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Abstract We investigate how a spherically symmetric fluid
modifies the Schwarzschild vacuum solution when there is
no exchange of energy-momentum between the fluid and
the central source of the Schwarzschild metric. This sys-
tem is described by means of the gravitational decoupling
realised via the minimal geometric deformation approach,
which allows us to prove that the fluid must be anisotropic.
Several cases are then explicitly shown.

1 Introduction

The study of black holes represents one of the most active
areas of gravitational physics, from both a purely theoreti-
cal and the observational point of view. The interest black
holes generate is due not only to their exotic nature, but also
because they constitute ideal laboratories to study gravity in
the strong field regime, and test general relativity therein.
However, confronting theoretical predictions with observa-
tions is an arduous and complicated task. A formidable step
in this direction is the recent direct observation of black holes
through the detection of gravitational waves, which opens a
new and promising era for gravitational physics [1,2].

It is well known that general relativity predicts surpris-
ingly simple solutions for black holes, characterised at most
by three fundamental parameters, namely the mass M , angu-
lar momentum J and charge Q [3]. The original no-hair
conjecture states that these solutions should not carry any
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other charges [4]. Therefore, as the observations of systems
containing black holes improve, the degree of consistency of
these observations with the predictions determined accord-
ing to the general relativistic solutions (with parameters M ,
J and Q) will result in a direct test of the validity of gen-
eral relativity in the strong field regime. There could in fact
exist other charges associated with inner gauge symmetries
(and fields), and it is now known that black holes could have
(soft) quantum hair [5]. The existence of new fundamental
fields, which leave an imprint on the structure of the black
hole, thus leading to hairy black hole solutions, is precisely
the scenario under study in this paper.

Possible conditions for circumventing the no-go theorem
have been investigated for a long time in different scenarios
(see Refs. [6–15] for some recent works and Refs. [16–22]
for earlier works). In particular, a fundamental scalar field
φ has been considered with great interest (see Ref. [23] and
references therein). In this work, we will take a different
and more general approach than most of the investigations
carried out so far and, instead of considering specific funda-
mental fields to generate hair in black hole solutions, we shall
just assume the presence of an additional completely generic
source described by a conserved energy-momentum tensor
θμν . Of course, this θμν could account for one or more fun-
damental fields, but the crucial property is that it gravitates
but does not interact directly with the matter that sources the
(hairless) black hole solutions we start from. This feature may
seem fanciful, but can be fully justified, for instance, in the
context of the dark matter. Achieving this level of generality
in the classical scheme represented by general relativity is
a non-trivial task, and the gravitational decoupling by Mini-
mal Geometric Deformation (MGD-decoupling, henceforth)
is precisely the method that was developed for this purpose
in Ref. [24].
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The MGD approach was originally proposed [25,26] in
the context of the brane-world [27,28] and extended to inves-
tigate new black hole solutions in Refs. [29,30] (for some
earlier works on the MGD, see for instance Refs. [31–34],
and Refs. [35–50] for some recent applications). The MGD-
decoupling has a number of ingredients that make it partic-
ularly attractive in the search for new spherically symmetric
solutions of Einstein’s field equations. The two main feature
of this approach are the following [24]:

• Extending simple solutions into more complex domains
We can start from a simple spherically symmetric grav-
itational source with energy-momentum tensor T̂μν and
add to it more and more complex gravitational sources, as
long as the spherical symmetry is preserved. The starting
source T̂μν could be as simple as we wish, including the
vacuum indeed, to which we can add a first new source,
say

T̂μν �→ T̃ (1)
μν = T̂μν + α(1) T (1)

μν , (1.1)

where α(1) is a constant that traces the effects of the new
source T (1)

μν . We can then repeat the process with more
sources, namely

T̃ (1)
μν �→ T̃ (2)

μν = T̃ (1)
μν + α(2) T (2)

μν , (1.2)

and so on. In this way, we can extend straightforward
solutions of the Einstein equations associated with the
simplest gravitational source T̂μν into the domain of more

intricate forms of gravitational sources Tμν = T̃ (n)
μν , step

by step and systematically. We stress that this method
works as long as the sources do not exchange energy-
momentum among them, namely

∇μT̂
μν = ∇μT

(1)μν = . . . = ∇μT
(n)μν = 0, (1.3)

which further clarifies that the constituents can only cou-
ple via gravity.

