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ABSTRACT

Here, we present BUSCA (http://busca.biocomp.
unibo.it), a novel web server that integrates different
computational tools for predicting protein subcellu-
lar localization. BUSCA combines methods for iden-
tifying signal and transit peptides (DeepSig and TP-
pred3), GPI-anchors (PredGPI) and transmembrane
domains (ENSEMBLE3.0 and BetAware) with tools
for discriminating subcellular localization of both
globular and membrane proteins (BaCelLo, MemLoci
and SChloro). Outcomes from the different tools are
processed and integrated for annotating subcellular
localization of both eukaryotic and bacterial protein
sequences. We benchmark BUSCA against protein
targets derived from recent CAFA experiments and
other specific data sets, reporting performance at the
state-of-the-art. BUSCA scores better than all other
evaluated methods on 2732 targets from CAFA2, with
a F1 value equal to 0.49 and among the best meth-
ods when predicting targets from CAFA3. We pro-
pose BUSCA as an integrated and accurate resource
for the annotation of protein subcellular localization.

INTRODUCTION

Subcellular localization is one of the main aspects defining
protein function. Proteins have evolved to be functional in
specific subcellular compartments: the biological processes
directing a nascent protein sequence to its target destina-
tion, referred to as protein sorting, are still far from be-
ing completely understood and characterized. Computa-
tional methods aiming at predicting subcellular localization
of proteins play a major role in large-scale functional an-
notation projects, whose ultimate goal is to understand the
role of each protein in the context of cell complexity. For

this reason, many methods have been developed in the last
years (and they are reviewed in (1–3)).

The Bologna Unified Subcellular Component Annotator
(BUSCA) (http://busca.biocomp.unibo.it) is a novel web-
server integrating several published methods designed by
the Bologna Biocomputing Group for the prediction of
specific sub-cellular localization starting from protein se-
quence. The BUSCA annotation system relies on differ-
ent machine/deep-learning approaches, devised to recog-
nize and predict features that are relevant to determine pro-
tein subcellular localization.

More specifically, BUSCA integrates tools belonging to
two different categories. The first includes methods suited
to identify, along the input protein sequence, localization-
related features such as signal and transit peptides, gly-
cophosphatidylinositol (GPI) anchors and transmembrane
domains (both �-helical and �-barrel). In particular, se-
cretory signal peptides (and their respective cleavage sites)
are identified using DeepSig (4), a recently developed ap-
proach based on deep-learning methods. Mitochondrial
and chloroplast transit peptides are detected with the TP-
pred3 predictor (5). The presence and location of GPI-
anchoring domains are predicted with PredGPI (6). Helical
and beta stranded transmembrane domains are identified
using ENSEMBLE3.0 (7) and BetAware (8), respectively.

The second category of methods comprises approaches
devised to predict subcellular localization from sequence,
namely BaCelLo (9) and MemLoci (10) for globular and
membrane proteins, respectively, and SChloro (11), special-
ized on sub-chloroplast localization in plants.

These tools are organized by BUSCA in five prediction
pipelines specific for animals, plants, fungi, Gram-positive
and Gram-negative bacteria, respectively. Each pipeline
predicts a different number of compartment classes by an-
alyzing, processing and integrating the outcomes of the dif-
ferent tools.
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MATERIALS AND METHODS

Benchmarking datasets

We evaluated BUSCA and other methods against two
benchmarking datasets obtained from the two most recent
Critical Assessment of Function Annotation (CAFA) ex-
periments (http://biofunctionprediction.org/cafa/). CAFA
is an experiment designed to provide a large-scale assess-
ment of computational methods for the prediction of pro-
tein function, including subcellular localization.

