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Abstract

Introduction: The accurate analysis and comparison of transport indicators from a large variety of urban areas can
help to evaluate the performance of different adopted transport policies. This paper attempts to determine
important transport and socio-economic indicators from 151 urban areas and 51 countries, based on comparable,
directly observable open-source data such as OpenstreetMap (OSM) and the TomTom database.

Analysis: This is the first, systematic indicator-analysis using recent, open source data from different urban areas
around the world. The indicator road kilometers per person, sometimes cited as infrastructure accessibility is
calculated by processing OSM data. Information on congestion levels have been taken from the TomTom database
and socio-economic data from various, publicly accessible databases. Relations between indicators are identified
through correlations and regression models are calibrated, quantifying the relation between transport infrastructure
and performance indicators. Three sub-categories of cities with different population sizes (small cities, large cities
and metropolises) are defined and studied individually. In addition, a qualitative analysis is performed, putting five
different indicators into relation.

Results & Conclusions: The main results reconfirm previous findings but with a larger sample size and more
comparable data. Good correlation values between infrastructure accessibility, socio-economic indicators, and
congestion levels are demonstrated. It is shown that cities with higher GDP have generally built more infrastructure
which in turn reduces their congestion levels. In particular, for cities with low population density (above
approximately 1500 inh. Per sq.km), more roads per inhabitant lead to lower congestion levels; cities with high
population density have in general lower congestion levels if the rail infrastructure per person ratio is high.
Furthermore, these cities increasing railways per person is more effective in reducing congestions than increasing
road length per person.
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1 Introduction
Worldwide, 55% of the global population lives in urban
areas and the present urban population is projected to
increase from today’s 4 billion people to 6 billion by 2050
[48]. Mainly as a result of migration from rural areas, cit-
ies are growing in terms of inhabitants and urban area
and form new residential areas outside or further away
from the city core. However, the speed of urbanization
presents challenges such as meeting the growing demand

for transport infrastructure and affordable housing. Urban
zones take different forms and characterizations and
urban growth patterns differ amongst regions as a result
of socio- economic, cultural, historical and environmental
differences. As an example, in the US, people tend to live
in low-density, single-family houses and commute by car
to work. In Japan by contrast, high-rise residential build-
ings dominate and workers commute by public transpor-
tation (mostly rail-based) [2]. In order to identify the most
promising city development policy, it is of primary interest
to assess the relations between network infrastructure,
socio-economic indicators and the transport system per-
formance based on experiences from existing cities; the
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understanding how cities are shaped by setting the appro-
priate transport priorities can help to achieve terms of sus-
tainable mobility objectives [36].
The relationship between transport infrastructure expan-

sion and population growth, spatial expansion and land-use
change has been highlighted in many works [1, 5, 46]. A
tight relationship between transport and urban develop-
ment has been shown in earlier works [34, 37]. The imbal-
ance between travel demand and transport infrastructure
supply as reason for the increase in congestion has been
studied by Aljoufie et al. [1]. High congestion levels cause
significant costs to society; it has been estimated that expos-
ure to traffic congestion reduces welfare in the US by $557
million per year [17] and the estimation of congestion cost
to UK economy is approximately £13 billion per year, in a
forecast through 2030 increasing to £21 billion per year
[44]. Congestions impede the proper functioning of more
sustainable transport modes such as bus services or cycling;
as a consequence, existing bus services could neither meet
the growing transport demand, nor meet the demand of
the cities’ economic development [45]. Due to these nega-
tive impacts, congestion levels are a good candidate as
transport performance indicator. More specific relations be-
tween infrastructure expansion and various transport indi-
cators have been found in the studies cited below.
The expansion of road network generally leads to

lower population density in cities: Baum-Snow et al. [4]
have shown that the integrated effects of ring roads and
highways in Chinese cities gave rise to move 25% of cen-
tral inhabitants to surrounding zones. The empirical es-
timates from Baum-Snow [3] show further that each
highway expansion within an urban center of US me-
tropolises causes an average 18% drop of inhabitants in
the city center. An analysis in Wisconsin within 1980–
1990 demonstrated that highway expansions caused
population increase in suburban areas and booming the
urban sprawl [13]. Similar results have been shown by
analyses in California between 1980 and 1994 [12]. At
the contrary, rail network expansion has been shown to
increase population density at nearby urban rail stations
or tracks in several studies, thereby strengthening com-
pactness of urban areas [6, 28, 31].
The strong correlation between road infrastructure ex-

