting blocks
C̄1 = (C1,U1, . . . ,Um) and C̄2 = (C2,Q1, . . . ,Qm).

Proposition 3.8. Consider the generalized Sylvester equation (3), assume that
Ni = UiŨTi and Mi = QiQ̃Ti such that Ui, Ũi ∈ Rn×si and Qi, Q̃i ∈ Rn×ti . Then
there exist αi ∈ R for i = 1, . . . ,m such that

AX +XBT = C1C
T
2 −

m∑
i=1

αiUiQTi

Proof. The proof follows by [35, Theorem 4.1] setting Ei := UiQTi .

3.4 Solving the projected problem

In order to apply Algorithm 1 we need to solve the projected problem in Step 4.
The projected problem has to be solved in every iteration and efficiency is there-
fore required in practice. For completeness we now derive a procedure to solve
the projected problem based on the Neumann series expansion derived in Sec-
tion 2.1, although this is certainly not the only option. The derivation is based
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on the following observations. The projected problem is a small generalized
Sylvester equation (3), and the computation of X(`) in (7) requires solving `+1
Sylvester equations (6). Since the Sylvester equations (6) are defined by the
same coefficients, they can be simultaneously reduced to triangular form

UAỸ0 + Ỹ0U
T
B = C̃1C̃

T
2 , (25a)

UAỸj+1 + Ỹj+1U
T
B = −

m∑
i=1

ÑiỸjM̃
T
i , j = 0, . . . , `− 1, (25b)

where we have defined

C̃1 := QTAC1, C̃2 := QTBC2, Ñi := QTANiQA, M̃T
i := QTBM

T
i QB , (26)

and A = QAUAQ
T
A and B = QBUBQ

T
B denote the Schur decompositions. The

Sylvester equations (25) with triangular coefficients can be efficiently solved
with backward substitution as in the Bartels-Stewart algorithm [3] and it holds

that X(`) = QA

(∑`
j=0 Ỹj

)
QTB . The Frobenius norm of the residual R(`) :=

AX(`) +X(`)BT +
∑m
i=1NiX

(`)MT
i −C1C

T
2 can be computed without explicitly

constructing X(`) as follows

‖R(`)‖F =

∥∥∥∥∥
m∑
i=1

ÑiỸ`M̃
T
i

∥∥∥∥∥
F

. (27)

The previous relation follows by simply using the properties of the Frobenius
norm (invariance under orthogonal transformations) and the relations (25).

In conclusion, the following iterative procedure can be used to approximate
the solution to (3): the matrices (26) are precomputed, then the Sylvester equa-
tions in triangular form (25) are solved until the residual of the Neumann series
(27) is sufficiently small. The approximation X(`) is not computed during the
iteration, but only constructed after the iteration has completed. The procedure
is summarized in Algorithm 2.

4 Numerical examples

We now illustrate our approach with several examples. In the first two examples,
we compare our approach with two different methods for generalized Lyapunov
equations: BilADI [8] and GLEK [36]. As expected, the results are generally in
favor of our approach, since the other methods are less specialized to the specific
structure, although they have a wider applicable problem domain. Two variants
of BilADI are considered. In the first variant we select the Wachspress shifts,
see e.g., [41], computed with the software available on Saak’s web page1. In
the second variant H2-optimal shifts [7] are used. The GLEK code is available
at the web page of Simoncini2. This algorithm requires fine-tune of several
thresholds. We selected tol inexact= 10−2 while the default setting is used
for all the other thresholds. The implementation of our approach is based on the

1https://www2.mpi-magdeburg.mpg.de/mpcsc/mitarbeiter/saak/Software/adipars.php
2http://www.dm.unibo.it/˜simoncin/software.html
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Algorithm 2: Neumann series approach for (3).

input : Matrix coefficients: A,B,N1 . . . , Nm,M1, . . . ,Mm, C1, C2

output: Truncated Neumann series X(`)