CAFA edition 2 (CAFA2) (12) was carried out in 2013.
According to CAFA2 rules, the set of protein targets has
been obtained by selecting all the sequences that acquired
Gene Ontology (GO) experimental annotations for the cel-
lular component sub-ontology, in the time-frame elapsed
between releases 2013 12 and 2014 10 of the UniProtKB
database. The following GO evidence codes are consid-
ered as experimental by CAFA (12): ‘Inferred from experi-
ment’ (EXP), ‘Inferred from direct assay’ (IDA), ‘Inferred
from mutant phenotype’ (IMP), ‘Inferred from genetic in-
teraction’ (IGI), ‘Inferred from expression pattern’ (IEP),
‘Traceable author statement’ (TAS) and ‘Inferred by cura-
tor’ (IC). According to UniprotKB release 2014 10, CAFA2
benchmarking dataset comprises 2732 protein targets en-
dowed with experimental GO annotation in the cellular
component sub-ontology. We used this set to benchmark
our BUSCA with respect to other approaches evaluated
during the CAFA2 experiment (12). Proteins included in the
dataset are distributed as follows: 2512 proteins are from
animals, 26 from fungi, 105 from plants, 87 from Gram-
negative and 2 from Gram-positive bacteria.

CAFA3 started in September 2016 and it is still ongoing.
Since results are yet unreleased, we used available CAFA3
targets to simulate an in-house experiment. Among the ini-
tial 130,787 CAFA3 targets, we selected proteins that ac-
quired GO Cellular Component (CC) annotations between
January and December 2017. To this aim, we downloaded
and compared the UniProt––Gene Ontology Annotation
(UniProt-GOA, https://www.ebi.ac.uk/GOA) relative to re-
leases 2016 12 and 2017 12 of UniProtKB. With this pro-
cedure, we ended-up with 3764 protein targets: 2559 from
animals, 535 from fungi, 489 from plants, 165 from Gram-
negative and 16 from Gram-positive bacteria. Table 1 sum-
marizes the distribution of proteins among different cellular
compartments in the CAFA 2 and 3 experiments: a protein
is classified in a given compartment if it is endowed with an
experimental GO term that is equal to or a descendant of
the term associated to that compartment.

Furthermore, in order to cope with the low abun-
dance of Gram-positive bacteria, we extracted from
UniprotKB/SwissProt release 2018 03, all the protein se-
quences classified as Firmicutes and Actinobacteria and en-
dowed with experimentally annotated subcellular localiza-
tion. After homology reduction to 25% sequence identity
and filtering-out protein sequences already included into
BUSCA training sets, we ended up with a blind Gram-
positive test set, including 1667 non-redundant protein se-
quences whose subcellular localizations are distributed as
follows: 510 cytoplasmic, 245 extracellular and 912 plasma
membrane.

BUSCA overview

Two main annotation pipelines are defined in BUSCA for
processing Eukaryotic and Bacterial proteins, respectively,
and their description is reported below.

Eukaryotic workflow. Eukaryotic proteins are processed
using the general pipeline depicted in Figure 1. The pipeline
is organized as a directed rooted computational graph
where each node corresponds to the execution of a spe-
cific tool. The graph root is the query protein sequence,
while leaves correspond to predicted subcellular localiza-
tions, here represented as GO terms of the cellular compo-
nent ontology. A path from the root to one leaf is deter-
mined by the outcomes of the different tools. In Figure 1,
GO terms and tools highlighted in green are only applied
for plant proteins.

At the very first level, the query sequence is scanned for
the presence of signal peptide using the DeepSig predictor
(4). If the signal sequence is found (suggesting the sorting
of the protein through the secretory pathway), the mature
protein sequence is determined by cleaving the predicted
signal peptide. The resulting mature sequence is then an-
alyzed by the subsequent tools. Firstly, PredGPI (6) deter-
mines the presence of GPI-anchors. If an anchor is found,
the sequence is classified as Membrane anchored compo-
nent (GO:0046658). Otherwise, the sequence is filtered for
the presence of �-helical TransMembrane (TM) domains
using ENSEMBLE3.0 (7). If at least one TM domain is
found, the protein is predicted as membrane protein and
passed to MemLoci (10), which predicts the final mem-
brane protein localization that includes: Endomembrane
system (GO:00112505), Plasma membrane (GO:0005886)
and Organelle membrane (GO:0031090). If no TM domain
is found, the protein is predicted to be localized in the Ex-
tracellular space (GO:0005615).

Proteins not directed to the secretory pathway (as pre-
dicted with DeepSig) are analyzed for their potential or-
ganelle localization using TPpred3 (5), which predicts the
presence of organelle-targeting peptides and distinguishes
between mitochondrial and chloroplast sorting for plant
proteins.