pansion and growth of vehicle ownership has been de-
termined for 50 countries and 35 cities [26]. A positive
relationship between highway expansion and car usage
has been shown between 1982 and 2009 in the US [32].
A negative correlation between transit ridership and
highways length has been found for the Montreal Region
[15]. A sharp rise in car ownership in cities with low
railway intensity and on the other hand a relatively slow
rise of car ownership in cities with high railway intensity
have been shown for six Asian megacities located in
China, Japan and Thailand [27]. US cities with rail lines

experienced larger declines in car usage than cities without
rail infrastructure between 2000 and 2009 [25]. Similar
modal shifts have been shown to exist in Europe: averaged
over 14 LRT systems, approximately 11% of car drivers have
changed to rail [24]. With growing concerns over traffic
congestion and pollution from motorized vehicles, Dill and
Carr [18] have indicated a positive correlation between
bicycle usage and bicycle infrastructure expansion in
43 US cities based on data from Bureau of the Cen-
sus. This finding has been confirmed and quantified
based on a survey from 13 European cities [40].
In summary, an extension of the road network tends

to decrease urban population density, decrease the ef-
fectiveness of road based public transport -- conditions
for favoring an increase in car ownership. A conse-
quence of these effects is a further increase in private
road transport demand which is often cited as “induced
demand” [30]. Rail and bike networks have been shown
to achieve de-congesting effects.
The choice of suitable and relevant indicators for the

analysis of transport policies is not obvious. Different defi-
nitions of “accessibility” have been used as indicators.
Geurs and Van Eck [22] has described various compo-
nents of “accessibility”: land-use, temporal, individual and
transport. In an extensive review, Geurs and Wee [23]
identified four types of possible accessibility measures:
infrastructure-based, location-based, activity-based and
utility-based accessibility.
Based on these findings and conditioned by the avail-

ability of accessible data, this study will use the length of
transport infrastructure per person to quantify the
amount of available transport infrastructure. This term
is known as infrastructure accessibility [21]. The trans-
port performance is quantified by congestion levels.
The aim of the present study is to shed more light on

relations between transport-socio-economic indicators
and transport performance indicators. The used data is
thought to be comparable across all selected cities, allow-
ing an absolute global evaluation of the transport perform-
ance indicator. With respect to previous studies, the
number of comparable cities is larger and more recent.
Concrete transport policies are addressed by answering
this question: under which conditions do more railways
and bicycle infrastructure reduce congestion levels?
The next section motivates the data collection for this

work and explains the principle data processing steps.
The analysis and results are presented and discussed in
Analysis and results section, while the conclusions in
Sec. 4 summarizes the main findings.

2 Data collection and processing
The general approach of this work is to collect, process,
correlate and model publicly available and comparable
data from a large number of cities around the world. In
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this section, all indicators are defined and the different
data sources are described.

2.1 Socio-economic data-collection of cities
Socio-economic data has been sampled from a variety of
regions around the world -- data from 151 cities which
are distributed over 51 countries. Data of at least two
consecutive population census as well as administrative
spatial area information of urban areas were extracted
from City population [16]. Population estimations are
used in case local census data have not been available.
Recent data of GDP per capita for each urban area have
been sourced from the Organization for Economic
Co-operation and Development (OECD) database [38].
All GDP values are expressed in American dollars, with
an average value of the years 2010–2014. The missing
OECD data has been completed from difference
sources [8, 14, 20, 33, 41, 43]. The GDP per capita data
is available for 139 cities. Population density is calculated
as population per spatial area in sq. km. Errors may
occur by mixing GDP data from the OECD database
with data from other sources. This error type concerns
predominantly smaller cities. A general error source is
that urban boundary definitions of urban areas are not
unified and that GDP data stems from different years.
Both issues can lead to compatibility problems with the
other data (performance and infrastructure indicators).

2.2 Performance indicator data
The central performance indicator used for this study is
the congestion level in terms of average daily extra travel
time (ADETT), which is the extra travel time in a day
with respect to the free-floating traffic scenario, averaged
over all monitored traffic participants of a distinct urban
area. Comparable data on congestion level are retriev-
able through the Tomtom database. Tomtom is used by
more than 6 million connected GPS devices and traffic
is monitored by many million GSM probes and millions
of government-owned road sensor [42]. As Tomtom’s
methodology is sufficiently accurate and unified all over
the world, it is a suitable data source for the present
study. However, errors may occur for several reasons: the
TomTom data is not produced by a representative selec-
tion of the population; the special distribution may not be
homogeneous; finally the coverage may differ from city to
city and may also differ from the urban boundaries found
in Socio-economic data-collection of cities section.