1 Compute the Schur decompositions A = QAUAQ
T
A, B = QBUBQ

T
B

2 Compute C̃1, C̃2, Ñi M̃i for all i = 1, . . . ,m according to (26)

3 Solve UAỸ0 + Ỹ0U
T
B = C̃1C̃

T
2 and set X̃ = Ỹ0

for j = 0, 1, . . . till convergence do

4 Solve UAỸj+1 + Ỹj+1U
T
B = −

∑m
i=1 ÑiỸjM̃

T
i and set X̃ = X̃ + Ỹj+1

5 Compute ‖R(j+1)‖F = ‖
∑m

i=1 ÑiỸj+1M̃
T
i ‖F

if ‖R(j+1)‖F ≤ tol then
6 Set ` = j + 1
7 Break

end

end

8 Return X(`) = QAX̃Q
T
B

modification of K-PIK [37, 15] for generalized Sylvester equation as described
in Algorithm 1. The projected problems, computed in Step 4, are solved with
the procedure described in the Section 3.4. A MATLAB implementation of
Algorithm 1 is available online3.

In all the methods that we test, the stopping criterion is based on the rela-
tive residual norm and the algorithms are stopped when it reaches tol = 10−6.
We compare: number of iterations, memory requirements, rank of the com-
puted approximation, number of linear solves (involving the matrices A and B
eventually shifted) and total execution CPU-times.

As memory requirement (denoted Mem. in the following tables) we consider
the number of vectors of length n stored during the solution process. In particu-
lar, for Algorithm 1 it consists of the dimension of the approximation space. In
GLEK, a sequence of extended Krylov subspaces is generated and the memory
requirement corresponds to the dimension of the largest space in the sequence.
For the bilinear ADI approach the memory requirement consists of the number
of columns of the low-rank factor of the solution. For GLEK, we just report
the number of outer iterations. The CPU–times reported for BilADI do no take
into account the time for the shift computations. All results were obtained with
MATLAB R2015a on a computer with two 2 GHz processors and 128 GB of
RAM.

4.1 A multiple input multiple output system (MIMO)

The time invariant multi-input and multi-output (MIMO) bilinear system de-
scribed in [30, Example 2] yields the following generalized Lyapunov equation

AX +XAT + γ2
2∑
i=1

NiXN
T
i = CCT , (28)

where γ ∈ R, γ > 0, A = tridiag(2,−5, 2), N1 = tridiag(3, 0,−3) and N2 =
−N1 + I. We consider C ∈ Rn×2 being a normalized random matrix. In the

3http://www.dm.unibo.it/˜davide.palitta3
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context of bilinear systems, the solution to (28), referred to as Gramian, is used
for computing energy estimates of the reachability of the states. The number
γ is a scaling parameter selected in order to ensure the solvability of the prob-
lem (28) and the positive definiteness of the solution, namely ρ(L−1Π) < 1. This
parameter corresponds to rescaling the input of the underlying problem with a
possible reduction in the region where energy estimates hold. Therefore, it is
preferable not to employ very small values of γ. See [9] for detailed discussions.

For this problem the commutators have low rank, more precisely [A,N1] =
−[A,N2] = UŨT , with U = 2

√
3(e1, en) and Ũ = 2

√
3(e1,−en). As proposed

in Section 3.2 we use Algorithm 1 with starting blocks C̄1 = C̄2 = (C,N1C,U)

since Range(C
(1)
1 ) = Range((C,N1C,N2C,U)) = Range (C,N1C,U). Table 1

illustrates the performances of our approach and the other low-rank methods,
GLEK and the BilADI, as γ varies. We notice that, the number of linear solves

γ Its. Mem. rank(X) Lin. solves CPU time

BilADI (4 Wach.) 1/6 10 55 55 320 51.26
BilADI (8 H2-opt.) 1/6 10 55 55 320 51.54

