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It is well-known that a strict analogue of the Birkhoff Ergodic Theorem in infinite ergodic theory
is trivial; it states that for any infinite-measure-preserving ergodic system, the Birkhoff average of
every integrable function is almost everywhere zero. Nor does a different rescaling of the Birkhoff
sum that leads to a non-degenerate pointwise limit exist. In this paper, we give a version of
Birkhoff’s theorem for conservative, ergodic, infinite-measure-preserving dynamical systems where
instead of integrable functions we use certain elements of L∞, which we generically call global
observables. Our main theorem applies to general systems but requires a hypothesis of “approxi-
mate partial averaging” on the observables. The idea behind the result, however, applies to more
general situations, as we show with an example. Finally, by means of counterexamples and numer-
ical simulations, we discuss the question of finding the optimal class of observables for which a
Birkhoff theorem holds for infinite-measure-preserving systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5036652

Birkhoff’s Ergodic Theorem is a cornerstone of the theory
of dynamical systems. It states that for a dynamical sys-
tem endowed with a finite invariant measure, the time, or
Birkhoff, average of an integrable function exists almost
everywhere. For an ergodic system, this is equivalent to
the Strong Law of Large Numbers for the evolution of any
integrable function. When the invariant measure is infi-
nite, which is the case, for example, for most unbounded
or extended Hamiltonian systems, Birkhoff’s theorem is
no longer significant, in the sense that at least for ergodic
systems, the Birkhoff average of any integrable observ-
able is almost everywhere zero. However, for a dynamical
system preserving an infinite measure, the integrable func-
tions are not the only observables of interest. For exam-
ple, for an extended Hamiltonian system, the kinetic and
potential energies and many other “delocalized” observ-
ables are not integrable. In this article, we make steps
towards a formulation of Birkhoff’s Ergodic Theorem
for global observables in infinite-measure-preserving sys-
tems. A global observable is, in essence, a bounded func-
tion that is significantly different from zero throughout
the space.

I. INTRODUCTION

Birkhoff’s Ergodic Theorem is one of the cornerstones
of probability theory and the theory of dynamical systems.
It states that if T is a measure-preserving transformation of
a probability space (X , μ) and f ∈ L1(X , μ), the Birkhoff
average

Af (x) := lim
n→∞

1

n

n−1∑
k=0

f ◦ Tk(x) (1.1)

a)E-mail: marco.lenci@unibo.it
b)E-mail: sara.munday@dm.unipi.it

exists for μ-a.e. x ∈ X . If T is also ergodic, the theorem states
in addition that

Af (x) =
∫

X
f dμ, (1.2)

for a.e. x. Here, and in the rest of the paper, we use the most
general definition of ergodicity, which is valid for both finite
and infinite ergodic theory: The map T is said to be ergodic if
every invariant set B (this means that T−1B = B mod μ, where
mod μ indicates that these sets are equal up to a μ-null set of
points) has zero measure or full measure (so either μ(B) = 0
or μ(X \ B) = 0). Thus, for a probability-preserving system,
ergodicity corresponds to the Strong Law of Large Numbers
for the variables f ◦ Tn, for all f ∈ L1.

Let us now consider the case where (X , μ) is an infi-
nite measure space. More precisely, let us assume that μ is a
σ -finite infinite measure, which means that μ(X ) = ∞ and X
can be written as X = ⋃

j∈N
Xj, with each μ(Xj) < ∞. For an

ergodic T , the strict analogue of Birkhoff’s theorem is triv-
ial: For all f ∈ L1, Af (x) = 0 almost everywhere. (This is an
easy consequence of Hopf’s Ergodic Theorem, which we will
recall momentarily.) One is thus led to ask what the growth
rate is for the Birkhoff sum

Sn f :=
n−1∑
k=0

f ◦ Tk , (1.3)

of an integrable function f . Aaronson discovered that there is
no universal growth rate. More precisely, if T is conservative
(in other words, Poincaré recurrence holds (Ref. 1, Sec. 1.1))
and ergodic, given any sequence (an)n∈N of positive numbers,
one of the following two cases occurs (Ref. 1, Thm. 2.4.2):

1. For all f ∈ L1 with f > 0, lim inf
n→∞

Snf (x)
an

= 0, for a.e.

x ∈ X .
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2. There exists a strictly increasing sequence (nk)k∈N of
the natural numbers such that for all f ∈ L1 with f > 0,

lim
k→∞

Snk f (x)

ank
= ∞, for a.e. x ∈ X .

Notice in the second case that the sequence (nk) is the
same for all f and for all x, and thus the assertion is
stronger than the statement: For every f ∈ L1 with f > 0,
lim supn→∞ Snf /an = ∞ almost everywhere.

The lack of a universal growth rate for (Sn f (x))n∈N is not
due to its dependence on f but on x. In fact, for an ergodic T ,
Hopf’s Ergodic Theorem10,20 states that, for all f , g ∈ L1 with
g > 0,

lim
n→∞

Snf (x)

Sng(x)
=

∫
X f dμ∫
X g dμ

, (1.4)

for a.e. x. Thus, if we choose a function g ∈ L1 with g > 0
and

∫
g dμ = 1, and set an(x) := Sng(x), we indeed have that

Snf (x)/an(x) → ∫
fdμ almost everywhere, for all f ∈ L1. But

the variability of x �→ (an(x))n∈N is so strong that only a zero-
measure set of points produces the same rate.

In this paper, functions f : X −→ C are supposed to
represent observations about the state of the system x ∈ X .
Accordingly, they will be called observables. In particular,
all functions f ∈ L1(X , μ) will be called local observables.
The name is due to the fact that they are well approximated
by functions with a finite-measure support within an infinite-
measure ambient space.

The results presented above lead one to think that local
observables are not the right ones to average along the orbits
of T . Even when a scaling sequence exists such that Snf /an

converges to a non-degenerate limit, cf. the Darling-Kac
Theorem (Ref. 1, Sec. 3.6), this convergence is in distribu-
tion (more precisely, strongly in distribution) and the limit is
a non-constant random variable. In any case, the limit cannot
reasonably be called the average of f along the orbit s of T .
A natural concept of average presupposes that if, for example,
f ≡ c, its average is c. In other words, we are interested in
bona fide Birkhoff averages, as in (1.1).

So, we need to change the class of observables. The sim-
plest class beyond L1(X , μ) that one might think to consider
is L∞(X , μ), which does include the constant functions. How-
ever, the whole of L∞ is, vaguely speaking, “too big” for us
to expect constant Birkhoff averages for all of its elements.
An interesting class of counterexamples is given by the indi-
cator functions of infinite-measure sets with the property that
orbits spend long stretches of time there before leaving; for
example, neighborhoods of strongly neutral indifferent fixed
points. The Birkhoff averages of these observables converge,
strongly in distribution, to non-constant random variables. A
classical example of this phenomenon is the arcsine law for
the Boole transformation.24 We will return to this example,
along with others, in Sec. IV.

In this paper, we call global observables all essen-
tially bounded functions for which, in principle, a Birkhoff
Theorem could hold. Of course, depending on the system at
hand, the Birkhoff Theorem will hold as well for many non-
integrable, non-essentially bounded observables. Nonethe-
less, here we limit ourselves to subspaces of L∞, for two
reasons. First, as already discussed, L∞ already contains “too

many” observables. Second, we want to follow the approach
of Lenci on the question of mixing for infinite-measure-
preserving dynamical systems,15,16 whereby global observ-
ables are taken from subspaces of L∞. (This is an important
assumption there because the theory exploits the duality
between L1 and L∞.) Another observation to make is that
with the vague “definition” given above, it is impossible to
pre-determine the space of global observables. We do in fact
expect it to depend significantly on the given system. Never-
theless, the common underlying concept can be expressed like
this: a global observable is a function which is supported more
or less all over the infinite-measure space and which measures
a quantity that is roughly homogeneous in space. For exam-
ple, if the reference space is (Rd , m), where m is the Lebesgue
measure, all periodic or quasi-periodic bounded functions are
in principle global observables. Another example is the case
where T : [0, 1] −→ [0, 1] is an expanding map with an indif-
ferent fixed point at 0 and preserves an absolutely continuous
measure that is non-integrable around 0. Then, all bounded
functions which have a limit at 0 or oscillate in a controlled
way in its neighborhood are candidates for global observables.

The main result of this paper, which we present in
Sec. II, is an analogue of the Birkhoff Theorem for cer-
tain global observables relative to a conservative, ergodic,
infinite-measure-preserving dynamical system (X , μ, T). The
hypotheses of the theorem are formulated in terms of the par-
tition of X determined by the hitting times to a set L0. This
partition is a very natural construction; for systems isomor-
phic to a Kakutani tower, which includes all invertible maps
(Ref. 1, Sec. 1.5), it corresponds to the levels of the tower. In
the Appendix, we recall the definition and basic properties of
Kakutani towers. Returning to Sec. II, we also describe sev-
eral concrete examples of systems and observables for which
our results hold.