If no targeting peptide is detected with TPpred3, EN-
SEMBLE3.0 is used to discriminate membrane from glob-
ular proteins: MemLoci or BaCelLo (9) are hence ap-
plied to predict localization of membrane and globu-
lar protein, respectively. In particular, BaCelLo is able
to distinguish among five different cellular compart-
ments (four in case of animal or fungi proteins): Nu-
cleus (GO:0005634), Cytoplasm (GO:0005737), Extracel-
lular space (GO:0005615), Mitochondrion (GO:0005739)
and, for plant proteins, Chloroplast (GO:0009507). More-
over, since BaCelLo adopts different optimized models for
animals and fungi, information about the taxonomic origin
of the input is also provided as a parameter to the predictor.

When a mitochondrial targeting signal is detected, this is
cleaved-off to determine the mature protein sequence. EN-
SEMBLE3.0 is then used to determine whether the ma-
ture protein is localized into a Mitochondrial membrane
(GO:0031966) or, more generally, into the Mitochondrion
(GO:0005739).

http://biofunctionprediction.org/cafa/
https://www.ebi.ac.uk/GOA
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Table 1. Distribution of proteins in CAFA2 and CAFA3 datasets among different subcellular compartments

CAFA2 CAFA3

Compartment A F P G- G+ A F P G- G+

Nucleus 682 2 32 - - 574 130 97 - -
Extracellular 940 0 0 0 0 208 4 17 0 0
Organelle membrane 153 4 10 - - 156 41 19 - -
Endomembrane system 298 4 15 - - 387 38 41 - -
Lysosome 46 1 - - - 29 7 - - -
Cytoplasm 529 14 22 51 0 669 200 184 116 16
Mitochondrion 115 0 7 - - 109 18 26 - -
Peroxisome 7 1 2 - - 5 7 9 - -
Plasma membrane 338 5 27 29 2 368 37 44 44 0
Outer membrane - - - 4 - - - - 3 -
Chloroplast - - 26 - - - - 111 - 0
Other compartments 363 6 5 11 - 590 82 32 28 0
Total 2512 26 105 87 2 2559 489 489 165 16

Labels are: A = animals, F = fungi, P = plants, G– = Gram-negative and G+ = Gram-positive.

Figure 1. The Eukaryotic BUSCA workflow. The different methods are organized in a rooted computation graph. The query sequence is processed by
different methods whose outputs determine the path from the root (the query sequence) to one leaf (a predicted subcellular location). Chloroplast-related
localizations (and the respective tools), are highlighted in green and are relevant only for plant sequences. Overall, up to sixteen and nine different com-
partments are predicted for plants and other eukaryotes (i.e. animals and fungi), respectively.
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Figure 2. The Bacterial BUSCA workflow. BetAware (8) is only executed
for Gram-negative bacteria. Overall, up to four and three different com-
partments are predicted for Gram-negative and Gram-positive bacteria,
respectively.

For plant proteins, TPpred3 is also able to distinguish
potential chloroplast-targeting peptides. If detected, they
are cleaved and the sequence submitted to SChloro (11)
that discriminates six different sub-chloroplast localiza-
tions: Outer membrane (GO:0009707), Inner membrane
(GO:0009706), Plastoglobule (GO:0010287), Thylakoid lu-
men (GO:0009543), Thylakoid membrane (GO:0009535)
and Stroma (GO:0009570).

Overall BUSCA is able to predict sixteen different com-
partments for plants and nine for animals and fungi.

Bacterial workflow. Bacterial proteins are processed using
the pipeline depicted in Figure 2. In the first step, BetAware
(8) is applied to detect a beta-barrel structure inserted into
the bacterial Outer membrane (GO:0009707). Note that
this step (highlighted in yellow) is performed only for pro-
teins coming from Gram-negative bacteria, which are en-
dowed with outer membranes. If BetAware does not rec-
ognize a beta-barrel domain (or if the protein belongs to
a Gram-positive bacterium), the protein is analyzed with
DeepSig (parametrized with respect to Gram-positive or
negative classes, depending on the origin of the input se-
quence). When the signal is found, the sequence is classi-
fied as localized into the Extracellular space (GO:0005615).
Otherwise, the protein is finally processed using ENSEM-
BLE3.0 to determine whether it is inserted into the Plasma
membrane (GO:0005886) or it is localized into the Cyto-
plasm (GO:0005737).