2.3 Infrastructure related indicators from cities
The infrastructure accessibility (IA) is expressed as infra-
structure length per inhabitant (in meter infrastructure
per 10 inhabitants). The network infrastructure length is
determined for each infrastructure-type of a city from
the OSM database, using the OSMNx software package

[10, 11]. OSM is a crowed sourced, unified and publicly
available map of the world. OSM infrastructure data
looks trustworthy for many cities, although it still needs
some improvements on micro-level details. The OSM
data quality seems sufficient for macro-level analyses.
OSM consists of three basic components: nodes, ways
and relations [39]. Each component has various charac-
terizing attributes, called tags. For instance, the way tags
can be used to identify the type of infrastructure.
The Python software package OSMnx extracts and

converts OSM network data of the desired location into
a directed transport graph (which is a graph object of
the Python networkX package) and performs some topo-
logical corrections and node clustering simplification.
The links of the graph retain the tag information of the
ways. Clearly, it is possible to generate sub-graphs for
each transport infrastructure (ordinary roads, bikeway
and rail). OSMnx does provide options to generate and
analyze each of the sub-graphs.
The area of the retrieved transport graph can be specified

by providing the polygon surrounding the area or through
the name of the city. In the latter case, the administrative
boundaries of the desired city is retrieved from Open-
StreetMaps’ Nominatim database. In most cases, official
boundaries have been available on Nominatim and only in
rare cases, manual boundaries have been defined. The sta-
tistics module of the OSMnx has been used to determine
the length of each subgraph, e.g. road length, rail length
and bikeway length. Finally the infrastructure accessibility
IA is determined for all infrastructure types using the
population data (see Sec. 2.1). BRT infrastructure length is
sourced from www.brtdata.org [9] and BRT IA is deter-
mined in mm per 10 inhabitants. Errors of the infrastruc-
ture data are due to the incomplete OSM network or
wrongly specified road attributes by volunteer
contributors.

3 Analysis and results
In this section different analysis are performed and their
results are discussed.

3.1 Correlations within city groups
In order to render the city comparison more compar-
able, cities are divided into three sub-groups, according
to criteria explained in [19]: cities with a population
under 800,000 are defined “small cities” (51 cities), cities
with a population between 800,000 and 3 million are de-
fined “mature cities” (56 cities) and cities with a popula-
tion over 3 million as are defined “metropolis” (44
cities). The distribution of considered cities with respect-
ive group-type is shown in the world map on Fig. 1.
The Pearson Correlation Coefficient between different

indicators together with the number of samples are
shown for different city sizes in Table 1. The software
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IBM SPSS 25 is used for the Pearson correlation analyses
of variables, while the 95% confident level is taken into
account. Not shown are low correlation whose coeffi-
cients have absolute values below 0.2. Note that the indi-
cator correlations of small cities are often low, probably
due to their heterogeneous sizes, land-use and transport
networks.
The clearly positive correlation between spatial city

area and population growth rate for metropolises, ma-
ture cities and all cities is trivial as the number of new-
borns is proportional to the population size. Also the
fact that congestion levels (ADETT) increase with higher
population density is not surprising and confirms that
cities are struggling keeping transport infrastructure in
pace with increasing traffic intensity (trips per sq. km).
Interesting is the negative relationship between

population density and GDP per capita, suggesting that
economically weaker cities experience more congestions
– this is particularly true for metropolises. The correl-
ation between GDP per capita and road infrastructure
accessibility (IA) is strong for metropolises and a little
weaker for mature cities. The relationship between GDP
per capita and rail IA and between GDP per capita and
cycle IA is less pronounced.
The strong relationship between road IA and

ADETT is clearly seen for all city sizes. For metrop-
olises, the increase of rail infrastructure shows a simi-
lar de- congestionating effect than an increase in road
infrastructure, while for small cities rail infrastructure
is less correlated with congestions. One hypothesis
could be that smaller cities are less congested and
there is less pressure to change from car to rail.

Fig. 1 Distribution of analyzed cities (white = small cities, green =mature cities, red = metropolises)

Table 1 Pearson correlation coefficient and number of samples (N) between different indicators

Pearson Correlation Coefficient Metropolises Mature Cities Small Cities All Cities

Spatial city area (Km^2) and annual population growth 0,534 (N = 44) 0,513 (N = 55) – 0,449 (N = 150)

Population density and ADETT 0,520 (N = 37) 0,545 (N = 55) – 0,502 (N = 143)

Population density and GDP per capita − 0,530 (N = 42) − 0,283 (N = 56) – − 0,404 (N = 139)

GDP per capita and ADETT − 0,512 (N = 36) − 0,304 (N = 55) – − 0,332 (N = 132)

GDP per capita and road IA 0,714 (N = 42) 0,571 (N = 56) – 0,559 (N = 139)