As our main theorem is certainly not optimal, we further
discuss its core ideas and limitations. First, in Sec. III, we
give an example of a family of dynamical systems—which
happen to be conjugates of α-Farey maps12—and a family of
global observables which do not satisfy the hypotheses of the
theorem, but for which we are nevertheless able to prove that
the Birkhoff average is almost everywhere constant. This is
done using the same ideas as in the proof of the theorem, but
the techniques are rather more complicated and specific to that
case. Finally, in Sec. IV, we briefly recall the known examples
mentioned above of L∞ functions whose Birkhoff average
does not converge pointwise, and we construct other exam-
ples of a similar nature which are interesting because they are
representations of Lévy walks (see Refs. 26, 9, and 18 and
references therein), thus highlighting the connections between
infinite ergodic theory and anomalous stochastic processes. In
light of the vague definition given above, these functions can-
not really be considered counterexamples to our theorem. So,
we also present numerical simulations of the Birkhoff aver-
ages for the observables and the systems discussed in Secs. II
and III.

Let us also remark here that there is a related strand of
research in which finite-measure spaces with non-L1 observ-
ables are investigated. For instance, in the 1990s, first Major19

and then Buczolich6 constructed specific examples where two
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different finite-measure systems assign almost everywhere a
different constant value to the limit of the Birkhoff averages
for the same non-L1 observable. That is, the limit Af exists
almost everywhere and is constant for each of the two sys-
tems, but it is not equal to the integral of f (see also the
survey article7 for related references). More recently, Carney
and Nicol8 investigate growth rates of Birkhoff sums of non-
integrable observables. Also, the effect on the strong law of
large numbers of “trimming” the largest value(s) from the
sums has been studied first by Aaronson and Nakada2 and then
by Kesseböhmer and Schindler.13

II. SETUP AND MAIN THEOREM

For the rest of this paper, we will indicate a dynamical
system by means of a triple (X , μ, T), where X is a measur-
able space, μ a measure on it, and T : X −→ X a measurable
map. We shall always assume that (X , μ) is a σ -finite mea-
sure space. Strictly speaking, we should also mention the
σ -algebra A of all measurable sets of X , but, as we only deal
with one σ -algebra, we shall take it as understood. Unless oth-
erwise stated, we shall always assume that T preserves μ,
meaning that, for all measurable A ⊆ X , μ(T−1A) = μ(A).
The measure μ can be infinite, that is, μ(X ) = ∞, or finite, in
which case we assume it to be normalized, that is, μ(X ) = 1.
Here, we are particularly interested in the first case.

So, given a dynamical system (X , μ, T), an observable f :
X −→ C, a positive integer n, and a point x ∈ X , we denote

Snf (x) :=
n−1∑
k=0

f ◦ Tk(x), (2.1)

Anf (x) := Snf (x)

n
, (2.2)

Af (x) := lim
n→∞Anf (x), (2.3)

whenever the limit exists.
Our goal is to find conditions under which Af (x) exists

and is constant almost everywhere. The easiest such condition
is perhaps that f is a coboundary, as in the next proposition,
whose proof is trivial.

Proposition 2.1. For a dynamical system as described
above, let f = g − g ◦ Tk, with g ∈ L∞(X , μ) and k ∈ Z

+.
Then, Af (x) = 0 μ-almost everywhere.

Another simple condition was already mentioned in the
introduction. We repeat it here for completeness.

Proposition 2.2. Suppose that (X , μ, T) is an infinite-
measure-preserving ergodic dynamical system and f ∈
L1(X , μ). Then, Af (x) = 0 almost everywhere.

Corollary 2.3. If the observable f is such that f − f ∗ ∈
L1 for some f ∗ ∈ C, then Af (x) = f ∗ almost everywhere.

Corollary 2.3 applies to a large number of observables
which converge to a constant “at infinity.” For this phrase
to make sense, a topology and a notion of infinity must be
defined on X . However, this fact is very general and can
be stated in a purely measure-theoretic fashion, as in the
following proposition.

Proposition 2.4. For an infinite-measure-preserving erg-
odic system (X , μ, T), suppose that f ∈ L∞(X , μ) admits f ∗ ∈

C with the following property: For all ε > 0, there exists
a finite-measure set Aε such that |f (x) − f ∗| ≤ ε for every
x ∈ X \ Aε. Then, for μ-a.e. x ∈ X , Af (x) = f ∗.

Proof. Without loss of generality, suppose that f ∗ =
0 (since if not, we can always consider the function
g := f − f ∗).

For ε > 0, define the observable fε := f 1X\Aε , where
1A denotes the indicator function of the set A. By hypoth-
esis, ‖fε‖∞ ≤ ε, so it follows that ‖Anfε‖∞ ≤ ε for all n ∈
N. Consider now the function f − fε = f 1Aε ∈ L1(X , μ). By
Proposition 2.2, there exists a full-measure set Bε such that,
for all x ∈ Bε,

lim
n→∞ (Anf (x) − Anfε(x)) = 0, (2.4)

whence

lim sup
n→∞

|Anf (x)| ≤ ε. (2.5)

If we choose a sequence εi → 0, we conclude that, for every
x ∈ ⋂

i Bεi , Af (x) = 0. �
Proposition 2.4 is extremely general and, for that rea-

son, also rather weak, because it works with observables that
are almost constant on the overwhelming largest part of the
space X . Our main theorem, which we state after giving an ad
hoc construction, is a stronger result that effectively uses the
dynamics of T .

Assume that T is conservative and ergodic. Given a set
L0 with 0 < μ(L0) < ∞, we have that⋃

k≥0

T−kL0 = X mod μ, (2.6)

that is, L0 is a sweep-out set. If we recursively define, for
k ≥ 1,

Lk := (
T−1Lk−1

) \ L0, (2.7)

we see that {Lk}k∈N forms a partition of X mod μ. (We use
the convention whereby 0 ∈ N.) By construction, Lk is the
set of points whose orbit intersects L0 for the first time at
the kth iteration. In other words, {Lk} is the partition which
consists of the level sets of the hitting time to L0. By (2.7),
μ(Lk) ≤ μ(Lk−1). Also, by conservativity, μ(Lk) → 0 as k →
∞. Finally,

∑
k μ(Lk) = μ(X ) = ∞.

Observe that if (X , μ, T) is isomorphic to a Kakutani
tower and L0 corresponds, via the isomorphism, to the base
of the tower, then Lk corresponds to the kth level of the tower
for all k. In particular, the above construction has a clear
interpretation in the case of an invertible T . We refer to the
Appendix for the definition of a Kakutani tower and results
linking Kakutani towers to Theorem 2.5.

Theorem 2.5. Let (X , μ, T) be an infinite-measure-
preserving, conservative, ergodic dynamical system, endowed
with the partition {Lk}k∈N, as described above. Let f ∈
L∞(X , μ) admit f ∗ ∈ C with the following property: ∀ ε > 0,
∃N , K ∈ N such that ∀ x ∈ ⋃

k≥K Lk ,
∣∣AN f (x) − f ∗∣∣ ≤ ε.

Then, for μ-a.e. x ∈ X , Af (x) = f ∗.
Proof. Once again, it is enough to prove the theorem in

the case f ∗ = 0. Also, without loss of generality, we may
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assume that
N‖f ‖∞

K
≤ ε, (2.8)

otherwise, we can always take a larger K in the main hypoth-
esis of the theorem. Define the sets

XK :=
⋃
k≥K

Lk , (2.9)

X c
K := X \ XK , (2.10)

and the observable fε := f 1XK . The hypotheses on T imply
that the orbit of μ-a.e. x ∈ X must enter XK infinitely often.
Let us fix one such x and split its orbit into blocks which are
subsets, alternately, of XK and X c

K . So, let m0 = m0(x) denote
the first time where Tm0(x) ∈ XK , and note that m0 can be
equal to zero (in which case x is already in XK). In other
words, Tm0(x) ∈ XK and Tk(x) ∈ X c

K for all k < m0. Denote
k1 = k1(x) ≥ K the unique integer such that Tm0(x) ∈ Lk1 . Set
n1 := k1 − K so that Tm0+n1−1(x) ∈ LK . Now, let m1 = m1(x)
denote the length of the following excursion in X c

K so that
Tm0+n1+m1−1(x) ∈ L0 and the next orbit point jumps back to
the set XK , say, to the set Lk2 , for some k2 = k2(x) ≥ K.
Again, set n2 := k2 − K. Continuing in this way, we con-
struct two sequences (mj)j≥0 and (nj)j≥1, where setting Mj :=
m0 + m1 + · · · + mj and Nj := n1 + n2 + · · · + nj, we have
that

• m0 ≥ 0 and mj ≥ K for all j ≥ 1.
• TMj+Nj−1(x) ∈ L0 and TMj+Nj(x) ∈ Lkj+1 ⊂ XK for all j ≥ 1.
• fε(TMj+Nj+1+i(x)) = 0 for all j ≥ 0 and 0 ≤ i < mj+1.