GLEK 1/6 9 151 34 644 14.17
Algorithm 1 1/6 6 72 60 36 3.77

BilADI (4 Wach.) 1/5 14 71 71 588 55.15
BilADI (8 H2-opt.) 1/5 14 69 69 586 54.31

GLEK 1/5 12 173 39 1016 22.06
Algorithm 1 1/5 6 72 61 36 4.23

BilADI (4 Wach.) 1/4 24 89 89 1454 67.61
BilADI (8 H2-opt.) 1/4 23 89 89 1371 66.83

GLEK 1/4 21 218 50 2348 51.49
Algorithm 1 1/4 8 96 81 48 6.72

Table 1: MIMO example. Comparison of low-rank methods for n = 50000.

that our projection method requires is always much less than for the other
methods. Moreover, it seems that moderate variations of γ, that correspond to
variations of ρ(L−1Π), have a smaller influence on the number of iterations in
our method compared to the other algorithms.

4.2 A low-rank problem

We now consider the following generalized Lyapunov equation

AX +XAT + uvTXvuT = CCT , (29)

where A = n2tridiag(1,−2, 1) and u, v, C ∈ Rn are random vectors with unit
norm. We use Algorithm 1, and as proposed in Section 3.3, we select C̄1 = C̄2 =
(C, u) as starting blocks. In Table 2 we report the results of the comparison
to the other methods. We notice that our approach requires the lowest number
of linear solves. The ADI approaches demand the lowest storage because of
the column compression strategy performed at each iteration. However, due
to the large number of linear solves, these methods are slower compared to
our approach. For large-scale problems the BilADI method with 4 Wachspress
shifts does not converge in 500 iterations. GLEK provides the solution with the
smallest rank. If we replace the matrix A with A/n2 in equation (29), neither
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n Its. Mem. rank(X) Lin. solves CPU time

BilADI (4 Wach.) 10000 60 57 57 2462 4.25
BilADI (8 H2-opt.) 10000 42 55 55 1420 2.54

GLEK 10000 4 240 28 310 3.10
Algorithm 1 10000 46 184 49 92 1.87

BilADI (4 Wach.) 50000 327 61 61 18673 315.56
BilADI (8 H2-opt.) 50000 96 61 61 4580 81.47

GLEK 50000 4 454 28 565 24.78
Algorithm 1 50000 78 312 47 156 14.09

BilADI (4 Wach.) 100000 - - - - -
BilADI (8 H2-opt.) 100000 84 65 65 4058 174.04

GLEK 100000 4 457 29 631 66.77
Algorithm 1 100000 97 388 44 194 37.00

Table 2: Low-rank example. Comparison of low-rank methods varying n.

BilADI nor GLEK converge since the Lyapunov operator is no longer dominant,
i.e., ρ(L−1Π) > 1. However, our algorithm still converges and, for n = 10000,
it provides a solution X in 46 iterations with rank(X) = 184. In this case, the
projected problems are solved by using the method presented in [16, Section 3]
since the approach described in the Section 3.4 cannot be used.

4.3 Inhomogeneous Helmholtz equation

In the last example, we analyse the complexity of Algorithm 1 for solving a
large-scale generalized Sylvester equation stemming from a finite difference dis-
cretization of a PDE. More precisely, we consider the following inhomogeneous
Helmholtz equation −∆u(x, y) + κ(x, y)u(x, y) = f(x, y), (x, y) ∈ [0, 1]× R,

u(x, 0) = u(x, 1) = 0,
u(x, y + 1) = u(x, y).