• Deconstructing a complex gravitational source.The con-
verse of the above also works. In order to find a solution
to Einstein’s equations with a complex spherically sym-
metric energy-momentum tensor Tμν , we can split it into

simpler components, say T̂μν and T (i)
μν , provided they all

satisfy Eq. (1.3), and solve Einstein’s equations for each
one of these parts. Hence, we will have as many solu-
tions as are the contributions T (i)

μν in the original energy-
momentum tensor. Finally, by a straightforward combi-
nation of all these solutions, we will obtain the solu-
tion to the Einstein equations associated with the original
energy-momentum tensor Tμν .

Since Einstein’s field equations are non-linear, the MGD-
decoupling represents a breakthrough in the search and anal-
ysis of solutions, especially when we deal with situations
beyond trivial cases, such as the interior of self-gravitating
systems dominated by gravitational sources more realistic
than the ideal perfect fluid [51,52]. Of course, we remark
that this decoupling occurs because of the spherical symme-
try and time-independence of the systems under investiga-
tion.

In analogy with the well-known electro-vacuum and
scalar-vacuum, in this paper we will consider a Schwarzschild
black hole surrounded by a spherically symmetric “tensor-
vacuum”, represented by the aforementioned θμν . Follow-
ing the MGD-decoupling, we will separate the Einstein field
equations in (i) Einstein’s equations for the spherically sym-
metric vacuum and (ii) a “quasi-Einstein” system for the
spherically symmetric “tensor-vacuum”. The MGD proce-
dure will then allow us to merge the Schwarzschild solution
for (i) with the solution for the “quasi-Einstein” system (ii)
into the solution for the complete system “Schwarzschild +
tensor-vacuum”. Like the case of the electro-vacuum and (in
some cases) scalar-vacuum, new black hole solutions with
additional parameters qi besides the mass M can be obtained,
each one associated with a particular equation of state for the
“tensor-vacuum”. Demanding the geometry is free of singu-
larities and other pathologies, implies regularity conditions
which show that not all of these parameters qi can be inde-
pendent.

The paper is organised as follows: in Sect. 2, we first
review the fundamentals of the MGD-decoupling applied to
a spherically symmetric system containing a perfect fluid and
an additional source θμν ; in Sect. 3, new hairy black holes
solutions are found by assuming the perfect fluid has suf-
ficiently small support so that only θμν exists outside the
horizon; finally, we summarise our conclusions in Sect. 4.

2 MGD decoupling for a perfect fluid

Let us start from the standard Einstein field equations

Rμν − 1

2
R gμν = −k2 T (tot)

μν , (2.1)

and assume the total energy-momentum tensor contains two
contributions, namely

T (tot)
μν = T (m)

μν + α θμν, (2.2)

where

T (m)
μν = (ρ + p) uμ uν − p gμν, (2.3)
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is the 4-dimensional energy-momentum tensor of a perfect
fluid with 4-velocity fielduμ, density ρ and isotropic pressure
p. The term θμν in Eq. (2.2) describes an additional source
whose coupling to gravity is proportional to the constant
α [53]. This source may contain new fields, like scalar, vector
and tensor fields, and will in general produce anisotropies in
self-gravitating systems. In any case, since the Einstein ten-
sor satisfies the Bianchi identity, the total source in Eq. (2.2)
must satisfy the conservation equation

∇μ T (tot)μν = 0. (2.4)

We next specialise to spherical symmetry and no time-
dependence. In Schwarzschild-like coordinates, a static
spherically symmetric metric gμν reads

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (2.5)

where ν = ν(r) and λ = λ(r) are functions of the areal
radius r only, ranging from r = 0 (the star center) to some
r = R (the star surface), and the fluid 4-velocity is given by
uμ = e−ν/2 δ

μ
0 for 0 ≤ r ≤ R. The metric (2.5) must satisfy

the Einstein equations (2.1), which explicitly read

k2
(
ρ + α θ 0

0

)
= 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (2.6)

k2
(
−p + α θ 1

1

)
= 1

r2 − e−λ

(
1

r2 + ν′

r

)
, (2.7)

k2
(
−p + α θ 2

2

)
= e−λ

4(
−2 ν′′ − ν′2 + λ′ ν′ − 2

ν′ − λ′

r

)
, (2.8)

where f ′ ≡ ∂r f and spherical symmetry implies that θ 3
3 =

θ 2
2 . The conservation equation (2.4) is a linear combination

of Eqs. (2.6)–(2.8), and yields

p′ + ν′

2
(ρ + p) − α

(
θ 1

1

)′ + ν′

2
α

(
θ 0

0 − θ 1
1

)

+2 α

r

(
θ 2

2 − θ 1
1

)
= 0 , (2.9)

We then note the perfect fluid case is formally recovered for
α → 0.