GDP per capita and rail IA 0,581 (N = 38) 0,475 (N = 47) – 0,355 (N = 124)

GDP per capita and cycle IA 0,477 (N = 30) 0,343 (N = 43) – –

ADETT and road IA −0,608 (N = 37) −0,750 (N = 55) − 0,587 (N = 51) −0,664 (N = 143)

ADETT and train IA −0,626 (N = 34) −0,338 (N = 46) – − 0,387 (N = 127)

ADETT and cycle IA −0,358 (N = 27) -0,303 (N = 43) -0,427 (N = 42) -0,337 (N = 112)
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These results confirm the previously mentioned find-
ing that rail infrastructure has a relaxation effect on
road traffic for metropolises [7, 29, 47], presumably
by shifting car trips to rail trips. Combining the rela-
tions between road/rail IA, congestions and GDP per
capita, it could be hypothesized that economically
strong metropolises can afford to expand road, rail
and bicycle infrastructure and are more successful in
reducing congestions.

3.2 Statistical models
As IA and ADETT are generally well correlated, some
statistical models have been calibrated with the entire set
of cities as well as on specific subsets. The best fit between
road infrastructure accessibility RIA and ADETT of all cit-
ies is achieved with an exponential function of the shape:

ADETT ¼ a exp b RIAð Þ ð1Þ
However, the fitting errors with a linear model are

only slightly superior. The results of this calibration is
shown in Table 2. Despite the high noise levels in the
data, the coefficient b is negative, which means decreas-
ing congestions with increasing road IA. This model has
been applied for the three city sub-groups and plotted
together with the data points in Figs. 2, 3, 4.
A further model is build which includes both, road in-

frastructure accessibility RIA and train infrastructure ac-
cessibility TIA:

ADETT ¼ cþ d RIAþ e TIA ð2Þ
As RIA and TIA have the same unit, the coefficients d

and e quantify the reduction in traffic-congestions due
to an increase/decrease in road infrastructure or train
infrastructure, respectively. The interesting question is
how the coefficients d and e behave in cities with high and
low population densities. Table 3 shows the calibration re-
sults of coefficients d and e for cities with a high
population density (above 1500 per sq. km) while
Table 4 shows the same calibration for cities with low
population density (below 1500 per sq. km). The

Table 2 Calibration results of exponential function model Eq.(1)
for all cities. R2 = 0.515, sample size N = 147

Calibration results Coef Std Err t P > |t| [95.0% Conf. Int.]

Log(a) 3.7734 0.037 100.773 0.000 3.699 3.847

b −0.0101 0.001 −12.232 0.000 −0.012 − 0.009

Fig. 2 Multi variant diagram of metropolises. Congestion level (ADETT) over Road IA; Bubble size is proportional to the population density; filled
color indicates Train IA, bubble border color indicates Cycle IA, color of starred city- labels indicate BRT IA. For color scaling, see Table.5. The
dotted line represents the fitted exponential curve from Eq.(1)
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population density division at 1500 per sq. km has
been chosen arbitrarily. The main idea has been to
isolate extreme space oriented cities in the US and
Australia. However, the division at 1500 per sq. km
can be varied in reasonable bounds without changing
the core message of the results, as detailed below.
The results for high density in Table 3 show that e

is significantly more negative than d (four times more
negative) and that both coefficients are significant.
This result means that an increase in train infrastruc-
ture per person reduces more congestion than the in-
crease in road infrastructure per person. One reason
why rail lines combat congestion more effectively is
probably due to the fact that rail infrastructure has
been implemented primarily along the most congested
corridors of the city. Therefore, the result of the
model does not mean that extending rail network be-
yond the main traffic corridors will continue to re-
duce traffic congestion.
The situation for low density cities, shown in Table 4,

is less clear: e is only slightly more negative than d and e
is statistically not significant (high P value). This means

railway building for low density cities appears less effect-
ive in reducing congestions with respect to cities with
high density cities.

3.3 Multi-variant comparison
In an attempt to pursue a holistic approach, the rela-
tions between five different indicators are shown in a
bubble-type graph where each bubble represents city:
the x-axis represents the Road IA and the y-axis rep-
resent the ADETT, the fill color indicates Train IA,
bubble border color indicates Cycle IA, color of
starred city- labels indicate BRT IA. The color scaling
is summarized in Table 5. The bubble graph has been
generated for each of the city groups: metropolitan
cities in Fig. 2, mature cities in Fig. 3 and small cities
on Fig. 4. For each city group, the model from eq. (1)
has been calibrated, as the exponential curve showed
the best fit. The regression curve and the R2are also
indicated in each bubble graph.
The regression analyses for all city groups (Figs.