(30)

The boundary conditions are periodic in the y-direction and homogeneous-
Dirichlet in the x-direction. The wavenumber κ(x, y) and the forcing term
f(x, y) are 1-periodic functions in the y-direction. In particular they are re-
spectively the periodic extensions of the scaled indicator functions χ[0,1/2]2 and
100χ[1/4,1/2]2 . The discretization of equation (30) with the finite difference
method, using n nodes multiple of 4, leads to the following generalized Sylvester
equation

AX +XBT +NXNT = CCT , (31)

where B = −tridiag(1,−2, 1)/h2, h = 1/(n − 1) is the mesh-size, A = B −
(e1, en)(en, e1)T /h2, and

N =

(
On/2 On/2
On/2 In/2

)
∈ Rn×n, C = (c1, . . . , cn)T , ci =

{
10, if i ∈ [n/4, n/2],

0, otherwise.

A direct computation shows that [A,N ] = UŨT and [B,N ] = QQ̃T where

U = n(en/2+1, en/2, e1, en), Ũ = n(en/2,−en/2+1,−en, e1),

Q = n(en/2+1, en/2), Q̃ = n(en/2,−en/2+1).
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Figure 1: Simulations for the Inhomogeneous Helmholtz equation.

Algorithm 1 is not applicable to equation (31) since the matrix A is singular.
However, in our approach it is possible to shift the Sylvester operator. In
particular we can rewrite equation (31) as

(A+ I)X +XBT +NXNT −X = CCT .

It is now possible to apply Algorithm 1 since A + I is nonsingular. For this
problem it holds N2 = N and then G`(N, I;C) = Range((C,NC)) for all ` ≥ 1.
We now note that [A+I,N ] = [A,N ], and that NC = 0 and Range((U,NU)) =
Range(U). Hence, according to Theorem 3.5 we select C̄1 = (C,U) and C̄2 =
(C,Q) as starting blocks. Notice that, with this choice, Algorithm 1 provides
an approximation of X(`) for every ` ≥ 0. We fix the number of iterations
d = 30 in Algorithm 1, and we vary the problem size n. In Figure 1b we report
the percentages of the overall execution time devoted to the orthogonalization
procedure (Steps 9-11), to the solution of the inner problems (Step 4) and to the
remaining steps of the algorithm. We can see that for very large problems, most
of the computational effort is dedicated to the orthogonalization procedure. See
Figure 1a for an illustration of the converge history for the problem of size
n = 10000.

5 Conclusions and outlook

The method that we have proposed for solving (3) is directly based on the low-
rank commutation feature of the matrix coefficients (4). We have applied and
adapted our procedure to problems in control theory and discretization of PDEs
that naturally present this property. The structured matrices that present this
feature are already analysed in literature although, to our knowledge, this was
never exploited in the setting of Krylov-like methods for matrix equations. Low-
rank commuting matrices are usually studied with the displacement operators.
More precisely, for a given matrix Z, the displacement operator is defined as
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F (A) := AZ − ZA. For many specific choices of the matrix Z, e.g., Jordan
block, circulant, etc., it is possible to characterize the displacement operator and
describe the matrices that are low-rank commuting with Z. See, e.g., [23, 6],
[13, Chap. 2, Sec. 11] and references therein. The theory concerning the
displacement operator may potentially be used to classify the problems that
can be solved with our approach.

The approach we have pursued in this paper is based on the extended Krylov
subspace method. However, it seems to be possible to extend this to the rational
Krylov subspace method [17] since, the commutator [A,N ] is invariant under
translations of the matrix A. Further research is needed to characterize the
spaces and study efficient shift-selection strategies.

In each iteration of Algorithm 1 the residual can be computed without ex-
plicitly constructing the current approximation of the solution but only using
the solution of the projected problem. It may be possible to compute the resid-
ual norm even without explicitly solving the projected problems as proposed in
[31] for Lyapunov and Sylvester equations with symmetric matrix coefficients.

In conclusion, we wish to point out that the low-rank approximability char-
acterization may be of use outside of the scope of projection methods. For
instance, the Riemannian optimization methods are designed to compute the
best rank k approximation (in the sense of, e.g., [26, 40]) to the solution of the
matrix equation. This approach is effective only if k is small, i.e., the solution
is approximable by a low-rank matrix, for which we have provided sufficient
conditions.
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