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Abstract We study the probability that a horizon appears
when concentric shells of matter collide, by computing the
horizon wave-function of the system. We mostly consider the
collision of two ultra-relativistic shells, both shrinking and
expanding, at the moment their radii are equal, and find a
probability that the system is a black hole which is in qual-
itative agreement with what one would expect according to
the hoop conjecture and the uncertainty principle of quan-
tum physics, and parallels the results obtained for simpler
sources. One new feature however emerges, in that this prob-
ability shows a modulation with the momenta of the shells
and the radius at which the shells collide, as a manifesta-
tion of quantum mechanical interference. Finally, we also
consider the case of one light shell collapsing into a larger
central mass.

1 Introduction

The general relativistic study of the gravitational collapse
leading to the formation of black holes dates back to the sem-
inal papers of Oppenheimer and co-workers [1,2], nonethe-
less it remains one of the most challenging issues of con-
temporary theoretical physics. The literature has grown
immensely [3], but many technical and conceptual difficul-
ties remain unsolved, in particular when one wants to develop
a quantum description of this process.

What is unanimously accepted is that the gravitational
force becomes dominat whenever a large enough amount of
matter is localized within a sufficiently small volume. Thorne
captured the essence of black hole formation from two col-
liding objects in what is known as the hoop conjecture [4],
which roughly states that a black hole will form when the
impact parameter b is shorter than the Schwarzschild radius
RH of the system, that is for

a e-mail: casadio@bo.infn.it
b e-mail: octavian.micu@spacescience.ro

b � 2 �p
E

mp
≡ RH , (1)

where E is total energy in the centre-of-mass frame. Note that
we use units with c = 1, the Newton constant GN = �p/mp,
where �p andmp are the Planck length and mass, respectively,
and h̄ = �p mp. The main advantage of these units is to
make it apparent that the Newton constant converts mass
into length (or the other way around) and provides a natural
link between energy and position (as we shall make more
explicit in Sect. 2). Initially formulated for black holes of
astrophysical size [5–7], for which the concept of a classical
background metric and related horizon structure should be
reasonably safe, the hoop conjecture has now been analysed
theoretically for a variety of situations.

One of the most important questions which arise is
whether the above conclusion works the same way when
the colliding masses (to be more specific, the total energy of
the system) approach down to the Planck scale. Answering
this question is extremely difficult because quantum effects
may hardly be neglected (see, e.g. Ref. [8]) and it cannot be
excluded that the purely general relativistic picture of black
holes must be replaced in order to include the possible exis-
tence of new Planck size objects, generically referred to as
“quantum black holes” (see, e.g. Refs. [9–11]). The chal-
lenge, when dealing with quantum black holes is to describe
a system containing quantum mechanical objects (such as
the elementary particles of the Standard Model) and, at the
same time, identify the presence of horizons.

It was recently proposed in Ref. [12] to define a wave-
function for the horizon (HWF) which can be associated
with any localised quantum mechanical particle described
by a wave-function in position space. This Horizon Quan-
tum Mechanics (HQM) precisely serves the purpose to com-
pute the probability of finding the horizon of a certain radius
centred around the source. Following this prescription one
can directly associate to each quantum mechanical particle
a probability that it is a black hole. In most cases, such a
probability is a rather steep function of the energy which
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decreases to zero quite rapidly below the Planck scale. One
consequently finds that there effectively exists a minimum
black hole mass, albeit not in the form of a sharp threshold,
which entails expectations both from the classical hoop con-
jecture and the Heisenberg uncertainty principle of quantum
physics. Further developments of this proposal can be found
in Refs. [13–21].

Thin spherically symmetric layers of matter, or shells,
are a very common toy model to investigate the classical
dynamics of the gravitational collapse in general relativity
(see, e.g. Refs. [22,23] and references theorein). In this work
we will generalise the HQM to the case in which the mat-
ter source consists of spherically symmetric and concentric
shells, in their centre-of-mass frame, and still neglecting the
time evolution. Our aim is in particular to analyse the colli-
sion of concentric shells and study the probability that a hori-
zon forms by deriving the HWF of the system at the moment
the shells collide. For this purpose, we shall describe the
quantum state of each shell as a Gaussian wave-function in
position space and further take the ultra-relativistic limit of
very large radial momentum (compared to the shell proper
mass). A new effect will emerge, in the form of a modula-
tion of the probability density for the horizon to be located
on the sphere of a certain radius r = RH which, in turn, will
result in a modulation of the probability for the system of
two shells to be a black hole. This is in fact a straightforward
consequence of the shell wave-functions being complex in
momentum space.

It is important to remark here two limitations of our
approach: one is that we investigate the particular case of
spherically symmetric objects1 and the second one is that we
do not take into consideration the time dependence of the
system. The assumption of strict spherical symmetry implies
that quantum fluctuations around the spherical configura-
tion are discarded a priori. Discarded degrees of freedom
would therefore include propagating gravitational perturba-
tions (or gravitons), as well as horizon fluctuations [26]. Such
degrees of freedom are what is usually quantised in the back-
ground field method, their state remaining decoupled from
the source that produces the background. Our approach is
therefore complementary to the usual semiclassical treatment
of quantum field theory on a given curved background [27] in
that the HWF is uniquely determined by the quantum state of
the source, very much like the quantum state of the electron
in a hydrogen atom is determined by the state of the nucleus
(via the Coulomb potential). The interference effect we men-
tioned above could of course be spoiled by the modes we do
not consider here. However, it is not unreasonable to assume
that local quantum fluctuations just superpose and result in
further oscillations, unless they are precisely fine-tuned to

1 The extension to spheroidal sources is a much complicated task and
preliminary results can be found in Refs. [24,25].

cancel the effects we found. Regarding the evolution in time,
we look at it in the same way as in Ref. [14]. The probability
for the shells to form a black hole depends on the mean radii
of the shells, variables which of course evolve in time. One
can see how the system and, therefore, this probability evolve
in time by taking successive “snapshots” as the shells prop-
agate and by then estimating the probability for a horizon to
form in each case (more details will be given below). Finally,
the two limitations are clearly related, since it is possible that
the fluctuations we discard become more and more relevant
as the collapse proceeds towards smaller shell radii.