The Eqs. (2.6)–(2.8) contain seven unknown functions,
namely: two physical variables, the density ρ(r) and pressure
p(r); two geometric functions, the temporal metric function
ν(r) and the radial metric function λ(r); and three indepen-
dent components of θμν . This system of equations is therefore
indeterminate and we should emphasise that the space-time
geometry does not allow one to resolve for the gravitational
source {ρ, p, θμν} uniquely.

In order to simplify the analysis, and by simple inspection,
we can identify an effective density

ρ̃ = ρ + α θ 0
0 , (2.10)

an effective radial pressure

p̃r = p − α θ 1
1 , (2.11)

and an effective tangential pressure

p̃t = p − α θ 2
2 . (2.12)

These definitions clearly illustrate that θμν could in general
induce an anisotropy,


 ≡ p̃t − p̃r = α
(
θ 1

1 − θ 2
2

)
, (2.13)

inside a stellar distribution sourced by T (m)
μν alone. The sys-

tem of Eqs. (2.6)–(2.8) may therefore be formally treated as
an anisotropic fluid [54,55].

The MGD-decoupling1 can now be applied to the case
at hand by simply noting that the energy-momentum ten-
sor (2.2) is precisely of the form (1.1), with T̂μν = T (m)

μν ,

α(1) = α and T (1)
μν = θμν . The components of the diagonal

metric gμν that solve the complete Einstein equations (2.1)
and satisfy the MGD read [24]

gμν = ĝμν = g(1)
μν (2.14)

for μ = ν �= 1, and

g11 = ĝ11 + α g(1)11, (2.15)

so that only the radial component is affected by the additional
source θμν . This metric gμν is found by first solving the

Einstein equations for the perfect fluid source T (m)
μν ,

Ĝμν = −k2 T (m)
μν , ∇μT

(m)μν = 0, (2.16)

and then the remaining quasi-Einstein equations for the
source θμν , namely

G̃μν = −k2 θμν, ∇μθμν = 0, (2.17)

1 This represents the simplest and so far the only known way to decou-
pling both gravitational sources in (1.1). An extension of the MGD
approach (which represents the foundation of the MGD-decoupling)
where both metric components are deformed, was developed in
Ref. [28], but it works only in the vacuum and fails for regions where
matter is present, since the Bianchi identities are no longer satisfied.
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where the divergence-free quasi-Einstein tensor

G̃ ν
μ = G ν

μ + � ν
μ , (2.18)

with � ν
μ a tensor that depends exclusively on gμν to ensure

the divergence-free condition. For the spherically symmetric
metric (2.5), it reads

� ν
μ = 1

r2

(
δ 0
μ δ ν

0 + δ 1
μ δ ν

1

)
. (2.19)

We can then proceed by considering a solution to the
Eqs. (2.16) for a perfect fluid [that is Eqs. (2.6)–(2.9) with
α = 0], which we can write as

ds2 = eξ(r) dt2 − dr2

μ(r)
− r2

(
dθ2 + sin2 θ dφ2

)
, (2.20)

where

μ(r) ≡ 1 − k2

r

∫ r

0
x2 ρ(x) dx = 1 − 2m(r)

r
, (2.21)

is the standard General Relativity expression containing the
Misner–Sharp mass function m(r). The effects of the source
θμν on the perfect fluid solution {ξ, μ ρ, p} can then be
encoded in the MGD undergone solely by the radial com-
ponent of the perfect fluid geometry in Eq. (2.20). Namely,
the general solution is given by Eq. (2.5) with ν(r) = ξ(r)
and

e−λ(r) = μ(r) + α f ∗(r), (2.22)

where f ∗ = f ∗(r) is the MGD function to be determined
from the quasi-Einstein Eqs. (2.17), which explicitly read

k2 θ 0
0 =− f ∗

r2 − f ∗′

r
, (2.23)

k2 θ 1
1 =− f ∗

(
1

r2 + ξ ′

r

)
, (2.24)

k2 θ 2
2 = k2 θ 3

3 =− f ∗

4

(
2 ξ ′′ + ξ ′2 + 2

ξ ′

r

)

− f ∗′

4

(
ξ ′ + 2

r

)
. (2.25)

We also notice that the conservation equations for the addi-
tional energy-momentum tensor, ∇μθμν = 0, yield

(
θ 1

1

)′ − ξ ′

2

(
θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0, (2.26)

which does not depend on the MGD function f ∗.
In the next section, we shall solve the above equations

starting from the simplest vacuum solution given by the outer
Schwarzschild metric,

ds2 =
(

1 − 2 M

r

)
dt2−

(
1 − 2 M

r

)−1

dr2−d
2 , (2.27)

therefore in a region of space where the perfect fluid ρ and
p vanish.