Overall BUSCA predicts four different compartments for
Gram-negative and three for Gram-positive bacteria.

Generation of sequence profiles

Tools included in BUSCA require, for each input sequence,
the computation of a sequence profile from a multiple se-
quence alignment. These are computed using three runs

of PSI-BLAST, with e-value threshold set to 1e–3 and us-
ing the UniprotKB/SwissProt (release 2017 11) as backend
database.

Performance evaluation

Different scoring measures evaluate prediction perfor-
mance of BUSCA and other methods.

For sake of comparison with other approaches scored in
the context of the CAFA experiments, methods are evalu-
ated using the F1 score, defined as the harmonic mean be-
tween precision and recall, both computed at the level of
GO-term assignments. In particular, precision and recall for
GO-term prediction are computed as follows:

Pr = 1
m

m∑

i = 1

∑
t∈Pi

1{t∈Ti }
|Pi |

Rc = 1
n

n∑

i = 1

∑
t∈Ti

1{t∈Pi }
|Ti |

where m and n are the number of proteins for which at least
one GO term has been predicted and the total number of
proteins in a dataset, respectively; Pi and Ti are the sets of
predicted and annotated GO terms for the i -th protein, re-
spectively. The function 1{c} is an indicator that equals 1
when the condition c is true, 0 otherwise, and |·| indicates
the cardinality of the sets Pi and Ti , respectively. Complete
GO annotations including all the ancestors of predicted or
annotated GO terms are considered in the computation of
the scores.

F1 is then defined as:

F1 = 2 × Pr × Rc
Pr + Rc

For some method (including BUSCA), m = n, since a
prediction is always provided for any given input protein se-
quence. In general, m ≤ n, and hence we define the coverage
as the ratio:

C = m
n

C measures the fraction of benchmark proteins for which
the method provides prediction.

Methods are also scored at the level of individual sub-
cellular compartments. To this aim, we use the Matthews
Correlation Coefficient (MCC), defined as:

MCC

= (T Pi × TNi − F Pi × F Ni )√
(T Pi + F Pi ) × (T Pi + F Ni ) × (TNi + F Pi ) × (TNi + F Ni )

where T Pi , TNi , F Pi and F Ni are, respectively, true posi-
tives, true negatives, false positives and false negatives com-
puted for compartment i .

RESULTS

Assessing BUSCA performance on CAFA experiments

As a first benchmark, we evaluated the performance of
BUSCA on CAFA2/3 targets using the evaluation proce-
dure adopted in CAFA experiments.
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Table 2. F1 and C scores obtained by different methods on the CAFA2
benchmark dataset.

Method F1 C

BUSCA 0.49 1.0
EVEX (13) 0.46 0.98
Go-FDR (21) 0.46 0.98
dcGO (20) 0.46 0.99
MS-kNN (19) 0.45 0.98
FFPred (18) 0.45 1.0
CONS (16) 0.44 1.0
LocTree3 (17) 0.44 0.96
PULP (15) 0.44 0.94
FunFams (14) 0.43 0.89
BLAST 0.35 0.98

Results for all methods except BUSCA were taken from (12). F1, the har-
monic mean of precision and recall, and C, the fraction of predicted protein
in the dataset, are computed as described in the ”Performance evaluation”
section (see text).

In Table 2 we report results obtained with BUSCA
and other methods on the CAFA2 targets. Results for
all the methods except BUSCA were taken from the of-
ficial CAFA2 paper (12). In particular, we selected pub-
lished methods among the ten top performing approaches
as scored by the CAFA2 assessors: EVEX (13), FunFams
(Orengo Lab) (14), PULP (15), CONS (16), LocTree3
(ROSTLab) (17), FFpred (Jones-UCL Lab) (18), MS-kNN
(19), dcGO (Gough Lab) (20) and Go-FDR (Tian Lab)
(21). For sake of comparison, we also report the perfor-
mance of a baseline method, transferring GO terms from
the highest-scoring BLAST hit.