The paper is organised as follows: in Sect. 2, we shall
briefly review the HQM for a single spherically symmetric
source and generalise it to the case of N concentric shells.
Since it is in general impossible to obtain analytical results,
suitably approximate equations for the case of two shells
are obtained in Sect. 3, where we will also analyse several
different configurations, including the case of a single shell
collapsing into a much heavier central source; conclusions
and future perspectives are summarised in the final Sect. 4.

2 Horizon quantum mechanics for spherical systems

In this section we first review the basics about the idea of
an auxiliary HWF to describe the gravitational radius of a
quantum state for a single particle, and then generalise it to
the case of N concentric shells.

2.1 Single particle case

As we noted in Sect. 1, Newton’s constant naturally relates
mass and length and can therefore be used to define a HWF
given the quantum mechanical wave-function of a particle in
position space. This idea was first put forward in Ref. [12]
and more details about its mathematical formulation can be
found in Ref. [17].

In a spherically symmetric space-time, the line element
can always be written as

ds2 = gi j dxi dx j + r2(xi )
(

dθ2 + sin2 θ dφ2
)

, (2)

with xi = (x1, x2) coordinates on surfaces where the angles
θ and φ are constant. The location of a trapping horizon is
then determined by

0 = gi j ∇i r ∇ j r = 1 − 2 M

r
, (3)

where ∇i r is the covector perpendicular to surfaces of con-
stant area A = 4 π r2, and M = �p m/mp is the active
gravitational (or Misner–Sharp) mass, representing the total
energy enclosed within a sphere of area A. If we set x1 = t
and x2 = r , the function m is explicitly given by
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m(t, r) = 4 π

∫ r

0
ρ(t, r̄) r̄2 dr̄ , (4)

where ρ is the energy density of the matter source in the
Einstein equations. If we further assume the system is static,
Eq. (3) then simply identifies the horizon as the sphere of
radial coordinate

RH = 2 M, (5)

which becomes the usual expression of the Schwarzschild
radius when we take the limit r → ∞ in which m becomes
the total ADM mass.

The purpose of the HQM is to lift the condition (3) (or,
equivalently, the classical Eq. (5)) to a quantum constraint
that must be satisfied by the physical states. Let us then con-
sider a wave-function ψS = ψS(r) representing a spherically
symmetric object which is both localised in space and at rest
in the chosen reference frame, that is a “particle” of rest
mass m. This wave-function can be decomposed into energy
eigenstates,

| ψS 〉 =
∑
E

C(E) | ψE 〉 , (6)

where the sum represents the spectral decomposition in
Hamiltonian eigenmodes,

Ĥ | ψE 〉 = E | ψE 〉, (7)

and H can be specified depending on the model we wish to
consider. We then invert Eq. (5) to obtain E = mp M/�p as
a function of RH, and define the HWF as

ψH(RH) ∝ C
(
mp RH/2 �p

)
, (8)

whose normalisation is finally fixed in the scalar product

〈ψH | φH 〉 = 4 π

∫ ∞

0
ψ∗

H(RH) φH(RH) R2
H dRH . (9)

We interpret the normalised wave-function ψH simply as
yielding the probability that r = RH is the gravitational
radius associated with the particle in the given quantum state
ψS. The localisation of the horizon will consequently be gov-
erned by the uncertainty relation, like the position of the par-
ticle itself [13–21].

Having defined the ψH associated with a given ψS, we can
now compute the probability that the particle is a black hole
as

PBH =
∫ ∞

0
P<(r < RH) dRH , (10)

where

P<(r < RH) = PS(r < RH)PH(RH) (11)

is the probability density that the particle lies inside its own
gravitational radius r = RH. The latter is in turn determined

by the product of the probability that the particle is found
inside a sphere of radius r = RH,

PS(r < RH) = 4 π

∫ RH

0
|ψS(r)|2 r2 dr, (12)

and the probability density for the horizon to be located on
the sphere of radius r = RH,

PH(RH) = 4 π R2
H |ψH(RH)|2 . (13)