3 Black holes

When new paradigms beyond Einstein gravity are studied,
the important question arises whether or not new black hole
solutions exist. In order to address this point in general, we
start from the results of the previous section and determine
the MGD function f ∗ for the vacuum Schwarzschild solu-
tion (2.27). Figure 1 schematically shows the kind of system
we deal with. The MGD metric will therefore read

ds2 =
(

1 − 2 M

r

)
dt2 − dr2

1 − 2 M

r
+ α f ∗(r)

− r2 d
2,

(3.1)

where the MGD function f ∗ can be determined by imposing
restrictions on the energy-momentum θμν to close the system
of Eqs. (2.23)–(2.25).

In the following we shall explore specific equations of
state for θμν and impose basic constraints on the causal
structure of the resulting space-time in order to have a well-
defined horizon structure. In particular, we recall that for
the Schwarzschild metric (2.27), the surface rH = 2 M is
both a Killing horizon (determined by the condition eν = 0)
and an outer marginally trapped surface (the causal hori-
zon, in brief, determined by the condition e−λ = 0). For the
MGD Schwarzschild metric (3.1), the component gtt = eν

Fig. 1 Spherically symmetric source θμν in the vacuum ρ = p = 0
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is always equal to the Schwarzschild form in Eq. (2.27) and
can only vanish at r = rH. This means that rH = 2 M is still
a Killing horizon (which can also become a real singularity).
However, the causal horizon is found at r = rh such that
grr (rh) = e−λ = 0, or

rh
[
1 + α f ∗(rh)

] = 2 M. (3.2)

We should therefore require that rh ≥ 2 M , so that the sur-
face r = rH is hidden behind (or coincides with) the causal
horizon. Moreover, if rh > rH, the signature of the metric
becomes (+ + −−) for rH < r < rh, which one might want
to discard as well, since not only the expansion of outgoing
geodesics vanishes for r → r+

h , but also ingoing geodesics
never cross r = rh: in this case the surface r = rh would act
as a border of the outer space-time manifold. To summarise,
the MGD metric (3.1) represents a proper black hole only if
the causal horizon coincides with the Killing horizon, that is
when rh = rH = 2 M , and this is therefore the condition we
shall require in the following.

3.1 Isotropic sector

Let us start by considering the case of isotropic pressure, so
that

θ 1
1 = θ 2

2 = θ 3
3 . (3.3)

Equations (2.24) and (2.25) then yield a differential equation
for the MGD function, namely

f ∗′
(

ξ ′ + 2

r

)
+ f ∗

(
2 ξ ′′ + ξ ′2 − 2

ξ ′

r
− 4

r2

)
= 0, (3.4)

whose general solution is given by

f ∗(r) =
(

1 − 2 M

r

) (
r − M

�iso

)2

, (3.5)

where �iso is a constant with dimensions of a length. Hence,
the MGD radial component for an isotropic deformation of
the Schwarzschild exterior becomes

e−λ = eξ + α f ∗ =
(

1 − 2 M

r

) [
1 + α

(
r − M

�iso

)2
]

,

(3.6)

which is clearly not asymptotically flat for r � M .2 We
therefore conclude that the additional source θμν cannot con-
tain an isotropic pressure if we wish to preserve asymptotic
flatness.

2 In fact, it approaches the radial component of the de Sitter metric for
r ∼ �iso � M .

3.2 Conformal sector

The energy-momentum tensor for a conformally symmet-
ric source must be traceless. Since θ 2

2 = θ 3
3 , we therefore

assume

2 θ 2
2 = −θ 0

0 − θ 1
1 , (3.7)

so that the system (2.23)–(2.25) becomes

− k2 θ 0
0 = f ∗

r2 + f ∗′

r
(3.8)