Now fix n ≥ m0 + n1 + m1 for which there exists j ∈ N such
that n = Mj + Nj + i, for 0 ≤ i < nj+1. In other words, we
consider all sufficiently large n ∈ N which correspond to stop-
ping the orbit of x during an excursion in XK . We will treat the
other values of n later. The only parts of the orbit that con-
tribute in a non-zero way to the Birkhoff sum Snfε(x) are the
excursions in XK , that is, the blocks of lengths n1, . . . , nj and
i. Each of these j + 1 blocks can be further decomposed into
pi sub-blocks of length N and a remainder sub-block of length
0 ≤ ri < N . By hypothesis, the Birkhoff sum corresponding
to each sub-block, except for the remainder sub-blocks, is
bounded in modulus by ε. The contribution of each remainder
sub-block is instead bounded by N‖fε‖∞ ≤ N‖f ‖∞. Putting
all these observations together, we have that

|Anfε(x)| <
1

Mj + Nj + i

(
ε

j+1∑
i=1

pi + (j + 1)N‖f ‖∞

)

< ε

∑j+1
i=1 pi

Mj + Nj + i
+ (j + 1)N‖f ‖∞

jK

< ε + 2ε = 3ε, (2.11)

having used, among other arguments, (2.8) and the fact that
j ≥ 1.

Finally, consider those n ≥ m0 + n1 + m1 which corre-
spond to stopping the orbit of x during an excursion in X c

K .
Say that n = Mj + Nj+1 + i for some j ≥ 1 and 0 ≤ i < mj+1.
The contribution to the Birkhoff sum of the last excursion in

X c
K is null so, in light of (2.11),

|Anfε(x)| = |AMj+Nj+1+ifε(x)| ≤ |AMj+Nj+1 fε(x)| < 3ε.
(2.12)

In conclusion, |Anfε(x)| < 3ε, for all sufficiently large n,
depending on x. Since f − fε = f 1X c

K
∈ L1, the proof of

Theorem 2.5 is completed in the same way as the proof of
Proposition 2.4, cf. (2.5) et seq. �

Remark 2.6. Let us observe here that Proposition 2.4
can be thought of as a sub-case of Theorem 2.5 with N = 1.
Indeed, bearing in mind the definition of the partition {Lk}, it
is easy to see that the condition in Proposition 2.4 can be refor-
mulated as follows: For all ε > 0, there exists K ∈ N such that
for all x ∈ ⋃

k≥K Lk , |f (x) − f ∗| ≤ ε. Here,
⋃

k≥K Lk plays the
role of the set Aε and this condition is exactly that of Theorem
2.5 with N = 1.

Let us now see some examples of dynamical systems and
observables to which our results can be applied. As already
mentioned, Proposition 2.4 is quite general. Consider, for
instance, a map T : R −→ R which preserves an ergodic infi-
nite, locally finite measure μ. A nice example of such a map
is Boole’s transformation T(x) := x − 1/x, which was shown
by Boole in 18575 to preserve the Lebesgue measure on R and
by Adler and Weiss more than a century later3 to be ergodic.
Other interesting examples are the quasi-lifts and finite mod-
ifications thereof studied in Ref. 17. For all the systems we
have mentioned, every bounded f : R −→ C such that

f ∗ := lim
|x|→∞

f (x), (2.13)

exists verifies the hypotheses of Proposition 2.4, and therefore
Af = f ∗ almost everywhere.

Consider now a piecewise-smooth, full-branched, expand-
ing map T : [0, 1] −→ [0, 1] of the type shown in Fig. 1. If 0
is a strongly neutral fixed point (which means that T ′′ is reg-
ular in a neighborhood of 0), it is known22 that under general
conditions T preserves an absolutely continuous infinite mea-
sure μ such that μ([a, 1]) < ∞, for all 0 < a ≤ 1. Also, T
is ergodic w.r.t. μ.23 It is easy to verify that the sets Lk are
those marked in Fig. 1. Therefore, Proposition 2.4 applies to
all bounded f : [0, 1] −→ C such that

f ∗ := lim
x→0+

f (x), (2.14)

exists.
Remaining in the case of the map T : [0, 1] −→ [0, 1]

described above, let us now introduce a class of non-
trivial global observables which verify the hypothesis of
Theorem 2.5. Given N ∈ Z

+ and c0, c1, . . . , cN−1 ∈ C, let
f : [0, 1] −→ C be defined by

f (x) = cj ⇐⇒ x ∈ Lk with k ∼= j (mod N). (2.15)

In other words, f is a step function on the partition {Lk}, which
is N-periodic in the index k. The stochastic properties of these
observables have been studied in Ref. 4 (Sec. 3.1). It is easy
to see that for all x ∈ Lk , with k ≥ N − 1,

AN f (x) = 1

N

N−1∑
k=0

ck =: f ∗, (2.16)
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FIG. 1. A piecewise-smooth, full-branched expanding map of the unit
interval.

Therefore, Theorem 2.5 applies with N and K ≥ N − 1,
independent of ε. Thus, Af = f ∗ almost everywhere.

It is easy to extend the above idea to a class of step func-
tions on {Lk} which are not periodic in k. For example, take a
sequence (ck)k∈N of complex numbers and a number f ∗ such
that, for every ε > 0, there exists N ∈ Z

+ with the property
that ∣∣∣∣∣∣

1

N

j+N−1∑
k=j

ck − f ∗

∣∣∣∣∣∣ ≤ ε, (2.17)

for every j ∈ N. Examples include quasi-periodic sequences
ck := e2π iαk and many others. Then, let f be defined by f |Lj ≡
ck . This observable satisfies the hypothesis of Theorem 2.5
(again with K ≥ N − 1) by construction.

Looking for more general examples, let us consider
a Kakutani tower T : Y −→ Y , as defined in (A1)–(A4).
We also choose L0 to be the base of the tower
� × {0}. As explained in the Appendix, this implies that
Lk = {(x, k)ϕ(x) ≥ k}, that is, Lk is the kth level of the tower.
It is not difficult to find global observables f which have the
approximate averaging property required by Theorem 2.5 but
with different values of f for different excursions outside of
L0. Take, for instance,

f (x, n) := e2π i(ω(x)n+γ (x)), (2.18)

defined for (x, n) ∈ Y , where ω and γ are measurable real-
valued functions of �. Assume that there exists δ ∈ (0, 1)

such that for all x ∈ �, δ ≤ ω(x) ≤ 1 − δ. This implies, for
some c = c(δ) > 0 and for all x ∈ �, that |1 − e−2π iω(x)| ≥ c.

This observable also satisfies the hypothesis of Theorem
2.5. In fact, for any ε > 0, select N ≥ 2/cε and K ≥ N − 1.
A point (x, n) ∈ ⋃

k≥K Lk is one for which n ≥ K. We have

|AN f (x, n)| = 1

N

∣∣∣∣∣
N−1∑
k=0

e−2π iω(x)k

∣∣∣∣∣ ≤ 2

Nc
≤ ε. (2.19)

Thus, Af = 0 almost everywhere.
As already alluded to in the Introduction, it is hard to

determine a priori the maximal class of global observables
for a given dynamical system. However, for certain sys-
tems, it is rather easy to agree on functions which ought

FIG. 2. A piecewise-smooth, full-branched expanding map of the half-line.
This example corresponds to the example of Fig. 1 via the conjugation
procedure explained in the body of the paper.

to be considered global observables; for example, systems
defined on Euclidean spaces (or large portions thereof) which
preserve the Lebesgue measure. In this case, the translation-
invariance of the reference measure suggests that at least
all periodic and quasi-periodic bounded functions should be
global observables.

Let us therefore consider an interesting class of
Lebesgue-measure-preserving dynamical systems in Euclidean
space: piecewise-smooth, expanding maps T : R

+ −→ R
+,

with full branches and an indifferent fixed point at +∞, as in
Fig. 2. These maps are of the same nature as the interval maps
discussed earlier, cf. Ref. 4. Indeed, if To denotes a piecewise-
smooth, full-branched, expanding map of [0, 1] onto itself,
and μ denotes its infinite absolutely continuous invariant mea-
sure, then �(x) := μ([x, 1]) defines a bijection (0, 1) −→
R

+ such that T := � ◦ To ◦ �−1 is a piecewise-continuous,
full-branched map R

+ −→ R
+ preserving the Lebesgue mea-

sure on R
+. In many cases, T is also piecewise-smooth and

expanding.
One notable example, which we will return to in Sec. IV,

is the Farey map. This map is usually defined as a map on the
unit interval, as follows:

F(x) :=

⎧⎪⎨
⎪⎩

x

1 − x
for x ∈ [0, 1/2]

1 − x

x
for x ∈ (1/2, 1].