As mentioned in the Sect. 1, the HQM was developed
primarily in order to describe what happens with quantum
mechanical sources about the Planck energy. In fact, whereas
General Relativity predicts that one should observe black
holes whenever Eq. (1) holds and (roughly speaking) the
density is sufficiently large [4], quantum effects are expected
to have a strong influence at the Planck scale. The first exam-
ple discussed within this formalism was the one of a single
particle described in position space by a spherically sym-
metric Gaussian wave-packet and having a mass given by
the usual Compton relation with the Gaussian width [13].
The corresponding HWF was used to calculate the proba-
bility PBH for such an object to be a (quantum) black hole,
which turned out to increase smoothly (albeit rather steeply)
from zero to one for the particle mass precisely around the
Planck scale. In the same article, it was shown that the HQM
naturally leads to an effective Generalised Uncertainty Prin-
ciple (GUP) [28–32], which, as usual, manifests itself by
predicting a minimum length around the Planck scale [33].
This GUP is obtained by adding the uncertainties resulting
from the two wave-functions associated with the particle:
the usual Heisenberg uncertainty and the uncertainty in the
horizon radius. Although the HQM was designed primarily
to be useful around the Planck energy, one might wonder
what happens in the limit of energies much larger than the
Planck scale, such as for astrophysical black holes. This case
requires a better description of the black hole interior and was
analysed in Refs. [34,35], where it was found that the corre-
sponding probability PBH is essentially one and the system
should behave (almost) classically.

2.2 Concentric Gaussian shells

We now proceed to apply the previous formalism to the case
of a system composed of N shells with common centre and
different radii as well as shrinking (or expanding) veloci-
ties. The size of each shell will be described by a Gaus-
sian wave-function in position space and, since the HQM
for time-dependent systems has not yet been fully developed
(see Refs. [36,37]), we shall here just consider “snap-shots”
of the system at given instants of time, like in Ref. [14].

Let us denote with ma , Ra and va the masses, areal
radii and velocities of expansion or contraction of the shells,
respectively, where a = 1, . . . , N ≥ 2. Radii and velocities
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will in general vary in time, but since we are going to compute
the HWF for the system at a given instant of time, we can
treat those as constants. In this respect, we are considering a
simplified version of the system of many nested shells stud-
ied in Refs. [38,39]. For further simplicity, and differently
from Refs. [38,39], the background metric is assumed to be
flat, although corrections could be derived for a Gaussian dis-
tribution of classical energy along the lines of Refs. [40–42].

According to the usual quantum mechanical prescription,
the wave-function of a system of N shells is given by the
product2

ψS(r1, . . . , rN ) =
N∏

a=1

ψS(ra; �a, Ra, Pa) . (14)

We assume the individual wave-functions are spherical waves
with a Gaussian profile,

ψS(ra; �a, Ra, Pa) = Na e
− (ra − Ra)

2

2 �2
a

e
i
Pa ra
h̄

ra
, (15)

with �a the (Lorentz contracted) width of the shell, that is

�a =
√

1 − v2
a �̄a = ma �̄a√

P2
a + m2

a

, (16)

where we shall often assume the width of the shell at rest is
given by the Compton relation

�̄a � h̄

ma
= �p mp

ma
. (17)

Finally, the normalisation factor

Na =
{

2 π3/2 �a

[
1 + Erf

(
Ra

�a

)]}−1/2

(18)

ensures that

4 π

∫ ∞

0
|ψS(ra; �a, Ra, Pa)|2 r2

a dra = 1 , (19)

for all a = 1, . . . , N .
For each of the above wave-functions we have

〈 ra 〉 = Ra + �a e
− R2

a
�2
a

√
π
[
1 + Erf

(
Ra
�a

)] � Ra , (20)

where the approximation holds for Ra 
 �a . Likewise, the
expectation value for the radial momentum, which will be
used to calculate the energy of the shells, is

〈 p2
a 〉 � P2

a + m2
p �2

p

2 �2
a

. (21)

2 We do not (anti)symmetrise the product of the wave-functions since
the shells may have different masses and might therefore be distinguish-
able.

Linearity of the spectral decomposition allows us to
expand the wave-function of each shell in energy eigenstates
and then add the results, which we can formally write as

ψ̃S(E) =
∑

E=∑
Ea

[
N∏

a=1

ψS(Ea; �a, Ra, Pa)

]
, (22)

where the superposition depends on the choice of spectral
modes. Since we are considering a spherically symmetric
system, we have a natural choice given by the eigenmodes
of the spatial Laplacian,

− h̄2

r2

∂

∂r

(
r2 ∂

∂r

)
	p = p2 	p , (23)

that is, the spherical Bessel function of degree zero

	p = j0(r p/h̄) = h̄ sin(r p/h̄)

r p
. (24)

Since j0(−z) = j0(z), we can always assume p > 0, and
the momentum eigenmodes satisfy the condition

4 π

∫ ∞

0
j0(p r/h̄) j0(q r/h̄) r2 dr = 2 π2 h̄3

p2 δ(p − q),

(25)

which holds when both p and q > 0.
We then have

ψ̃S(pa; �a, Ra, Pa) =
√

2

π h̄3

∫ ∞

0
ψS(r; �a, Ra, Pa)

× j0(pa r/h̄) r2 dr , (26)

and we obtain

ψ̃S(pa; �a, Ra, Pa)

= i
√

2 Na√
h̄

∫ ∞

0
e
− (r−Ra )2

2 �2
a

[
e−i (pa−Pa ) r

h̄ − ei
(pa+Pa ) r

h̄

]
dr

= i �a Na

2
√
h̄

{
e−i Ra (pa−Pa )

h̄

pa
e
− �2

a (pa−Pa )2

2 h̄2

×
[

1 + Erf

(
Ra√
2 �a

+ i
�a (Pa − pa)√

2 h̄

)]

−e+i Ra (pa+Pa )
h̄

pa
e
− �2

a (pa+Pa )2

2 h̄2

×
[

1 + Erf

(
Ra√
2 �a

+ i
�a (Pa + pa)√

2 h̄

)]}
. (27)