2-4) show R2values between 0.4 and 0.6, which indi-
cate a good fit, considering the many error sources

Fig. 3 Multi variant diagram of mature cities. Congestion level (ADETT) over Road IA; Bubble size is proportional to population density; filled color
indicates the Train IA, bubble border color indicates Cycle IA, color of starred city- labels indicate BRT IA. For color scaling, see Table.5. The dotted
line represents the fitted exponential curve from Eq.(1)
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mentioned in Data collection and processing section.
and the diversity of street-layouts, public transit
service characteristics and mobility cultures. In the
figures of all three city groups, the cities can be
divided in two groups at a Road IA of approximately
35 m/(10Inh): most cities below this threshold have a
higher population density, compared with the cities
above this threshold. It is evident that many cities with
low population densities have built large road networks
and have succeeded in reducing congestion. On the other
hand, cities with higher population densities appear to
have space-constraints and cannot extend their roads
network.
Looking closer at cities with higher population dens-

ities, it is apparent that those cities with a more

extensive train network per person (red and orange
color) have generally lower congestion levels. This
result is consistent with the models in 3.2. However,
there are also many exceptions: Dublin and
Bucharest have high Train IA but also high conges-
tion levels, while Madrid and Sao Paolo have low
Train IA and low congestion levels. Furthermore, the
small cities give a less clear picture regarding Train
IA and congestions. Some of the small cities with
higher population density stand out for their low
congestion level most likely due to the presence of a
high level of cycling infrastructure; examples are
Malmo, Zwolle and Fresno. However, there are not
enough example cities with high level of cycling to
show a general trend.

Table 4 Calibration results of linear function model Eq.(2) for
cities with population densities below 1500 per/km^2
.R2 = 0.638, sample size N = 39

Calibration results Coef Std Err t P > |t| [95.0% Conf. Int.]

c 44.6361 2.410 18.521 0.000 39.748 49.524

d −0.2602 0.036 −7.166 0.000 −0.334 −0.187

e −0.3835 0.282 −1.358 0.183 −0.956 0.189

Fig. 4 Multi variant diagram of small cities. Congestion level (ADETT) over Road IA; Bubble size is proportional to the population density; filled
color indicates Train IA, bubble border color indicates Cycle IA, color of starred city- labels indicate BRT IA. For color scaling, see Table.5. The
dotted line represents the fitted exponential curve from Eq.(1)

Table 3 Calibration results of linear function model Eq.(2) for
cities with population densities above 1500 per sq. km. R2 =
0.269, sample size N = 88

Calibration results Coef Std Err t P > |t| [95.0% Conf. Int.]

c 45.3582 2.122 21.375 0.000 41.139 49.577

d −0.2386 0.083 −2.880 0.005 −0.403 −0.074

e −0.9706 0.246 −3.950 0.000 −1.459 −0.482
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4 Conclusions
In the past, the limited availability of comparable
data on socio-economics, transport infrastructure
and transport performance of cities prevented a hol-
istic analysis with many indicators, due to the lack
of variety. These limitations have been overcome by
analyzing OSM data, Tomtom data and data from
centralized internet databases. To date, no system-
atic worldwide infrastructure analyses based on OSM
data has been performed. Using the Python package
called OSMnx, it has been possible to extract differ-
ent network-types from the OSM data, downloaded
from different urban areas of the world. The 151 an-
alyzed cities are distributed over 51 countries. The
cities have been analyzed as a whole and within
subgroups of cities with distinct population sizes
(small cities, mature cities and metropolises). Rela-
tionships between socio-economic indicators, infra-
structure accessibility and congestion level have been
investigated.
Good correlation values between infrastructure ac-

cessibility, socio-economic indicators, and congestion
levels have been demonstrated with a reasonable
goodness of fit. The analyses have shown that cities
with higher GDP have built more infrastructure
which in turn results in lower congestion levels. The
relation between infrastructure accessibility and con-
gestion levels has been quantified using regression
models. For cities with low population density
(above approximately 1500 Inh. per sq. km), more
roads per inhabitant lead to lower congestion levels.
Metropolises and mature cities with high population
density have in general lower congestion levels
where rail infrastructure per person is higher. There
is significant evidence that, in case of high density
cities, an increase in train infrastructure accessibility

is more de-congestionating than an increase in road
infrastructure accessibility.
The available data could be further exploited to deter-

mine the transport-related energy consumption in cities,
updating the worldwide comparison of Newman and
Kenworthy [35]. However, this would require more in-
formation on modal split and trip distances, data which
is more difficult to retrieve in a consistent manner.
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