(2.20)

Up to factors, F has a unique Lebesgue-absolutely contin-
uous invariant measure μ, which is given by the density
dμ/dm(x) = 1/x. Thus, here the function � is given by

�(x) = μ([x, 1]) =
∫ 1

x

1

ξ
dξ = − ln x. (2.21)

The version of the Farey map transported to the positive real
line is then given by

TF(x) := − ln(F(e−x)) = | ln(ex − 1)|. (2.22)

Let us return to the general case of a map T : R
+ −→ R

+

preserving the Lebesgue measure. The considerations made
above suggest that the first examples of global observables
one should study are the functions f (x) := e2π iωx, with ω ∈
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R \ {0}. Any reasonable notion of average4,15 for these func-
tions would suggest that f ∗ = 0. So, the problem is to show
that, for a.e. x ∈ R

+, Af (x) = 0.

III. PERIODIC OBSERVABLES AND THE α-FAREY
MAPS

In this section, we present non-trivial examples of
piecewise-smooth, Lebesgue-measure-preserving, expanding
maps on R

+, with an indifferent fixed point at +∞, for
which the Birkhoff average of f (x) := e2π iωx, ω �= 0, is almost
everywhere zero. This will require more work than a simple
application of Theorem 2.5, but the underlying ideas are the
same.

Our maps will be conjugates, over the space R
+, of the

well-known α-Farey maps on [0, 1] and will be obtained by
means of the construction explained at the end of Sec. II.

Let us recall the definition of an α-Farey map, as intro-
duced in Ref. 12 (Sec. 1.4). Start with a decreasing sequence
(tk)k∈Z+ of real numbers such that t1 = 1 and limk→∞ tn = 0.
This sequence allows us to define a partition

α := {Ak := (tk+1, tk]|k ≥ 1}, (3.1)

of (0, 1]. We will write ak := m(Ak) = tk − tk+1 for the
Lebesgue measure of the kth partition element. Then, the map
Fα : [0, 1] −→ [0, 1] is defined by setting

Fα(x) :=⎧⎪⎨
⎪⎩

(1 − x)/a1 for x ∈ A1

ak−1(x − tk+1)/ak + tk for x ∈ Ak , for k ≥ 2

0 for x = 0.

(3.2)

The map Fα preserves the (unique up to factors) Lebesgue-
absolutely continuous measure μα given by the density

hα := dμα

dm
=

∞∑
k=1

tk
ak

1Ak , (3.3)

and the measure is infinite if and only if
∑

k tk = ∞.
For later use, let us also recall the definition of the related

α-Lüroth expansion (for more details, we refer again to Ref.
12 (Sec. 1.4)). Each partition α generates a series expansion
of the numbers in the unit interval, in that we can associate to
each x a sequence of positive integers (i)i≥1 for which

x = t1 +
∞∑

k=2

(−1)k−1

(∏
i<k

ai

)
tk

= t1 − a1 t2 + a1a2 t3 − · · · . (3.4)

To lighten the notation, we will write x = [1, 2, 3, . . .]α .
Observe that the map Fα acts on this expansion in the
following way:

Fα([1, 2, 3, . . .]α) ={
[1 − 1, 2, 3, . . . ]α for 1 ≥ 2,
[2, 3, . . . ]α for 1 = 1.

(3.5)

Throughout this section, we will restrict ourselves to the par-
ticular case tk := k−β , with 0 < β < 1/2. The partition gen-
erated by this sequence will be denoted by α(β). In Ref. 12, it

FIG. 3. The α-Farey map Tβ on R
+.

is referred to as an expansive partition with exponent β. Set

τk :=
k∑

j=1

tj ∼ k1−β

1 − β
, (3.6)

where we write xk ∼ yk to mean that limk→∞(xk/yk) = 1.
As anticipated, we want to consider the map Tβ :=

� ◦ Fα(β) ◦ �−1, where �(x) := μα(β)([x, 1]) is defined for
x ∈ (0, 1). Then, Tβ is a piecewise-continuous, full-branched,
Lebesgue-preserving map on R

+. In this case, � is a
piecewise-linear function that maps, for each k ≥ 0, the parti-
tion element Ak+1 onto the interval Lk := [τk , τk+1). Setting
L0 := [0, τ1), a series of straightforward calculations show
that

Tβ(x) =⎧⎨
⎩

�(x) for x ∈ L0
tk

tk+1
(x − τk) + τk−1 for x ∈ Lk , with k ≥ 1.

(3.7)

See Fig. 3 for a picture of Tβ . Note here that, by construc-
tion, the partition {Lk}k≥0 matches for Tβ the definition of the
corresponding sequence of sets given for a general map T
in Sec. II.

We are now in a position to state our main result of this
section.

Proposition 3.1. Let f (x) := e2π iωx, with ω ∈ R \ {0},
and fix β ∈ (0, 1/2). Then, for m-a.e. x ∈ R

+,

Af (x) := lim
n→∞

1

n

n−1∑
i=0

f ◦ Ti
β(x) = 0.

Proof. First of all, let us assume without loss of general-
ity that ω > 0. Then, let us define a new observable g which
is constructed from f in the following way: For each j ≥ 0,



083111-7 M. Lenci and S. Munday Chaos 28, 083111 (2018)

denote by kj the natural number such that j/ω ∈ Lkj . Then let

Ij :=
kj+1−1⋃

i=kj

Li =
[
τkj , τkj+1

)
, (3.8)

ωj := 1

m(Ij)
= 1

τkj+1 − τkj

. (3.9)

Finally, for all x ∈ Ij, set g(x) := e
2π iωj(x−τkj ). �

Let us fix one more piece of notation that we shall use
throughout the proof. For any observable φ, we shall call any
interval [a, b] with the property that φ(x) = e2π i(x−a)/(b−a), for
a ≤ x ≤ b, a wavelength for φ. Therefore, g is a modifica-
tion of our original observable f so that the wavelengths of g
are unions of intervals Lk . Note that, since m(Lk) → 0 when
k → ∞, the modification is smaller and smaller for larger and
larger values of the argument x. In other words, ωk ∼ ω.

For an arbitrary ε > 0, choose K = K(ε) ∈ N sufficiently
large that:

• |f (x) − g(x)| ≤ ε for all x ∈ XK := ⋃
k≥K Lk;

• m(LK) ≤ ε, whence m(Lk) ≤ ε for all k ≥ K;
• Kβ−1 ≤ ε.

To simplify the argument below, let us also suppose that
K = kjo for some jo ∈ N. Moreover, K will satisfy another
condition which we will state later, when it is needed.

Define the observable gε := g 1XK and consider the por-
tion of gε defined on Ij with kj ≥ K, cf. (3.8). Denote by
rj := kj+1 − kj the number of intervals Lk that make up the
interval Ij (recall that gε is defined so as to have its wave-
lengths start and end exactly at the endpoints of these partition
elements).

Consider now a point x ∈ R
+ whose forward orbit inter-

sects some Lk with k ≥ kj+1 − 1. This is equivalent to asking
that, at some time s, Ts

β(x) ∈ Lkj+1−1. Therefore, Ts+1
β (x) ∈

Lkj+1−2 and so on, until T
s+rj−1
β (x) ∈ Lkj . In other words, the

intervals {Lkj+i}rj−1
i=0 that partition Ij each contain exactly one

orbit point of x, from time s to time s + rj − 1. We want to

compare these intervals to the intervals {Bkj+i}rj−1
i=0 , which are

defined to be a partition of Ij into intervals of the same size,
labeled from left to right.

We claim that, for 0 ≤ i < rj,

Lkj+i ∩ Bkj+i �= ∅. (3.10)

Indeed, observe first that the common size of the intervals
Bkj+i is the average of the sizes of the intervals Lkj+i; therefore,
the “relative discrepancy” between the sizes of corresponding
sets can be estimated as follows:

|m(Lkj+i) − m(Bkj+i)|
m(Bkj+i)

=
∣∣∣∣∣
m(Lkj+i)

m(Bkj+i)
− 1

∣∣∣∣∣ ≤ m(Lkj)

m(Lkj+1)
− 1,

(3.11)

because m(Lk) is a decreasing function of k. Clearly, the
relative discrepancy between the sizes of

⋃q
i=0 Lkj+i and⋃q

i=0 Bkj+i, for 0 ≤ q < rj, does not exceed the sum of the
individual discrepancies (3.11). Condition (3.10) will be satis-
fied if the former is always less than or equal to 1. A sufficient

condition for this is

rj

(
m(Lkj)

m(Lkj+1)
− 1

)
≤ 1. (3.12)

Towards the proof of (3.12), we make several observations.
First, by construction, m(Lk) = tk+1 ∼ k−β . On the other
hand, the definition of kj and (3.6) imply that, as j → ∞,

j

ω
∼ τkj ∼ k1−β

j

1 − β
, (3.13)

whence

kj ∼
(

1 − β

ω
j

)1/(1−β)

, (3.14)

and

m(Lkj)

m(Lkj+1)
∼

(
1 + 1

j

)β/(1−β)

∼ 1 + β

1 − β

1

j
. (3.15)

Also, by (3.14),

rj := kj+1 − kj ∼ c1jβ/(1−β), (3.16)

for some c1 = c1(β, ω) > 0.
Putting these observations together, we obtain that, for

some positive constant c2,

rj

(
m(Lkj)

m(Lkj+1)
− 1

)
∼ c2j(2β−1)/(1−β). (3.17)

Since 0 < β < 1/2, the above term vanishes as j → ∞. If we
choose jo sufficiently large, that is, if we choose K = kjo suffi-
ciently large (which is the condition we anticipated earlier we
would state precisely), we can guarantee that (3.12) holds for
all j ≥ jo. This proves the claim (3.10).