We then notice that, since pa > 0, the main contribution
comes from the Gaussian centred around P̄a ≡ |Pa | and we
can approximate the above expressions simply as
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ψ̃S(pa; �a, Ra,±P̄a)

� ±N̄a
e

∓ i
Ra (pa − P̄a)

�p mp

pa
e
−

�2
a

(
pa − P̄a

)2

2 �2
p m

2
p , (28)

where

N̄a � i �a Na

2
√

�p mp

[
1 + Erf

(
Ra√
2 �a

)]
, (29)

with Na defined in Eq. (18).
We can now use

ψ̃S(p1, ..., pN ) =
N∏

a=1

ψ̃S(pa; �a, Ra, Pa) , (30)

and the dispersion relation

E2
a = p2

a + m2
a , (31)

along with Eq. (5), in order to derive the HWF.

3 Black hole probability for two shells

In this section we consider several special cases in which the
system is simply made of N = 2 shells, which could be of
particular interest to investigate the horizon formation caused
by the collision of very thin relativistic layers of matter.

The wave-function of each shell will be given by Eq. (15)
with a = 1, 2, so that the total wave-function of the system
of two shells is the direct product

ψS(r1, r2) =
2∏

a=1

ψS(ra; �a, Ra, Pa) . (32)

In order to compute the spectral decomposition, we go
through momentum space and employ the approximate
expression (28) for each shell. The two-shell state can then
be written as

| ψ
(1,2)
S 〉 =

2∏
a=1

⎡
⎣4 π

∞∫

0

p2
a dpa ψ̃S(pa; �a, Ra, Pa) | pa 〉

⎤
⎦ .

(33)

The relevant coefficients in the spectral decomposition (6) are
given by the sum (22) of all the components of the product
wave-function with the same total energy E , that is

C(E) =
〈
E

∣∣∣∣
∫ ∞

0
dE ′

∣∣∣∣ E ′
〉

×
〈
E ′

∣∣∣∣∣∣
2∏

a=1

⎡
⎣4 π

∞∫

0

p2
a dpa ψ̃S(pa; �a, Ra, Pa)

∣∣∣∣∣∣
pa

〉⎤
⎦

= 16 π2

∞∫

0

∞∫

0

ψ̃S(p1) ψ̃S(p2) δ(E − E1(p1) − E2(p2))

× p2
1 p2

2 dp1dp2 , (34)

with pa and Ea related by the relativistic dispersion relation
(31).

Assuming that the rest masses ma of the shells are much
smaller than the Planck scale, black holes are expected to
form with a significant probability only when the momenta
of the two shells are of the order of the Planck mass, that is
|Pa | 
 ma . Eq. (21) then yields

〈 p2
a 〉 � 2 P2

a . (35)

and, if we employ the Compton relation (17), the Lorentz
contracted width (16) of the shells becomes

�a � �p mp√〈 p2
a 〉 + m2

a

∼ �p mp√
2 |Pa |

. (36)

We next consider different combinations of Ra and Pa
and compute the corresponding probabilities (10) that they
are black holes.

3.1 Shells collapsing with equal speeds at same radius

We first consider two shells of equal mass travelling together
with equal radial velocities, v1 = v2 ≡ −v, at the moment
their radii R1 = R2 ≡ R > 0. Given their equal masses,
the two shells also have the same momenta P1 = P2 ≡
−P and equal Lorentz contracted widths. The case of two
shells overlapping at zero mean radius (R = 0) will also be
discussed at the end of this subsection.

The wave-functions for the two shells are described in
position space by Eq. (15), while the wave-function of the
system is the product of the two, as shown in Eq. (14). In
momentum space the wave-functions of the two shells are
given by the expressions in Eq. (27), which simplify to the
corresponding approximate expressions in Eq. (28). In partic-
ular, since we are considering collapsing shells, the momenta
are negative and one needs to use the lower signs in Eq. (28).

3.1.1 Finite mean radius

As detailed previously, we use the momentum space wave-
functions to compute the unnormalized HWF by replacing
the expression for the Schwarzschild radius from Eq. (1) into
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Fig. 1 Probability density for the horizon to be located on the sphere of
radius r = RH, for a total energy E = 2

√
2mp � 2.8mp (dotted line),

E = 4
√

2mp � 5.7mp (dashed line) and E = 6
√

2mp � 8.5mp
(continuous line). Curves peak at values larger than RH ∼ 2 E

Eq. (34) and obtain

ψH(RH) ∝

[
Erf

(
R P√
2 �pmp

)
+ 1

]2

Erf
(

R P
�pmp

)
+ 1

× exp

(
− m2

p R2
H

16 �2
p P2 + mp RH

2 �p P
− i R RH

2 �2
p

+ 2 i
R P

�p mp

)

×

⎡
⎢⎢⎣
(
R2

H

�2
p

− 8
P2

m2
p

)
Erf

(
mp RH

4 �p P

)
+ 4 e

− m2
p R2

H
16 �2

p P2

√
π

RH P

�p mp

⎤
⎥⎥⎦.