−k2 θ 1
1 = f ∗

(
1

r2 + ξ ′

r

)
, (3.9)

where f ∗ is again MGD function and ξ the unperturbed
Schwarzschild function. From Eq. (3.7), we find the radial
deformation must satisfy the differential equation

f ∗′
(

ξ ′

2
+ 2

r

)
+ f ∗

(
ξ ′′ + ξ ′2

2
+ 2

ξ ′

r
+ 2

r2

)
= 0, (3.10)

and it is important to highlight that the conservation equa-
tion (2.26) remains a linear combination of the system (3.8)–
(3.7). The general solution for Eq. (3.10) is given by

f ∗(r) = 1 − 2 M/r

2 r − 3 M
�c, (3.11)

with �c a constant with units of a length. Thus the conformally
deformed Schwarzschild exterior becomes

e−λ =
(

1 − 2 M

r

) (
1 + �

2 r − 3 M

)
, (3.12)

where � = α �c, and its behaviour for r � M is given by

e−λ 
 1 − 4 M − �

2 r
. (3.13)

The causal structure for this geometry is now more
involved. We still have the Killing horizon of the
Schwarzschild metric at rH = 2 M , but e−λ diverges for

rc = 3 M

2
, (3.14)

and there is a second zero of e−λ at

r0 = 3 M − �

2
= rc − �

2
. (3.15)

We can thus rewrite the radial metric component as

e−λ =
(

1 − rH

r

) (
r − r0

r − rc

)
. (3.16)
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Note that rc < rH but, depending on the sign ands size of
�, the second zero could occur inside or outside the critical
radius rc and the Killing horizon rH.

In order to clarify the nature of the above solution, we
compute explicitly the effective density

ρ̃ = α θ 0
0 = − � M

4 k2 (r − rc)2 r2 , (3.17)

the effective radial pressure

p̃r = −α θ 1
1 = �

2 k2 (r − rc) r2 , (3.18)

and the effective tangential pressure

p̃t = −α θ 2
2 = � (r − M)

4 k2 (r − rc)2 r2 . (3.19)

The anisotropy is thus given by


 = � (3 r − 4 M)

k2 (2 r − 3 M)2 r2 . (3.20)

The first thing we notice is that the density and pressures are
regular on both rH and r0, but diverge at r = rc < rH, which
is therefore a real singularity, albeit hidden inside the Killing
horizon.

We can then assume the black hole space-time is repre-
sented by the range r > rc, for which we must require that
the region rc < r < rH has the proper signature, as discussed
previously. This means that we must have r0 ≤ rc, or

� > 0, (3.21)

with � = 0 of course representing the pure Schwarzschild
geometry. We conclude that the conformal geometry in (3.12)
represents a black hole solution with outer horizon rH = 2 M ,
and primary hairs represented by the parameter �, which is
constrained by the regularity condition (3.21). A solution
similar to that in (3.12) was found in the context of the extra-
dimensional brane-world [56].

3.3 Barotropic equation of state

If the additional source is a polytropic fluid, it should satisfy
the equation of state

p̃r = K ρ̃�, (3.22)

with � = 1 + 1/n, where n is the polytropic index and
K > 0 denotes a parameter which contains the temperature
implicitly and is governed by the thermal characteristics of

a given polytrope. For instance, the ultrarelativistic degen-
erate Fermi gas has polytropic index n = 3, while the non-
relativistic degenerate Fermi gas is found for n = 3/2. (for
more details, see for instance Refs. [57–61]). However, due
to the unknown nature of the source θμν , we will include the
possibility that K < 0. From Eqs. (2.10) and (2.11) with
ρ = p = 0, we then obtain

−α θ 1
1 = K

(
α θ 0

0

)�

. (3.23)

By using Eqs. (2.23) and (2.24) in the expression (3.23) we
obtain a first order non-linear differential equation for the
MGD function,

f ∗′+ f ∗

r
= − 1

K 1/�

(
k2 r

α

)1−1/� (
f ∗

r − 2 M

)1/�

. (3.24)

We immediately notice that the right hand side is well-defined
for a generic � only provided f ∗/(r − 2 M) > 0.

In order to proceed, we thus consider the simplest case
� = 1, so that Eq. (3.23) becomes a barotropic equation
of state. This corresponds to an isothermal self-gravitating
sphere of gas and is thus more appropriate for our purpose.
It is worth mentioning that this self-gravitating sphere can
also describe the collisionless system of stars in a globular
cluster. The geometric deformation for � = 1 and r > 2 M
simplifies to

f ∗(r) =
(

1 − 2 M

r

)−1/K (
�p

r

)1+1/K

, (3.25)

where �p > 0 is a length, and the MGD radial component of
the metric reads

e−λ =
(

1 − 2 M

r

) [
1 + α

(
�p

r − 2 M

)1+1/K
]

, (3.26)

again for r > 2 M . We also note that asymptotic flatness at
r → ∞ requires K ≤ −1, with K = −1 yielding the pure
Schwarzschild metric.