Now, for k ∈ N, denote by bk the midpoint of the interval
Bk . Recalling that m(Lk) < ε for all k ≥ K and that Ts+i

β (x) ∈
Lkj+1−1−i, for all 0 ≤ i < rj, it follows from (3.10) that, for the
same values of i, ∣∣∣Ts+i

β (x) − bkj+1−1−i

∣∣∣ < 2ε. (3.18)

Then, since gε is Lipschitz continuous on its wavelength Ij,
with constant 2πωj, and we can find an upper bound c3 > 0
such that 2πωj ≤ c3 for all j ≥ jo, we have∣∣∣gε(T

s+i
β (x)) − gε(bkj+1−1−i)

∣∣∣ < 2c3ε. (3.19)

On the other hand,

rj−1∑
i=0

gε(bkj+1−1−i) = 0, (3.20)

because, for kj ≤ k < kj+1, the bk are the midpoints of the
uniform partition of Ij. Therefore,∣∣∣∣∣∣

1

rj

rj−1∑
i=0

gε(T
s+i
β (x))

∣∣∣∣∣∣ < 2c3ε. (3.21)

In summary, if we have a section of orbit of a point x under Tβ

that travels through an entire wavelength of the function gε,
then the partial Birkhoff average through this excursion can
be at most 2c3ε.
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Now, for x ∈ R
+, let (ni)i∈Z+ denote the sequence of

hitting times to L0. More precisely, x ∈ Ln1 , Tn1
β (x) ∈ L0,

Tn1+1
β (x) ∈ Ln2 , and so on. (Note that these digits are closely

related to the α(β)-Lüroth digits of �−1(x) ∈ [0, 1], which are
[n1 + 1, n2 + 1, n3 + 1, . . .]α(β).)

We want first to consider Angε, with n = Nq := ∑q
i=1 ni.

In other words, we want to estimate the Birkhoff average
of gε along an entire number of excursions back to L0. Let
us suppose first of all that ni ≥ K for all i ≥ 1, since other-
wise we would be adding only zeros for certain portions of
the orbit. Consider the portion of the orbit that lies in the
sets Lni , Lni−1, . . . , LK . This can be split into pi + 1 blocks,
where the initial block runs through a portion (in general)
of a wavelength of gε and the other pi blocks run through
complete wavelengths. Using the index 0 ≤ u ≤ pi, to denote
these blocks, where u = 0 refers to the first block, which
corresponds to the partial wavelength, let ρ(i)

u be the num-
ber of intervals Lk in the uth block. In other words, if the
uth block corresponds to the wavelength Ij, then ρ(i)

u = rj.
Notice that, by (3.13) and (3.16), rj is asymptotic to kβ

j ≤ nβ
i .

This shows, in particular, that ρ
(i)
0 ≤ c4nβ

i , for some constant
c4 = c4(β, ω).

So, in the special case n = Nq = ∑q
i=1(

∑pi
u=0 ρ(i)

u + K),
we obtain

|Angε(x)| <
1

Nq

q∑
i=1

(
c4nβ

i + 2c3ε

pi∑
u=1

ρ(i)
u

)

< c4Kβ−1 1

Nq

q∑
i=1

ni + 2c3ε

≤ (c4 + 2c3) ε =: c5ε. (3.22)

Notice that in the second inequality, we have used the fact
that nβ

i = nβ−1
i ni ≤ Kβ−1ni and estimate (3.21). In the third

inequality, we have used the assumption Kβ−1 ≤ ε.
Let us now consider the case Nq < n < Nq+1, i.e., we

consider the Birkhoff average of gε up to a point which is
in the middle of an excursion back to L0. In the portion of
orbit between time Nq and time n, there could be up to two
blocks (an initial and a final block) that are neither contained
in

⋃K−1
k=0 Lk or form a full wavelength. The contribution to the

Birkhoff sum from these blocks, which is of order at most
nβ

q+1, cannot be compensated for as in (3.22), because the
denominator n > Nq might be much smaller than Nq + nq+1 =
Nq+1. This is a phenomenon that occurs because the numbers
(ni) are distributed (in a sense better specified in the proof
of Lemma 3.2) as the outcomes of a non-integrable random
variable (more precisely, a random variable in the domain of
attraction of a β-stable distribution). Hence, for some q, the
number nq+1 might be very large compared to Nq.

We appeal instead to the following lemma, which we
prove at the end of this section.

Lemma 3.2. Let x = [1, 2, . . .]α(β) ∈ [0, 1] denote the
α(β)-Lüroth expansion of the point x, where 0 < β < 1. Then,
for Lebesgue-almost every x ∈ [0, 1],

lim
n→∞

β
n

1 + · · · + n−1
= 0.

Since the conjugation � : (0, 1) −→ R
+ is non-singular

and since, for a general n, |Angε(x)| does not exceed constant
times ∑q+1

i=1 nβ
i∑q

i=1 ni
+ 2c3ε

∑q+1
i=1

∑pi
u=1 ρ(i)

u∑q+1
i=1

∑pi
u=0 ρ

(i)
u

, (3.23)

we conclude that, in view of Lemma 3.2 and estimate (3.22),

lim sup
n→∞

|Angε(x)| ≤ c5ε, (3.24)

for a.e. x ∈ R
+. Defining fε := f 1XK and recalling that, by

the assumption on K, ‖fε − gε‖∞ ≤ ε, we deduce that, for
all ε > 0, there exists a Lebesgue-full-measure set Bε ⊆ R

+

such that, for every x ∈ Bε, lim supn→∞ |Anfε(x)| ≤ (c5 +
1)ε. Since f − fε ∈ L1(R+, m), the conclusion of Proposition
3.1 is achieved in the same way as that of Proposition 2.4. �

Proof of Lemma 3.2. We first claim that to obtain the
statement of the lemma it is enough to show the following:
For all ε > 0,

∞∑
n=2

m

(
β

n ≥ ε

n−1∑
i=1

i

)
< ∞. (3.25)

Indeed, if this relation holds, by the Borel-Cantelli lemma we
infer that

m

({
x = [1, 2, . . .]α(β) ∈ [0, 1]

∣∣∣∣β
n ≥

ε

n−1∑
i=1

i for infinitely many n ∈ Z
+
})

= 0. (3.26)

In other words, there exists Bε ⊆ [0, 1], with m(Bε) = 1, such
that

β
n∑n−1

i=1 i

≤ ε, (3.27)

for all n larger than some N = N(x, ε). Fix a vanishing
sequence (εi)i∈N and define B := ⋂

i Bεi . Clearly, m(B) = 1
and, for all x ∈ [1, 2, . . .]α(β) ∈ B, the limit in the statement
of the lemma holds true.

It thus remains to prove (3.25). We start by observing that
for every α-Lüroth map, the digits (i) are independent identi-
cally distributed random variables w.r.t. m. We then make the
following sequence of observations:

∞∑
n=2

m

(
β

n ≥ ε

n−1∑
i=1

i

)

=
∞∑

n=2

∞∑
k=n−1

m

((
β

n ≥ εk
) ∩

(
n−1∑
i=1

i = k

))

=
∞∑

n=2

∞∑
k=n−1

m
(
n ≥ (εk)1/β

)
m

(
n−1∑
i=1

i = k

)

=
∞∑

k=1

k+1∑
n=2

m
(
n ≥ (εk)1/β

)
m

(
n−1∑
i=1

i = k

)
. (3.28)
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Now, for k ∈ Z
+, let us define

C(α(β))

k :=
{

x = [1, 2, . . .]α

∣∣∣∣∃n with
n∑

i=1

i = k

}
. (3.29)

In the language of Ref. 12, this is a sum-level set for the parti-
tion α(β), or an α(β)-sum-level set. Observe that, when such
an n exists, clearly n ≤ k. So, in light of the fact that (n) are
i.i.d., we can then rewrite (3.28) as

∞∑
n=2

m

(
β

n ≥ ε

n−1∑
i=1

i

)
=

∞∑
k=1

m
(
1 ≥ (εk)1/β

)
m
(
C(α(β))

k

)
.