(37)

The probability density PH in Eq. (13) for the horizon
to be located on the sphere of radius r = RH is shown in
Fig. 1. Unlike the cases previously considered [13–16,19],
this probability density becomes maximum at values of
RH slightly larger than twice the total energy of the sys-
tem. While the hoop conjecture (1) suggests that the peak
should be located around RH � 2 �p (2 |√〈 p2

a 〉|/mp) =
4
√

2 �p |P|/mp, the probability density peaks at values of
RH corresponding to larger values of the total energy E , as it
can be seen in Fig. 1. For instance, when considering the case
P = mp, the total energy should be equal to 2

√
2mp and the

horizon radius of this system should be RH � 4
√

2 �p. This
case is represented by the dotted line in Fig. 1, and we can
see that PH is maximum around RH � 8 �p. This is also true
for the other two cases plotted in the same figure. The values
of the total energies are mentioned in the caption and one can
easily verify that in each instance the location of the peak is
at a larger value than the one expected from Eq. (1).

After normalising the HWF, one can use it to calculate
the probability PBH = PBH(R, E) = PBH(R, 2

√
2 |P|) for

Fig. 2 Probability for two shells of equal radial momenta to be a black
hole as a function of the radius R and the total energy E (in Planck
units). The blue plane delimits the region above which the probability
PBH > 0.8

the system of two shells to be a black hole as a function of
the radius of the shells R and the value of the total energy
of the system E , by following the procedure described in
the last part of Sect. 2.1. This probability is displayed by the
three-dimensional plot in Fig. 2, where the horizontal plane
intersects the graph at PBH = 80% for easy reference. Two
slices from this three-dimensional plot are displayed in Fig. 3:
one graph represents the probability for the two shells to be
a black hole as a function of the total energy E for a constant
value of the mean radius R, while the other represents the
probability for the system to be a black hole as a function of
the mean radius R for a given value of the total energy E .

The plot on the left of Fig. 3, obtained for a constant mean
radius R = 10 �p (this should be understood in the sense
that two shells collide at this particular radius) shows that
the probability PBH is already rather large for values of the
total energy E � 4mp, which is below the value of E = 5mp

that one calculates from the classical hoop conjecture for two
shells overlapping at R = 10 �p. The classical hoop conjec-
ture suggests the existence of a threshold effect for black
hole formation in the sense that these objects should only
form when the impact parameter satisfies Eq. (1). We see
that the HQM instead predicts a smooth increase of the prob-
ability PBH from zero to one and, moreover, this probability
is not zero for values of the total energy smaller than the ones
dictated by the hoop conjecture.

The same conclusion can be inferred from the plot on the
right of Fig. 3, which shows the dependence of the probability
for the system of shells to be a black hole as a function of
the mean radius at which they collide for a total energy of
the system E = 3

√
2mp. Again, the hoop conjecture would

suggest that the probability for the system of shells to form a
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Fig. 3 Probability for the two-shell system to be a black hole as a function of the total energy E for R = 10 �p (left plot) and the same probability
as a function of the mean radius R for E = 3

√
2mp � 4.2mp (right plot). Dots represent the values computed numerically

black hole should drop to zero when they collide at mean radii
values larger than 6

√
2 �p � 8.5 �p. Instead, the probability

decreases slower and it is about 50% at R � 11 �p.

3.1.2 Vanishing mean radius

A special case worth considering is when the two shells have
reached zero mean radius. The corresponding unnormalised
HWF can be obtained by setting R = 0 in Eq. (37). For two
collapsing shells, this simplifies to

ψH(RH) ∝ e
− m2

p R2
H

16 �2
p P2 +mp RH

2 �p P

⎡
⎣
(

8
P2

m2
p

− R2
H

�2
p

)
Erf

(
mp RH

4 �p P

)

− e
− m2

p R2
H

16 �2
p P2 4 RH P√

π �p mp

⎤
⎦ . (38)

Similarly to the general case discussed earlier, the probability
density for the horizon to be located on the sphere of radius
r = RH becomes maximum at values of RH larger than twice
the energy of the system, as can be seen in Fig. 4.

The plot in Fig. 5 shows the probability PBH for the sys-
tem of two shells to be a black hole as a function of the total
energy of the system E . This was, of course, obtained from
the normalised HWF by following the procedure described
earlier. The probability PBH increases with the total energy
E , reaching 50% for values of the total energy of about mp,
which is also the threshold value suggested by the hoop con-
jecture. The plot shows that black holes can also form, with
smaller probabilities, below this value.

3.2 Shells collapsing with different speeds at same radius

A more general case is the one of two shells which have
different momenta P1 and P2 that collide at R1 = R2 ≡ R.

0 2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

RH

lp

P
H
(R

H
)

Fig. 4 Probability density PH(RH) = 4 π R2
H |ψH(RH)|2 for the hori-

zon to be located on the sphere of radius r = RH, for E = 1.2
√

2mp �
1.7mp (dotted line), E = 1.6

√
2mp � 2.3mp (dashed line) and

E = 2
√

2mp � 2.8mp (continuous line) for two overlapping shells
with vanishing mean radius. Curves peak at values larger than RH ∼ 2 E

The probability for the two shells to form a black hole as a
result of the collision is calculated the same way as earlier
and the three dimensional plot of PBH = PBH(R, E1 + E2)

for this case is shown in Fig. 6. The values of the momenta
for the two shells are P1 = −5 P and P2 = −P (we remind
our readers that the negative signs mean that both shells are
contracting).