Next, we note that the effective density is given by

k2 ρ̃ = α

K r2

(
�p

r

)1+1/K (
1 − 2 M

r

)−1−1/K

, (3.27)

and diverges at r = 2 M unless −1 < K < 0. Of course, the
effective pressure p̃r = K ρ̃ also diverges at r = 2 M unless
−1 < K < 0. The effective tangential pressure is given by

k2 p̃t = −α θ 2
2 = −α (K + 1)

2 K r2

(
1 − M

r

) (
�p

r

)1+1/K

(
1 − 2 M

r

)−2−1/K

, (3.28)
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which also diverges at at r = 2 M unless −1/2 < K < 0.
To summarise, the surface r = rH is a real singularity unless
−1/2 < K < 0. However, this is not compatible with the
asymptotically flat conditions, which requires K ≤ −1. We
therefore conclude that the Killing horizon at r = rH = 2 M
has become a real singularity, which is not hidden inside a
larger horizon.

3.4 Linear equation of state

Now let us consider a generic equation of state in the form

θ 0
0 = a θ 1

1 + b θ 2
2 , (3.29)

with a and b constants. The conformal case of Sect. 3.2 is
represented by the set a = −1 and b = −2, whereas the
polytropic � = 1 (barotropic) case of Sect. 3.3 is given by
a = −1/K and b = 0. Eqs. (2.23)–(2.25) then yield the
differential equation for the MGD function

f ∗′
[

1

r
− b

4

(
ξ ′ + 2

r

)]

+ f ∗
[

1

r2 − a

(
1

r2 + ξ ′

r

)
− b

4

(
2 ξ ′′ + ξ ′2 + 2

ξ ′

r

)]
= 0,

(3.30)

whose general solution for r > rH = 2 M is given by

f ∗(r) =
(

1 − 2 M

r

) (
�

r − B M

)A

, (3.31)

where � is a positive constant with dimensions of a length,
and

A = 2 (a − 1)

b − 2
> 0 (3.32)

B = b − 4

b − 2
, (3.33)

with b �= 2 and the condition A > 0 required by asymptotic
flatness. Therefore the solution reads

e−λ =
(

1 − 2 M

r

)[
1 + α

(
�

r − B M

)A
]

, (3.34)

which again shows the horizon at rH = 2 M , beside a possible
divergence at r = rc and a second zero at r = r0, like in the
previous cases.

The physical content of the system is again clarified by
the explicit computation of the effective density

ρ̃ = α θ 0
0 = − α

k2 r2

(
�

r − B M

)A [
1 − A

(
r − 2 M

r − B M

)]
,

(3.35)

the effective radial pressure

p̃r = −α θ 1
1 = α

k2 r2

(
�

r − B M

)A

, (3.36)

and the effective tangential pressure

p̃t = −α θ 2
2 = − α A

2 k2 r2 �

(
�

r − B M

)A+1

(r − M) .

(3.37)

Again, we see that the effective density and effective pres-
sures diverge at

rc = B M, (3.38)

which represents a true singularity at 0 < rc < rH for 0 <

B < 2, that is for

b < 0 or b > 4. (3.39)

For B > 2 (that is, 0 < b < 2), this singularity occurs
outside the Killing horizon, rc > rH, and this case cannot be
considered any further. Secondly, the effective density and
effective pressures satisfy

p̃t = −1

2

(
r − M

r − 2 M

)
(ρ̃ + p̃r ) , (3.40)

showing that p̃t < 0 when both ρ̃ and p̃r are positive. We thus
conclude that at least one of the thermodynamic variables
will always be negative as long as the equation of state is
linear. Moreover, the effective radial and tangential pressure
are related by

p̃t = − A

2

(
r − M

r − B M

)
p̃r . (3.41)

Since A > 0, we conclude that the two pressures always have
opposite signs and one of them will be negative. On the other
hand, the effective density and effective radial pressure are
related by

ρ̃ =
[
A

(
r − 2 M

r − B M

)
− 1

]
p̃r , (3.42)

hence

ρ̃ ∼
{− p̃r for r ∼ 2 M

(A − 1) p̃r for r � 2 M.
(3.43)

Since A > 0, the asymptotic behaviour in Eq. (3.43) demands
0 < A ≤ 1 in order to ensure that the density does not change
its sign in the region 2 M < r < ∞ [the pressure (3.36)
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always has the same sign inside this region]. We conclude
that the dominant energy condition ρ̃ ≥| p̃r | cannot be
satisfied with a linear equation of state of the form displayed
in Eq. (3.29). Nonetheless, the effective density is positive
everywhere if α < 0 3.