(3.30)

We have already mentioned that α(β) is an expansive partition
with exponent β, therefore, by Theorem 1(2)(ii) of Ref. 12,

m
(
C(α(β))

k

)
∼ 1

�(2 − β)�(β)

⎛
⎝ k∑

j=1

tj

⎞
⎠

−1

∼ c

k1−β
, (3.31)

where � denotes Euler’s Gamma function and c is a positive
constant (recall that tk := k−β). Observing also that

m
(
1 ≥ (εk)1/β

) = t�(εk)1/β � = ⌈
(εk)1/β

⌉−β ∼ (εk)−1,
(3.32)

we finally obtain that

∞∑
n=2

m

(
β

n ≥ ε

n−1∑
i=1

i

)
∼ c

ε

∞∑
k=1

1

k2−β
< ∞. (3.33)

This gives (3.25) and concludes the proof of Lemma 3.2. �
Remark 3.3. Proposition 3.1 can be extended to include

the case β = 1/2. In that case, in fact, the r.h.s. of (3.17) does
not vanish as j → ∞, but it is still bounded above. In other
words, the inequality (3.12) holds with a bound possibly larger
than 1 on the r.h.s. The pivotal relation (3.10) may not hold
anymore, but one can still claim that the distance between the
intervals Lkj+i and Bkj+i is a bounded multiple of m(Bkj+i),
which tends to zero as j → ∞. So, it suffices to select a large
enough K = kjo to guarantee that the l.h.s. of (3.18) does not
exceed c6ε, for some c6 > 0. The rest of the proof holds, with
possibly different constants.

Remark 3.4. Another way to generalize Proposition 3.1
is by proving its statement for any periodic continuous global
observable f . In such a case, one calls “wavelength” any inter-
val of the type [jT , (j + 1)T], where T is the period of f .
Without loss of generality, as we have seen many times so far,
one can assume that f ∗ := ∫ (j+1)T

jT f dm = 0. As in the proof
of the proposition, one constructs the observable g by means
of a piecewise affine transformation that adapts the wave-
lengths of f to the intervals Ij defined by (3.8). Once again
|f (x) − g(x)| ≤ ε, for all large enough x. The proof flows as
before, except that:

1. The restrictions gε|Ij = g|Ij are not Lipschitz continu-
ous but only continuous (thus uniformly continuous), so
(3.19) might not hold. On the other hand, since the graphs
of g|Ij get closer and closer, upon suitable translation,
as j → ∞, it is easy to see that one can find a function
δ �→ �(δ), with limδ→0+ �(δ) = 0, which is an upper

bound for the moduli of continuity of all g|Ij , for j ≥ jo.
Therefore, (3.19) can be replaced by∣∣∣gε(T

s+i
β (x)) − gε(bkj+1−1−i)

∣∣∣ < �(2ε). (3.34)

2. Equation (3.20) may not be true: the Riemann sum of g
over the midpoints of the uniform partition of Ij is not
exactly zero in general, but it is nonetheless close to zero
if the partition is dense enough, which happens for j large
enough. In other words, for every j ≥ jo (with a possible
redefinition of jo),∣∣∣∣∣∣

1

rj

rj−1∑
i=0

gε(bkj+1−1−i)

∣∣∣∣∣∣ ≤ ε. (3.35)

So, replacing (3.19) and (3.20) with (3.34) and (3.35), one
rewrites (3.21) as∣∣∣∣∣∣

1

rj

rj−1∑
i=0

gε(T
s+i
β (x))

∣∣∣∣∣∣ < �(2ε) + ε. (3.36)

What matters is that the above r.h.s. vanishes for ε → 0+. The
rest of the proof is the same, except that one uses �(2ε) + ε

instead of 2c3ε.

IV. COUNTEREXAMPLES AND DISCUSSION

The results of Sec. II are obviously not as strong as
the original Birkhoff Theorem, which covers a wide func-
tional space of observables (that is, L1). In particular, one may
point out that the main hypothesis of Theorem 2.5—namely,
in overwhelmingly large portions of the space, the partial
Birkhoff averages of f over long (though fixed!) times are well
approximated by a constant—somehow contains the assertion
of the theorem. On the other hand, the known examples of
L∞ observables whose Birkhoff average does not converge
almost everywhere to a constant are precisely functions that
are constant on regions of the space where the moving point
takes longer and longer excursions.

The most famous such example concerns Boole’s trans-
formation T(x) = x − 1/x on R, cf. Sec. II. It is known that
the frequency of visits to the positive half-line follows a non-
trivial law.24 More precisely, if ν is a Lebesgue-absolutely
continuous probability measure on R (remember that T pre-
serves the Lebesgue measure), then, for 0 ≤ t ≤ 1,

lim
n→∞ ν({An(1R+) ≤ t}) = 2

π
arcsin

√
t. (4.1)

Thus, An cannot converge to a constant almost everywhere.
As a matter of fact, it can be proved that, for m-a.e. x ∈ R,

lim inf
n→∞ An(1R+) = 0

lim sup
n→∞

An(1R+) = 1.
(4.2)

The limit in (4.1) is usually referred to as the arcsine law for
the occupation times of half-lines for Boole’s transformation.
In fact, since 1[a,+∞) − 1R+ ∈ L1(R, m) for all a ∈ R, it fol-
lows from Proposition 2.2 that the indicator function of R

+ in
(4.1) can be replaced by that of any other right half-line. The
law for An(1(−∞,a]) follows straightforwardly.
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This example has been generalized in a number of ways,
cf. Refs. 25 and 21, and references therein. A strong recent
result is that of Sera and Yano (Ref. 21, Thm. 2.7) about
the joint distribution of the frequencies of visits to many
infinite-measure sets. We describe it in loose terms: For an
infinite-measure-preserving, conservative, ergodic dynamical
system (X , μ, T), suppose that X is the disjoint union of
X0, R1, R2, . . . , Rd , with 0 < μ(X0) < ∞ and μ(Ri) = ∞ for
all i. Suppose also that, for i �= j, an orbit point cannot pass
from Ri to Rj without visiting X0. One says that the rays
{Ri} are dynamically separated by the junction X0. Under
a couple of important technical assumptions (one concern-
ing the so-called asymptotic entrance densities from the rays
into the junction and the other concerning the regular vari-
ation of certain normalizing rates (Ref. 21, Ass’s. 2.3 and
2.5)), the random vector (An(1R1), . . . ,An(1Rd )) converges in
distribution, w.r.t. any probability ν � μ, to the vector

(ξ1, . . . , ξd)∑d
i=1 ξi

, (4.3)

where ξ1, . . . , ξd are positive i.i.d. random variables with
one-sided β-stable distributions (save for degenerate cases).
Therefore, typically, the Birkhoff average,

f =
d∑

i−1

γi1Ri , (4.4)

converges in distribution of a non-constant variable.
The above discussion shows that some “dynamical aver-

aging” hypothesis is needed for a bounded observable to fulfill
the assertion of the Birkhoff Theorem. So, the question is, how
slowly is a function allowed to vary over the orbit s of T (say,
how close to a constant on each ray must it be) in order for it
to still have a constant overall Birkhoff average?

The dynamical system and observables of Sec. III are a
good case study. Proposition 3.1 and Remark 3.3 guarantee
that, for 0 < β ≤ 1/2, the Birkhoff average of the “wave”
f (x) = e2π iωx, for the α(β)-Farey map Tβ , vanishes almost
everywhere. Recall that the lengths of the cylinders Lk of Tβ

decrease like k−β . This means that the smaller the β, the closer
the partition {Lk} is to the uniform partition, when restricted
to a wavelength of f , implying that the orbit segments that tra-
verse a wavelength of f contribute with an almost null partial
average for f . By contrast, for β close to 1, there will be many
more cylinders in the right half of the wavelength than in the
left half, making the variation of f along an orbit segment in
the right half much slower than the corresponding variation
on the left half.

So, the arguments in the proof of Proposition 3.1 do not
work for β > 1/2. We do not know whether Anf vanishes
for β > 1/2 as well, but numerical simulations do show a
different behavior than the case β ≤ 1/2; see Figs. 4–8.

We also point the reader to Fig. 9, which shows the erratic
behavior of Re(Anf ) for large β. Also, compare this figure to
Fig. 10, which displays the same plot as in Fig. 9 but for the
Farey map TF as in (2.22). The Farey map is akin to Tβ with
β = 1. In fact, as can be calculated easily, the partition {Lk} for
TF is given by L0 = [0, ln 2) and Lk = [ln(k + 1), ln(k + 2))

for k ≥ 1. Thus, m(Lk) ∼ k−1.

We can produce more counterexamples to a general
Birkhoff Theorem for L∞ observables than mentioned above.
The ones that we present momentarily are interesting not
only because they do not follow directly from the results of
Ref. 21 but also because the Birkhoff sums that we write are
representations of Lévy walks. Lévy walks are well-studied
stochastic processes, often used in nonlinear and statistical
physics as models for anomalous diffusion and transport.26

In fact, we will use this representation to derive a very fine
limit theorem for our observables, thus adding to the connec-
tions between the field of anomalous stochastic processes and
infinite ergodic theory; cf. Ref. 14 and references therein.