To make the results clearer for this case as well, we point
our readers to the top plots in Fig. 7. In the top left plot
we consider two shells which collide at R = 30 �p. The
probability for the two shells to form a black hole is already
more than 50% for a total energy of 11mp. When using the
hoop conjecture to calculate the threshold energy needed to
form a black hole with a radius of 30 �p, the result is E =
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Fig. 5 Probability for the system of two shells that collide at R = 0 to
form a black hole as a function of the total energy E (in units of Planck
mass)

Fig. 6 Probability for two collapsing shells with momenta P1 = −5 P
and P2 = −P to form a black hole as a function of the radius R and
the total energy E (in Planck units). The blue plane delimits the region
where the probability PBH > 0.8

15mp. The plot on the top right represents a slice of the
three-dimensional plot where the total energy is constant and
equal to 6

√
2mp � 8.5mp. In this case, the hoop conjecture

suggests that the horizon radius should be at 17 �p. We again
notice that the probability for a black hole to form is already
larger than 50 % if the two shells collide at a radius of about
20 �p and it increases with the decrease of the mean radius.

In order to understand how the probability PBH evolves,
both as a function of the total energy and of the mean radius,
two more cases were added to the plot in Fig. 7. The mid-
dle left and right plots represent two collapsing shells of
equal momenta. The bottom plots represent a single collaps-
ing shell. For consistency, the total energy is the same: for
the two-shell scenarios the sum of the two momenta in each

case is the same and it is also equal to the momentum of the
single collapsing shell.

By comparing the three plots on the left we notice that
all three cases are fairly similar. Regardless of whether the
same amount of energy is distributed between two shells or
it is carried by a single shell, for the collision taking place
at the same mean shell radius the probability PBH increases
almost in the same way with the total energy. For instance, if
we evaluate this probability for E = 14mp on all three plots,
we obtain PBH � 80% in both cases of colliding shells and a
slightly larger value when the entire momentum corresponds
to a single shell. The same argument applies to the three plots
on the right: when the total energy is the same, the probability
for a black hole to form varies very similarly with the mean
radius of the shells in all three cases.

3.3 Shells colliding with opposite speeds at finite radius

We now investigate the horizon formation in the case of two
shells with radial speeds in opposite directions that collide
at R1 = R2 ≡ R > 0. The wave-functions for the two
shells are described by Eq. (15), where one needs to keep
track of the signs of the two momenta. The HWF can then be
calculated in a similar fashion as it was done in the previous
section. One needs to use the upper signs from Eq. (28) for
the expanding shell (with positive P) and the lower signs for
the collapsing one (with negative P). The normalised HWF,
whose expression we will not write down explicitly due to
its cumbersome mathematical form, is then used to calculate
the probability for the two colliding shells to form a black
hole.

First we can inspect the probability density PH in Eq. (13)
for the horizon to be located on the sphere of radius r = RH,
which is shown in Fig. 8. We have considered four differ-
ent cases. The upper plots are obtained for two shells with
equal and opposite momenta P1 ≡ P = −P2 that collide at
R = 5 �p, respectively R = 7 �p. The lower plots represent
two shells colliding at the same mean radii as above, but hav-
ing different momenta: P1 ≡ 2 P and P2 ≡ −P . Unlike the
corresponding plots shown in the previous sections, or other
cases considered previously [13–16,19], this time PH shows
a modulation, with roughly a Gaussian envelope, clearly due
to the interference between the wave-functions of the Gaus-
sian shells in momentum space. This behaviour is most obvi-
ous when the two shells have exactly equal and opposite
momenta. When the momenta of the shells are different,
the oscillatory behaviour overlapping the Gaussian profile
becomes more asymmetric, as can be seen from the bottom
plots of Fig. 8. This behaviour only appears when the two
shells collide at a mean radius larger than zero. When com-
paring the plots on the left to the ones on the right, we notice
that PH oscillates faster with RH as the mean radius of the
collision increases. When the momenta are equal in mag-
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Fig. 7 Top left: Probability PBH for the system of two collapsing shells
with P1 = 5 P2 to be a black hole as a function of the total energy of the
two shells for R = 30 �p. Top right: PBH as a function of the mean radius

R for P1 = 5mp, P2 = mp and E = 6
√

2mp � 8.5mp. Middle left:
PBH for the system of two collapsing shells with P1 = P2 as a func-
tion of the total energy of the two shells for R = 30 �p. Middle right:

PBH as a function of the mean radius R for P1 = 3mp, P2 = 3mp

and E = 6
√

2mp. Bottom left: PBH for a single collapsing shell as
a function of the energy of the shell for a mean radius R = 30 �p.
Bottom right: PBH for a single shell as a function of the mean radius R

for P = 6mp and E = 6
√

2mp
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Fig. 8 Probability density for the horizon to be located on the sphere
of radius r = RH for two shells with opposite momenta. Top left:

P1 = P = −P2 for a total energy E = 2
√

2mp � 2.8mp and an
average radius of R = 5 �p. Top right: P1 = P = −P2 for a total

energy E = 2
√

2mp and an average radius of R = 7 �p. Bottom left:
P1 = 2 P and P2 = −P for a total energy E = 2

√
2mp and an average

radius of R = 5 �p. Bottom right: P1 = 2 P and P2 = −P for a total

energy E = 2
√

2mp and an average radius of R = 7 �p

nitude, the probability density becomes maximum at values
of RH smaller than the ones from Eq. (1). As the difference
between the momenta of the shells increases, PH tends to be
maximum at values closer to RH = 2 �p E/mp, where E is
the total energy of the system. We remark once more that, as
discussed in the Sect. 1, this oscillatory behaviour might be
influenced by other degrees of freedom which are not taken
into account in this work due to the complexity of the calcu-
lations that this endeavour would require. A generalisation
of this particular case is deferred for a separate future work.