For 2 < b < 4 one has rc < 0 and there is no extra
singularity beside the usual Schwarzschild one at r = 0.
In this case, we must demand that no second zero r0 > 0 of
e−λ exists, otherwise the space-time signature would become
unacceptable inside a portion of r > 0. This condition is
immediately satisfied if α > 0, for any A > 0, that is for
a > 1. We next notice that there is a second zero of e−λ at

r0 = B M + � (−α)1/A > rc, (3.44)

when α < 0. To have a proper black hole solution, this second
zero r0 must lie inside the relevant singularity. If 2 < b < 4,
the relevant singularity occurs at r = 0 an we must have

r0 ≤ 0, (3.45)

that is, if � and |α| are small enough to satisfy

� (−α)1/A ≤ −B M . (3.46)

Otherwise, if b < 0 or b > 4, the relevant singularity occurs
at 0 < rc < rH, but r0 > rc makes this case unsuitable.

The final conclusion is thus that the linear equation of
state (3.29) always produces black holes (with a
Schwarzschild singularity at r = 0) if 2 < b < 4 and a > 1,
provided α > 0 or α < 0 and Eq. (3.46) holds.

3.5 A particular solution with no extra singularity

The reader can see that Eq. (3.29) leads to a system very
rich in possibilities, whose generic solutions4 are given in
Eqs. (3.34)–(3.37), and whose general analysis is detailed
throughout Eqs. (3.38)–(3.46). The main feature of these
solutions is that they do not satisfy the dominant energy con-
dition. In this respect, let us recall that the energy condi-
tions are a set of constraints which are usually imposed on
the energy-momentum tensor in order to avoid exotic matter
sources, hence they can be viewed as sensible guides to avoid
unphysical situations. However, it is well-known that these
energy conditions might fail for particular classical systems
which are still reasonable [62]. In our case we are dealing
with a gravitational source θμν whose main characteristic is

3 Notice that for the particular case B = 2, namely the barotropic fluid,
the density does not change its sign. This remains an interesting exterior
solution for a self-gravitating system of radius R > rH.
4 The case b = 2 for the equation of state (3.29), which is excluded in
the solution (3.34), yields a solution without any additional singularity
beside r = 0, but with a switch in the sign of the density for r >> M .

that it only interacts gravitationally with the matter that, by
itself, would source the (hairless) black hole solution (2.27).
Hence, one should not exclude a priori that such matter is a
kind of exotic source (as indeed the conjectured dark matter
is expected to be).

Of all the possible solutions, we shall here analyse the
particular case b = 3 (with a > 1 for asymptotic flatness) as
an example of space-time which does not contain any extra
singularity beside the usual Schwarzschild one at r = 0.
The radial metric component is obtained from Eq. (3.34) and
reads

e−λ =
(

1 − 2 M

r

) [
1 + α

(r + M)2 (a−1)

]
, (3.47)

which makes it immediately clear that there is no second
divergence. In fact, the effective density is given by 5

ρ̃ = α θ 0
0 = α

k2 r2

[
2 a (r − 2 M) − 3 (r − M)

(r + M)2 a−1

]
, (3.48)

the effective radial pressure by

p̃r = −α θ 1
1 = α

k2 r2 (r + M)2 (a−1)
, (3.49)

and the effective tangential pressure by

p̃t = −α θ 2
2 = − α (a − 1) (r − M)

k2 r2 (r + M)2 (a−1)
. (3.50)

The reader can easily check that the deformed Schwarzschild
metric (3.1) with grr = e−λ in Eq. (3.47), along with the
source terms in Eqs. (3.48)–(3.50), solve the complete Ein-
stein equations (2.6)–(2.8) with ρ = p = 0.

Combining the expressions (3.48) and (3.49), we get

ρ̃ =
[

2 a (r − 2 M) − 3 (r − M)

(r + M)

]
p̃r , (3.51)

from which we obtain the asymptotic behaviours

ρ̃ ∼
⎧⎨
⎩

− p̃r for r ∼ 2 M

(2 a − 3) p̃r for r � 2 M.

(3.52)

Therefore, when α < 0, the pressure p̃r < 0 and the effective
energy will always be positive for r > 2 M whenever a ≤
3/2. Figs. 2 and 3 show the corresponding metric elements
and density and pressures in (3.48)–(3.50) respectively for
α = −0.7 and a = 1.4.