In Table 2, all the methods outperform the baseline
BLAST approach. BUSCA outperforms all other meth-
ods, scoring with F1 equal to 0.49, three percentage points
higher than the top scoring method (EVEX, F1 = 0.46).
Concerning coverage, being BUSCA a purely predictive ap-
proach (like FFpred and CONS), it always provides a pre-
diction (C = 1). This is not true for other tools: for instance,
FunFams does not provide predictions for 11% of the tested
proteins (C = 0.89).

Since CAFA2 targets were released before some of the
methods included in BUSCA were developed (in particular,
DeepSig, SChloro, TPpred3 and BetAware), we evaluated
the performance of BUSCA selecting only those CAFA2
proteins that were not used to train such predictors. In par-
ticular, we identified 826 CAFA2 targets that were included
into training sets. After removing them from the bench-
mark, the BUSCA F1 measure only decrease by 1 percent-
age point (from 0.49 to 0.48), indicating high robustness on
prediction performance.

We further investigated BUSCA performance using the
more recent CAFA3 benchmark. On this dataset, BUSCA
scores with F1 equal to 0.58, nine percentage points higher
than the one obtained on CAFA2 targets. This further con-
firms that BUSCA performs at the state-of-the-art. Unfor-
tunately, results of the CAFA3 have not been published yet,
so we cannot directly compare with other approaches using
the CAFA evaluation procedure.

As done for the CAFA2 benchmark, we scored BUSCA
after removing CAFA3 targets included into training sets.
In this case, we identified 690 CAFA3 targets. Filtering-out

these proteins from the benchmark we obtained exactly the
same F1 score (0.58), highlighting again a small influence
on the performance evaluation.

Evaluating the prediction performance at compartment level

CAFA3 targets were used to perform a comparative bench-
mark among different prediction tools including BUSCA,
two recently developed methods, namely the ensemble
method SubCons (22,23) and DeepLoc (24), based on deep-
learning, as well as LocTree3 (17) and Cello2.5 (25). All
methods run using the respective web servers and their pre-
dictions are scored at the level of individual compartments
using the Matthews Correlation Coefficient (MCC) (see the
Performance evaluation section). Specifically, ten different
protein localizations are considered: nucleus, extracellular,
cytoplasm, plasma membrane, endomembrane system, mi-
tochondrion, peroxisome, lysosome, organelle membrane
and chloroplast (in plants). This choice is the one that al-
lows to fairly compare different tools which predict different
output localizations. Moreover, to ensure a sufficient num-
ber of proteins and a reasonable coverage of the different
compartments, methods are scored separately on Animals +
Fungi, Plants and Prokaryotes (aggregating Gram-positive
and Gram-negative proteins).

Table 3 lists the results. With the exception of Cello2.5,
which shows very low MCCs for some compartments (e.g.
endomembrane system in Plants), all methods perform
quite well and their performances are in general similar.

In the Animal+Fungi dataset, LocTree3 and Sub-
Cons are better than others for mitochondrial proteins,
DeepLoc outperforms other methods in extracellular and
plasma membrane compartments while BUSCA is the best-
performing method for nucleus, organelle membrane, en-
domembrane system and cytoplasm compartments.

When scored on plant proteins, BUSCA outperforms
other methods in many compartments including extracel-
lular space, organelle membrane, endomembrane system,
cytoplasm and chloroplast (in this case with same perfor-
mance of LocTree3).

Overall, thanks to specialized tools such as MemLoci,
TPpred3, DeepSig and SChloro, the BUSCA pipeline is
more effective for proteins localized into organelle mem-
branes and endomembrane system as well as chloroplast
proteins in plants. Given the present combination of tools
included in BUSCA, our pipeline is not able to predict pro-
teins that are localized in lysosomes and peroxisomes.

Among the five methods considered, only three, BUSCA,
LocTree3 and Cello2.5, explicitly support prediction on
prokaryotes. In this dataset, BUSCA and LocTree3 per-
form equally on cytoplasmic proteins while LocTree3 out-
performs on plasma membrane proteins. Interestingly, only
BUSCA was able to identify outer membrane beta-barrel
proteins, thanks to the BetAware tool included in the
pipeline.