A three-dimensional plot of the probability PBH =
PBH(R, 2 E) obtained for equal and opposite momenta is
presented in Fig. 9. When comparing this plot to the one for
the two shells having the same velocity in Fig. 2, we notice
that for the same value of the total energy of the system, the
probability PBH decreases approximately twice as fast with
the radius in the case of shells with opposite speeds. The same
conclusion can be drawn when comparing the plots from

Fig. 9 Probability for two colliding shells with momenta P1 = P and
P2 = −P to form a black hole as a function of the radius R and the total
energy E (in Planck units). The blue plane delimits the region where
the probability PBH > 0.8
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Fig. 10 Top left: Probability PBH for a system of shells with oppo-
site radial momenta P1 = P and P2 = −P to be a black hole as a
function of the total energy of the two shells for R = 10 �p. Top right:
PBH as a function of the mean radius R for P1 = P and P2 = −P
and E = 3

√
2mp � 4.2mp. Bottom left: PBH for a system of shells

with opposite radial momenta P1 = 2 P and P2 = −P to be a black
hole as a function of the total energy of the two shells for R = 10 �p.
Bottom right: PBH as a function of the mean radius R for P1 = 2 P and

P2 = −P and E = 3
√

2mp

Fig. 10 with the ones in Fig. 3. Before continuing the analy-
sis, we need to explain that the top plots from Fig. 10 represent
two perpendicular slices of the above three-dimensional plot,
while the bottom ones are generated for a similar scenario
in which we consider two shells with momenta P1 ≡ 2 P
and P2 ≡ −P . In all three cases discussed here, including
the one from Fig. 3, the two shells are assumed to collide
at R = 10 �p. By examining them side by side, we observe
that the probability PBH increases faster with the energy of
the system when the two shells have parallel radial momenta
than when their momenta are opposite. Moreover, when com-
paring the two cases from Fig. 10, we see that for the same
value of the total energy the probability is the smallest when
the shells have equal momenta, and it increases with the dif-
ference between the momenta of the shells. This trend was
verified to be consistent for larger differences between the
momenta of the two shells.

The probability PBH being the smallest for shells with
equal and opposite momenta, and increasing with the differ-
ence between the momenta of the two shells for the same
total energy is a particular effect for systems of shells with
opposite momenta. In Sect. 3.2, where we compared shells
with different radial momenta in the same direction, we con-
cluded that the probabilities are approximately the same,
regardless if the same energy is carried by a single shell,
or distributed between two collapsing shells of equal or
different momenta. As we stated once more, the present
case is different, and we attribute this effect to the sim-
ple fact that the wave-functions (15) in momentum space
are necessarily complex and will give rise to interference
effects, as shown in Fig. 8. A system of nested collapsing
shells is indeed the first instance we have encountered which
makes this quantum mechanical feature of the HWF appar-
ent.
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Similar conclusions can be drawn from the plots on
the right in Fig. 10, which show that the probability PBH

decreases faster with the radius R when the two shells have
opposite radial momenta than when they are changing in the
same direction, and that the decrease with the radius is the
fastest when the two shells have equal and opposite radial
momenta. As stated earlier, from the hoop conjecture one
estimates that black holes should only form when the total
energy of the two shells overlapping at R = 10 �p is larger
than 5mp. We notice that in the case of shells with equal
and opposite momenta PBH is close to zero for a total energy
of about 5mp, while in the other cases this is larger than
40% (it is larger than 80% for shells changing in the same
direction). Similarly, for the plots on the right, the hoop con-
jecture suggests a zero probability for the system of shells to
form a black hole if they collide at mean radius values larger
than 6

√
2 �p � 8.5 �p. While for equal and opposite radial

momenta this seems to be the case, the plots on the right of
Fig. 10 show that the probability is about 40% for shells with
different momenta and Fig. 3 shows that when the momenta
are parallel this probability is up to 90%.

3.4 Single shell collapsing on a central mass

In this section we consider a Gaussian shell collapsing
towards a central spherical classical object of mass m. Con-
sidering that the gravitational mass of the central object is
evaluated by integrating on a flat background as in Eq. (4),
the density profile of the object does not influence the result
as long as the probability for the system to form a black hole
is evaluated before or when the collapsing shell of radius R
reaches the edge of the central mass distribution. The only
variables that enter the equation are the total energy contained
inside the sphere of radius R and the parameters describing
the collapsing shell.

The configurations considered in Sect. 3.2 can be viewed
as a special case in which a system of N 
 1 shells is divided
into a subsystem of (N − 1) shells that is described as one
macro-shell (the shell with larger momentum) and a much
lighter single shell. The results presented in this section can
also be looked at as a system of N 
 1 shells which is divided
into a subsystem of (N −1) shells that already collapsed and
formed the central mass m and an additional lighter contract-
ing shell. Both these cases could be of particular interest to
investigate the horizon formation caused by the addition of
a small amount of energy to a macroscopic system very near
the threshold of forming a black hole.