5 For simplicity we have redefined α �A → α in the right-hand side of
Eqs. (3.47)–(3.50).
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Fig. 2 Case b = 3. Metric components for α = −0.7 and a = 1.4
(black lines) compared to the Schwarzschild component g−1

rr (gray line).
The mass M = 1

Fig. 3 Case b = 3. Effective source terms {ρ̃, p̃r , p̃t } × 103 for α =
−0.7 and a = 1.4. The horizon rH = 2 M and the mass M = 1

4 Conclusions

By making use of the MGD-decoupling approach, we have
presented in detail how the Schwarzschild black hole is mod-
ified when the vacuum is filled by a generic spherically sym-
metric gravitational fluid, described by a “tensor-vacuum”
θμν , which does not exchange energy-momentum with the
central source. For this purpose, we have separated the Ein-
stein field equations into (i) the Einstein equations for the
spherically symmetric vacuum ρ = p = 0 and (ii) the
“quasi-Einstein” system in Eqs. (2.23)–(2.25) for the spher-
ically symmetric “tensor-vacuum” θμν . Following the MGD
procedure, the superposition of the Schwarzschild solution
found in (i) plus the solution for the “quasi-Einstein” sys-
tem in (ii), has led to the solution for the complete system
“Schwarzschild + tensor-vacuum.”

The quasi-Einstein system (2.23)–(2.25) was solved by
providing some physically motivated equations of state for
the source θμν . In this respect, four different scenarios were
considered, namely, (i) the isotropic θ 1

1 = θ 2
2 ; ii) the confor-

mal θ
μ

μ = 0; iii) the polytropic α θ 1
1 = K (α θ 0

0 )� and iv)
the generic linear equation of state in (3.29). In the isotropic

case, we only found a metric which is not asymptotically flat
for r → ∞, which means that the tensor-vacuum for a black
hole cannot be isotropic as long as its interaction with regular
matter is purely gravitational. On the other hand, the confor-
mal case leads to the hairy black hole solution in Eq. (3.12),
whose primary hairs is represented by the length �, which
is constrained by the regularity condition (3.21). Among all
polytropic equations of state, we have only considered the
barotropic � = 1, which represents a tensor-vacuum made
of an isothermal self-gravitating sphere of gas. This leads to
the exterior solution in Eq. (3.26) endowed with the parame-
ters {M, α, �p, K }. Since the Killing horizon r = rH = 2 M
becomes a real singularity, this solution may represent the
exterior of a self-gravitating system of mass M and radius
R > rH but not a black hole solution.

Finally, we have analysed the generic linear equation of
state in Eq. (3.29), which includes both the conformal and
barotropic fluids as particular cases. This leads to the solu-
tion in Eq. (3.34), showing that even a simple linear equa-
tion of state may yield hairy black hole solutions with a rich
geometry described by the parameters {M, α, �, a, b}, where
{α, �, a, b} represents a potential set of charges generating
primary hairs. In this context, a particular black hole solu-
tion with primary hairs {α, a} was found in Eq. (3.47), whose
main characteristic is the absence of other singularities in the
region 0 < r < ∞.

All the black holes solutions mentioned above have the
horizon at rH = 2 M and primary hairs represented by a
number of free parameters. However, these parameters can be
restricted by demanding (i) the correct asymptotic behaviour
and (ii) regularity conditions for black hole solutions free
of pathologies. In this respect, there are always a potential
singularity rc and a possible second horizon rh in our solu-
tions. In order to have a proper black hole, it is necessary that
rc ≤ rH to avoid a naked singularity, and rh = rH to have a
metric with a proper signature. We emphasize that rh > rH

yields both gtt and grr positive inside the region rH < r < rh.
All these conditions yields restrictions on potential primary
hairs. For instance, the linear equation of state (3.29) always
produces black holes if 2 < b < 4 and a > 1, provided
α > 0 or α < 0 and Eq. (3.46) holds.

We have shown that different characteristics of the grav-
itational source lead to different hairy black hole solutions.
Therefore, the compatibility between some of these solutions
and the observations could determine the main features of
the tensor-vacuum, and eventually the fundamental field(s)
that constitute it. Finally, we would like to emphasize that
the non-existence of an isotropic tensor-vacuum that does
not exchange energy-momentum with regular matter favours
scenarios with Klein–Gordon type fields φ, which naturally
induce anisotropy in the Einstein field equations. These scalar
fields are found in a large number of alternative theories to
general relativity.
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