Our dynamical system is a Kakutani tower, for which
we employ the notation (Y , ν, T ) of the Appendix. We start
by defining the base map S : � −→ �, where � := [0, 1) ×
[0, 1) and x = (x1, x2) is a generic element of �. Let B =
{Bi}i∈Z+ be a partition of [0, 1) made up of right-open inter-
vals, which are ordered from left to right. Assume also that
m(Bi) ∼ c i−β−1, for some c > 0 and β ∈ (0, 1). Let us define
SB : [0, 1) −→ [0, 1) to be the full-branched, piecewise-linear
and increasing Markov map relative to B. In other words,
SB|Bi maps Bi onto [0, 1) with derivative 1/m(Bi). It is clear
that SB preserves the Lebesgue measure m and that the par-
titions B, S−1

B B, . . . , S−n
B B, . . . are independent w.r.t. m. Then,

let C = {Cj}j∈J be another partition of [0, 1) given by right-
open intervals. Here, J can be either {1, 2, . . . , N}, for some
positive integer N , or Z

+. Again let us assume that the inter-
vals Cj are ordered from left to right. In analogy with the
previous case, we denote SC the full-branched, piecewise-
linear and increasing Markov map of [0, 1) relative to C. This
map has the same properties as SB. Define S := SB × SC , i.e.,
S(x1, x2) := (SB(x1), SC(x2)). Thus, S is a two-dimensional
uniformly expanding map which preserves the Lebesgue mea-
sure of �; in accordance with the notation of the Appendix,
this measure will be called ρ. Also, the partition B ⊗ C :=
{Bi × Cj} of � has the property that all its back-iterates
S−n(B ⊗ C) are mutually independent.

For i ∈ Z
+ denote Ai := Bi × [0, 1). The height function

ϕ : � −→ N is defined by the identities

ϕ|Ai ≡ i − 1. (4.5)

Thus, ρ({ϕ ≥ k}) = ∑
i>k ρ(Ai) = ∑

i>k m(Bi) ∼ cβk−β . It
follows that the invariant measure ν of T , which is the
Lebesgue measure on each level of the tower

Lk := {x ∈ �ϕ(x) ≥ k} × {k} =
⋃

i≥k+1

Ai × {k}, (4.6)

cf. (A3), is infinite.
Lastly, we introduce the observable f : Y −→ C. Let

{γj}j∈J be a set of complex numbers with |γj| = 1 and define f
so that

f |[0,1)×Cj ≡ γj. (4.7)

The easiest example of such an observable is when J = {1, 2}
and γ1 = −1, γ2 = 1.

Proposition 4.1. For the dynamical system (Y , ν, T )

introduced above and the function f defined by (4.7), let us
interpret the Birkhoff sum Snf as a random variable for the
probability measure ν0 := ν(· | L0), where this means that
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FIG. 4. For the map Tβ with β = 0.35, the
figure shows a plot of Ang(x0), with g(x) =
cos(2πωx), ω = 0.2 and x0 = 0.65. Here, 4.5 ×
107 ≤ n ≤ 5 × 107 and the vertical scale is in
units 10−3.

Snf (y) depends on the initial condition y = (x, 0), where x is
chosen randomly in � according to the Lebesgue measure.
Then the process

(Ln(t))t∈R
+
0

:=
(S�nt�f

n

)
t∈R

+
0

,

converges in distribution, w.r.t. the topology of the uniform
convergence on all intervals [0, T], to a continuous C-valued

process (L(t))t∈R
+
0

. If not all γj are equal (assuming that
m(Cj) > 0 for all j ∈ J), then, for every t ≥ 0, L(t) is almost
surely non-constant. In particular,

Anf = Snf

n
,

converges in distribution to a non-constant random variable.

FIG. 5. Same plot as in Fig. 4, for the case
β = 0.48.
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FIG. 6. Same plot as in Fig. 4, for the case
β = 0.50.

Proof. We claim that

Sn(f ◦ T ) =
n∑

k=1

f ◦ T k , (4.8)

is the Lévy walk on C thus defined: A walker stands at the ori-
gin of C when she reads the value of a random integer I1 and a

random complex number �1, with the following probabilities:

∀ i ∈ Z
+, j ∈ J, Prob{(I1, �1) = (i, γj)}

= m(Bi)m(Cj). (4.9)

All other values of (I1, �1) occur with probability zero.
Observe that I1 and �1 are independent by definition; remem-
ber also that |�1| = 1. The walker then takes I1 unit steps in
the direction �1 one step at a time—which is why we speak

FIG. 7. Same plot as in Fig. 4, for the case
β = 0.52.
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FIG. 8. Same plot as in Fig. 4, for the case
β = 0.65.

of “walk” instead of “jump.” At this point, the walker reads
the value of another random pair (I2, �2), with the same prob-
abilities as the previous pair and independent of it. This will
determine, in the same way as before, the motion of the walker
during the next I2 time units. And so on.

In other words, we have described a persistent random
walk on C, equivalently, a random walk with an internal
state,9 with long-tailed inertial segments, since Prob(I1 = i)

∼ c i−β−1, with 0 < β < 1. (The simple case J = {1, 2}, γ1 =
−1, γ2 = 1 corresponds to a simple symmetric Lévy walk on
the real line.)

The claim is not hard to show. Let us for the moment
suppose that the reference, or initial, measure is not ν0 but
ν(· | Bi0 × Cj0 × {0}), for some choice of i0 ∈ Z

+ and j0 ∈ J.
Using the fact that the base map S sends each Bi × Cj affinely
onto � and recalling the definition (A4) of the tower map T ,

FIG. 9. Plot of Ang(x0), for the same g and x0

as in Fig. 4, relative to Tβ with β = 0.98. Here,
0.2 × 108 ≤ n ≤ 108 and the vertical scale is in
absolute units.
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FIG. 10. Plot of Ang(x0), for the same g and x0

as in Fig. 4, relative to the Farey map TF . The
horizontal range and vertical scale are the same
as in Fig. 9.

we see that the push-forward of the initial measure is given by

T∗ν(· | Bi0 × Cj0 × {0}) =
∑
i1,j1

m(Bi1)

m(Cj1)ν(· | Bi1 × Cj1 × {i1 − 1}), (4.10)

where the sum is over (i1, j1) ∈ Z
+ × J. If we we fix one

such pair (i1, j1) and condition the above to Bi1 × Cj1 ×
{i1 − 1}—more precisely, if we condition the initial mea-
sure to the event {T (x, 0) ∈ Bi1 × Cj1 × {i1 − 1}} = {S(x) ∈
Bi1 × Cj1}—we can push-forward the resulting measure down
the levels of the tower. In formula, for all 1 ≤ k ≤ i1,

T k
∗ ν

(· | (Bi0 × Cj0 × {0}) ∩ T −1(Bi1 × Cj1 × {i1 − 1}))
= ν

(· | Bi1 × Cj1 × {i1 − k}) . (4.11)

Therefore, for any y as specified by the conditioning in the
above l.h.s., f (T k(y)) = γj1 , whence Sk(f ◦ T )(y) = kγj1 . At
time k = i1, the r.h.s. of (4.11) is the Lebesgue measure on
Bi1 × Cj1 × {0}, that is, it has the same form as the initial
measure. In other words, the process has renewed, losing all
memory of the initial measure.

In more detail, this implies that if we fix q ∈ Z
+,

(i1, j1), . . . , (iq, jq) ∈ Z
+ × J and consider all the initial con-

ditions y such that the first excursion down the tower starts
in Bi1 × Cj1 × {i1 − 1}, the second excursion starts in Bi2 ×
Cj2 × {i2 − 1} and so on up to the qth excursion, then for all
n := i1 + · · · + iq−1 + k, with 1 ≤ k ≤ iq, we have

Sn(f ◦ T )(y) = i1γj1 + · · · + iq−1γjq−1 + kγjq . (4.12)

Conditioning to the set of all such y and recalling that the pairs
(i1, j1), . . . , (iq, jq) are i.i.d. for the initial measure ν(· | Bi0 ×
Cj0 × {0}) proves our claim, at least for such choice of the
initial measure.