The prokaryotic subset only contains 16 proteins from
Gram-positives. In order to benchmark BUSCA on a larger
number of Gram-positives sequences, we originated a blind
dataset (see the ”Benchmarking datasets” section). This set
includes 1667 protein sequences with experimental anno-
tation (510 cytoplasmic, 245 extracellular and 912 plasma
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Table 3. Performance comparison of different methods on the CAFA3 dataset.

Method MCC

Compartment Dataset LocTree3 SubCons DeepLoc Cello2.5 BUSCA

Nucleus Animals + Fungi 0.46 0.32 0.42 0.28 0.48
Extracellular Animals + Fungi 0.35 0.37 0.46 0.28 0.42
Organelle membrane Animals + Fungi 0.20 - 0.23 - 0.24
Endomembrane system Animals + Fungi 0.21 0.18 0.21 0.07 0.22
Lysosome Animals + Fungi - 0.09 0.11 0.04 -
Cytoplasm Animals + Fungi 0.29 0.25 0.29 0.12 0.38
Mitochondrion Animals + Fungi 0.42 0.42 0.34 0.37 0.37
Peroxisome Animals + Fungi 0.11 0.11 0.13 0.29 -
Plasma membrane Animals + Fungi 0.35 0.38 0.45 0.26 0.37
Nucleus Plants 0.42 0.30 0.39 0.31 0.41
Extracellular Plants 0.21 0.30 0.33 0.10 0.39
Organelle membrane Plants 0.11 - 0.13 - 0.20
Endomembrane system Plants 0.26 0.11 0.26 0.00 0.37
Cytoplasm Plants 0.38 0.40 0.30 0.25 0.43
Mitochondrion Plants 0.29 0.32 0.29 0.25 0.27
Peroxisome Plants 0.18 0.08 0.14 0.00 -
Plasma membrane Plants 0.48 0.34 0.51 0.30 0.44
Chloroplast Plants 0.37 - 0.22 0.23 0.37
Cytoplasm Prokaryotes 0.50 - - 0.37 0.50
Plasma membrane Prokaryotes 0.55 - - 0.40 0.50
Outer membrane Prokaryotes 0.00 - - 0.00 0.32

Methods are scored using the MCC, computed for individual compartments as detailed in the ”Performance evaluation” section (see text). Predictions for
SubCons (22,23), DeepLoc (24), Cello2.5 (25) and LocTree3 (17) were obtained using the respective web servers. Predictions on bacterial proteins are scored
only for methods providing dedicated modules for prokaryotic data (i.e. LocTree3, Cello2.5 and BUSCA). Highest MCC scores for each compartment are
highlighted in bold face.

membrane). Against this dataset, and considering the ex-
perimental annotations of UniprotKB, BUSCA scores with
very good MCC values in all the three compartments (0.73,
0.40 and 0.74 MCC values for Cytoplasm, Extracellular and
Plasma membrane compartments, respectively; see Supple-
mentary Table S1). This further confirms the effectiveness
of our pipeline also for the annotation of Gram-positive
proteins.

Scoring BUSCA on feature annotation

We also evaluated the ability of BUSCA to discrimi-
nate localization-related features. We identified within the
CAFA3 dataset proteins endowed with annotations (ex-
tracted from UniprotKB) for signal and transit peptides,
GPI-anchors and transmembrane regions. Then, for each
feature type, we evaluated the fraction of correctly identi-
fied experimental annotations. The value ranges from 0.69
for transit peptides, to 0.91, 0.93 and 1 for Transmembrane,
Signal peptides and GPI-anchors, respectively.

The BUSCA web server

The BUSCA web server accepts as input protein sequences
in FASTA format. The server accepts up to 500 protein
sequences per-submission. Before submitting, the user is
also asked to specify the taxonomic origin of the input
protein sequences, choosing among five options: Animals,
Fungi, Plants, Gram-positive and Gram-negative bacte-
ria. Depending on the user’s choice, the proper prediction
protocol (see ”Materials and Methods” section) is applied
by BUSCA to process the input sequences. Upon request
submission, if input sequences pass validation checks, the
server automatically redirects to the final output page which

is periodically reloaded until the prediction job is com-
pleted. Alternatively, the page can be bookmarked and ac-
cessed at a later stage.