Due to the analogy between this case and the one from
Sect. 3.2, we consider values for the central mass and shell
momentum that will make comparisons between the two
cases easy to read. Fig. 11 shows the three dimensional plot
of the probability PBH = PBH(R,m + E) = PBH(R,m +√

2 |P|) for the system to form a black hole for a value of

Fig. 11 Probability for a shell collapsing towards a central mass m
to form a black hole as a function of the radius of the central mass R
and the total energy of the system E (in Planck units). The blue plane
delimits the region where the probability PBH > 0.8

the central mass of m = 13mp and the energy of the col-
lapsing shell varying from 0.5

√
2mp to 9

√
2mp. The plot

shows that, when the collapsing shell has very little energy,
the probability for the object to become a black hole is zero
except when the radius of the central object is about 26 �p,
which is the Schwarzschild radius that corresponds to a mass
of 13mp. This is, of course, the expected behaviour for this
limit. Regardless of the momentum of the infalling shell,
there is an object that has a radius of roughly the size of its
horizon radius.

For the same value of the central mass, for larger values of
the momentum of the infalling shell (reflected in the larger
value of the total energy of the system), the radius at which
the probability for a black hole to form approaches one also
becomes larger. We would like to make a remark here. As
detailed earlier, for this plot we supposed that the central mass
occupies the whole volume up to the radius R at which the
collision occurs. In principle, considering that the radius of
the central object does not play a role in calculating this prob-
ability (we only have to make sure that it is smaller or at most
equal to the radius of the shell), the central mass could be con-
tained within a smaller volume than the one enclosed by the
collapsing shell and the probability PBH would increase in the
same way with the momentum of the shell and its radius R.

4 Conclusions and outlook

Thin shells of matter in general relativity provide a very
simple, yet useful way of modelling processes that might
occur inside compact astrophysical objects which collapse
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and form black holes [22,23]. In this work, we have started
to investigate the quantum dynamics of shells by means of the
HQM applied to two main scenarios: (a) two ultra-relativistic
shells colliding into each other and (b) one shell collapsing
towards a larger central source.

The first scenario regards collisions between two Gaus-
sian shells that reach the same mean radius and was stud-
ied in Sects. 3.1–3.3. Two types of situations can be distin-
guished: shells which both shrink, so that their radii changes
in the same direction, and shells whose radii change in oppo-
site directions. For shells shrinking in the same direction the
results show that, independently of the way in which the
energy is distributed between the two shells or if it is carried
by a single shell, for the same mean shell radius the proba-
bility for black holes to form increases approximately in the
same way with the total energy. Moreover, the probability
PBH increases gradually from zero to one as the energy of
the system increases, and is still larger than zero at energies
below the minimum value estimated using the hoop conjec-
ture at face value. For instance, we see from Fig. 7 that for
energies smaller than 15mp (the minimum energy at which
black holes with radii of 30 �p should form in a classical
scenario) this probability already increased to about 80%.

The above findings are consistent with what was obtained
previously for other cases investigated using the HQM. The
case that stands out is the one of shells that collide with radii
changing in the opposite directions. First we need to draw
the reader’s attention to the interference effects that lead to
the modulation of the probability density for the horizon to
be located on the sphere of radius r = RH. This is the first
instance in which this behaviour was observed. When com-
paring this case with the previous ones, considering the same
mean radius at the instant of the collision, the probability for
black holes to form increases slower with the energy. When
considering the same total energy of the system, the probabil-
ity PBH drops to values below 80% at radii that are almost half
of the radii at which this happens in the other cases. Not only
this, but the way the energy (roughly equal to the momentum
in the ultra-relativistic limit) is distributed between the two
shells affects the probability for black holes to form as well,
which also differs from what was found earlier for simpler
configurations. All other parameters such as mean radii and
total energy of the system being equal, PBH is the smallest
for shells with equal and opposite momenta and it increases
as the difference between the momenta of the two shells gets
larger. We attribute this effect to the interference between
the wave-functions of the two Gaussian shells in momentum
space, and this is an effect that could not be explained in a
classical scenario.

The case (b) presented in Sect. 3.4 can be looked at as a
separate category from the rest, because it does not involve a
collision between two shells of matter. In this case, we con-
sidered a spherical Gaussian shell that is collapsing towards

a central mass. The central mass can be a classical spheri-
cal object of mass m or even a shell, or system of shells, of
radii smaller than the collapsing shell having a total energy
E ∼ m. The smallest horizon radius possible, when the shell
carries a negligible amount of energy, is the one correspond-
ing to the central mass, and a black hole can form provided
the mass is located within its Schwarzschild radius. Other-
wise, the size of the horizon increases with the total energy of
the system. However, the probability function for a horizon to
form (or the system to be a black hole) is not a step function
as the classical hoop conjecture would suggest. The prob-
ability PBH is again a smooth function that increases from
small values of the total energy, when the mean radius of the
shell is larger than the classical value of the horizon corre-
sponding to the total energy of the system, and approaches
one when the mean radius of the shell is smaller than said
classical value.

Both scenarios (a) and (b) above could be useful for our
understanding at the quantum level of the formation of a
(apparent) horizon inside a collapsing astrophysical body.
Of course, any realistic modelling of such an event requires
heavy numerical calculations already at the classical level of
the Einstein equations sourced by a fluid with given equa-
tion of state. We believe it would be very interesting to try
and analyse whether the HQM description for the horizon
formation could be incorporated into such numerical codes
and whether the quantum nature of matter could lead to any
significant departures from the purely classical expectations.
Finally, let us mention that the study of colliding shells is of
interest also for early cosmology. For instance, it was shown
in Ref. [43], that isolated spherical bubbles [44] could appear
at the end of first order phase transitions with relativistic
shrinking velocity leading to primordial black hole forma-
tion.
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