Extending the proof to the case where the initial mea-
sure is ν0, as defined in the statement of the proposition, is

immediate. Indeed, the arguments described above depend in
no way on i0, j0, and ν0 is a convex linear combination of
the probability measures ν(· | Bi0 × Cj0 × {0}), for (i0, j0) ∈
Z

+ × J.
Having established the claim, the assertion of Proposition

4.1 follows from Corollary 4.14 of Ref. 18 and the fact that
Snf = f + Sn−1(f ◦ T ). The process [L(t)] is a combination
of certain Lévy processes whose marginals at any fixed time t
are non-constant with probability 1 (Ref. 18, Eqs. (4.13) and
(3.10)). (In truth, the results of Ref. 18 are stated for the case
where (Ln(t)) is a continuous-time process, that is, the walker
moves continuously with unit speed from one “renewal point”
to the next. Extending such results to our case is trivial.) �

Remark 4.2. One might wonder why, in Proposition 4.1,
the scaling rate of Sfn (that is, n, a.k.a. ballistic scaling)
does not depend on β, the exponent of the tail of the dis-
tribution of the inertial segments, when 0 < β < 1. This is
a fact about Lévy walks, a rigorous proof of which can be
found in Ref. 18. Here, we give a simple, heuristic, expla-
nation. If {Xn}n∈N denotes the Lévy walk in the proof of
Proposition 4.1, let {Yk}k∈N denote its associated Lévy flight,
defined by Y0 ≡ 0 and Yk := ∑k

q=1 Iq�q. (Recall that {Iq}q∈Z+
and {�q}q∈Z+ are two independent i.i.d. processes such that
I1 takes values in Z

+ and is in the normal basin of attrac-
tion of a skewed β-stable distribution, and �1 takes values in
S

1 ⊂ C.) In other words, {Yk} is the Lévy walk {Xn} seen at
its renewal times. Furthermore, {Xn} is a unit-speed interpo-
lation of {Yk}. Now, let τk := ∑k

q=1 Iq denote the sequence
of renewal times, with τ0 ≡ 0. By the hypothesis on I1,
τk ≈ k1/β , as k → ∞.11 The same hypothesis shows that the
whole process {k−1/βY�ks�}s∈R

+
0

converges to a Lévy process

{Y(s)}s∈R
+
0

, in a sense that we do not specify here. Now,
denote by n �→ Kn the generalized inverse of k �→ τk , i.e., the
non-decreasing function N −→ N such that τKn ≤ n < τKn+1.
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Clearly, Kn ≈ nβ . By construction, Xn always lies between
YKn and YKn+1. These two processes are not the same—they
are sometimes called the lagging and leading walks of Xn,
respectively—but it is easy to show that they scale in the same
way. For the purposes of this explanation, we can approximate
Xn with YKn ; therefore, in non-rigorous notation, we can write
that, for n → ∞,

X�nt� ≈ YK�nt� ≈ Y�nβ tβ� ≈ nY(tβ). (4.13)

We end this remark by observing that this explanation only
holds for β ∈ (0, 1). In all other cases, since the first moment
of I1 is finite (or barely infinite), the scaling of Yk is generally
different from that of τk .

The example that we have presented in Proposition 4.1
is in the same spirit as the occupation times of dynamically
separated sets. In fact, if we denote

Rj :=
⋃
k≥1

⋃
i≥k+1

Bi × Cj × {k}, (4.14)

cf. (4.6), we realize that, for j ∈ J, the infinite-measure sets Rj

are dynamically separated by the juncture L0. Observe that,
in the case where the γj are all different, Rj = (Y \ L0) ∩
{f = γj}. In any case, f can be expressed as

f =
∑
j∈J

γj1Rj +
∑
j∈J

γj1[0,1)×Cj×{0}, (4.15)

where the second sum above amounts to an integrable func-
tion, cf. (4.4).

Nevertheless, the statistical properties of Anf cannot be
derived from the main theorem of Ref. 21, and not only
because here we have infinitely many rays. The most impor-
tant difference is that the assumption on the asymptotic
entrance densities (Ref. 21, Ass. 2.3) is not satisfied. This fol-
lows from the triviality of the dynamics on the non-zero levels
of the tower.

Moreover, our system can be generalized to the case of
uncountably many rays. It suffices to replace the base map
with S := SB × σ , where SB is the map defined earlier and σ

is the left shift on the space ([0, 1)N, mN) of sequences of i.i.d.
numbers uniformly distributed in [0, 1). If we define

f (y) = f (x1, (θq)q∈N, k) := e2π iθ0 , (4.16)

and use the reference measure ν0 = ν(· | L0) (here ν0 is iso-
morphic to m × mN on � := [0, 1) × [0, 1)N), we see that
during the qth excursion in the tower, the value of f is e2π iθq

and it is independent of the values taken during the previous
excursions. Therefore, the process Snf is a radially symmetric
Lévy walk on C. The assertions of Proposition 4.1 still hold.
Finally, writing N = {0} × Z

+, it is clear that the sets

Rθ0 := (Y \ L0) ∩ {f = e2π iθ0} =
⋃
k≥1

⋃
i≥k+1

Bi ×
(
{θ0} × [0, 1)Z

+) × {k}, (4.17)

for θ0 ∈ [0, 1), are dynamically separated rays.
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APPENDIX: KAKUTANI TOWERS

Let us briefly recall the definition and basic properties of a
Kakutani tower. For more details, we refer to Ref. 1 (Sec. 1.5).
In this appendix, we restore the indication of the σ -algebra
in the notation. So, let (�, B, ρ, S) be a conservative, non-
singular dynamical system on a σ -finite measure space, and
suppose that ϕ : � −→ N is a measurable function . Then, the
tower over S with height function ϕ is the dynamical system
(Y , C , ν, T ) defined as follows:

Y := {(x, k) ∈ � × N0 ≤ k ≤ ϕ(x)}, (A1)

C := σ ({A × {k}|k ∈ N, A ⊆ {ϕ ≥ k}, A ∈ B)}, (A2)

ν(A × {k}) := ρ(A), (A3)

T (x, k) :=
{

(x, k − 1) if k ≥ 1

{S(x), ϕ(S(x))} if k = 0.
(A4)

(In (A2) the notation σ(·) denotes the σ -algebra generated by
the sets between parentheses.) The tower map T is conserva-
tive and non-singular, and if ρ ◦ S−1 = ρ, then ν ◦ T −1 = ν.
Furthermore, if S is ergodic, then T is ergodic.

Now, suppose that (X , A , μ, T) is an invertible measure-
preserving system, and let � ∈ A be a sweep-out set with
μ(�) > 0. (Note that this implies that T is conservative, by
Maharam’s Recurrence Theorem, see Ref. 1 (Thm. 1.1.7).)
Denote the induced map of T on � by T� : � −→ �, and by
A� and μ� , respectively, the restrictions of A and μ to �.
Also, set

ϕ(x) := min{n ≥ 0T−n−1(x) ∈ �}. (A5)

In other words, ϕ : � −→ N is the first-return function of T−1

to the set �, minus one unit.
Proposition A.1. The tower constructed over the dynam-

ical system (�, A� , μ� , T�) w.r.t. the height function ϕ is
measure-theoretically isomorphic to (X , A , μ, T).

Proof. In the following, we shall always restrict ourselves
to the full-measure set of points in X for which Tn is invertible
for every n ≥ 1.

Since � is a sweep-out set, for almost every x ∈ X , there
exists a smallest n ≥ 0 such that z := Tn(x) ∈ �. We define
the map � : X −→ Y , where Y is the reference space of the
tower as described above, by setting

�(x) := (z, n). (A6)

This map is well-defined because, by construction, the first-
return time of z to �, w.r.t. T−1 must be strictly larger than
n, implying that ϕ(z) ≥ n. Clearly, � is injective, since, for
x1 �= x2 ∈ X , either these two points have different landing
points z1, z2 in �, or z1 = z2. In the latter case, however, the
T-trajectories of x1, x2 cannot get to z1 = z2 after the same
number n of iterations, otherwise the map Tn would not be
invertible. Moreover, for a.e. (z, n) ∈ Y , if we set x := T−n(z),
then �(x) = (z, n), showing that � is also surjective.
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It remains to demonstrate that T = �−1 ◦ T ◦ �. Let us
consider two cases. First, suppose that x ∈ X \ �. Then, we
find our z = Tn(x) ∈ � with n ≥ 1. So,

�−1 ◦ T (�(x)) = �−1(T (z, n)) = �−1(z, n − 1) = T(x).
(A7)

The second case is where x ∈ �. Here, we have that �(x) =
(z, 0), with z = x. Thus,

�−1 ◦ T (�(x)) = �−1(T (z, 0)) = �−1{T�(x), ϕ(T�(x))}
= T(x). (A8)

Here, the final equality holds because ϕ(T�(x)) is equal to
ρ(x) − 1, where ρ denotes the return-time function to � with
respect to T , that is, T�(x) := Tρ(x)(x). �

Consider again the general set-up from Sec. II. So,
(X , A , μ, T) is a conservative, ergodic measure-preserving
dynamical system on a σ -finite, infinite measure space where
we choose a set L0 ∈ A with 0 < μ(L0) < ∞ (L0 is then a
sweep-out set). If it happens that this system is isomorphic to a
tower with L0 identified with the base level � × {0} (as would
be the case for T invertible, as shown above), then each par-
tition element Lk is identified with the kth level of the tower,
i.e., {ϕ ≥ k} × {k}. Moreover, since the tower map sends level
k injectively into level k − 1, we gain in this case that T maps
Lk injectively into Lk−1.
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