A typical BUSCA output is shown in Figure 3. Prediction
results for the submitted protein sequences are displayed in
tabular format. For each input sequence, basic information
includes the protein accession/identifier, the predicted GO-
terms, the score assigned to the prediction, an alternative lo-
calization (when available) and a summary of features that
have been predicted on the sequence. Prediction scores are
probabilities attached to each predicted compartment and
are internally computed by the method providing the final
prediction. Specifically, all the tools included in BUSCA,
with the only exception of BaCelLo, already compute a pre-
diction score. Concerning BaCelLo, which is based on a de-
cision tree of SVMs (9), the score is computed by remapping
the value of the SVM discrimination function in the range
[0,1]. The mapping has been computed using a logistic func-
tion whose parameters have been calibrated on the BaCelLo
training dataset (9).

An alternative localization is reported only when the final
predicted compartment is computed with BaCelLo, Mem-
Loci and SChloro. In particular, SChloro supports pre-
diction of multiple localizations: in this case, we provide
the highest-scoring prediction as primary localization and
other predicted compartments (if any) as alternative local-
izations. BaCelLo and MemLoci do not support multi-label
prediction: in these cases, the alternative localization corre-
sponds to the second most-probable compartment with a
prediction score greater than 0.1.

The user can also open a detailed report for each se-
quence, which graphically displays the precise positions
of predicted features along the sequence. Predicted local-
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Figure 3. Example output from the BUSCA web server showing results for five different plant proteins. Protein accession/identifier, predicted GO terms,
prediction score, alternative localization (if any) and protein features are reported for each input sequence. A detailed report for each protein graphically
displays positions of predicted features along the sequence. .

izations and protein features can be also downloaded as
Comma-Separated Values (CSVs) and/or JavaScript Object
Notation (JSON) formats.

BUSCA is implemented using the Django Python Web
framework (https://www.djangoproject.com). The user in-
terface builds on top of technologies such as JQuery
(https://jquery.com), Bootstrap (https://getbootstrap.com)
and DataTables (https://datatables.net) to improve usabil-
ity. Workflows aggregating the different tools are developed
using an ad-hoc framework implemented using the Python
programming language. In developing the framework, we
mainly focused on reducing the effort needed in the future
to update existing tools and/or to integrate new tools that
will be made available.

The computation of sequence profiles represents a bot-
tleneck that increases the computational time. In order to
avoid unnecessary computations and to speed-up the pre-
diction process, the required sequence profile is generated
by a single run of PSI-BLAST whose result is subsequently
shared by the different tools. Moreover, once generated, the
sequence profile is cached, avoiding expensive rebuilding in
case of resubmission of an identical protein sequence.

CONCLUSION

In this paper, we present BUSCA, a novel web server which
centralizes several resources devised to predict protein sub-
cellular localization, including protein feature predictors
like DeepSig, TPPred3, PredGPI, BetAware and ENSEM-
BLE3.0, and protein localization predictors like MemLoci,

BaCelLo and SChloro. Each predictor has been described
and benchmarked before. Here the novelty is the rational
integration of the tools into the BUSCA web server for al-
lowing the prediction of subcellular localization in a sys-
tematic way, with the final goal of predicting the subcel-
lular localization of the protein depending on the protein
source. Furthermore, BUSCA also annotates relevant pro-
tein features such as signal/transit peptides, GPI-anchors
and transmembrane domains providing a detailed charac-
terization of query protein sequences.

We benchmark BUSCA on protein targets derived from
the two most recent CAFA experiments using the same pro-
cedure described by CAFA assessors. By this, we can also
compare our performances with other top-scoring avail-
able approaches. The results clearly indicate that BUSCA
well compares with the state-of-the-art approaches, and it
is somewhat superior in the assigned task.

We scored our method and other recently published ap-
proaches at the level of annotation of individual subcellu-
lar compartments. In these benchmarks, BUSCA perfor-
mance is overall comparable to the ones achieved by other
approaches.

The BUSCA web server has been implemented using
modern web technologies to ensure usability and extensi-
bility. Therefore, new retrained versions of the tools and/or
new tools can easily be integrated into BUSCA, providing
an updated and centralized resource for a large-scale anno-
tation of protein subcellular localization.

https://www.djangoproject.com
https://jquery.com
https://getbootstrap.com
https://datatables.net
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