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Abstract

mTOR kinase and the A isoform of lactate dehydrogenase (LDH-A) are key players control-

ling the metabolic characteristics of cancer cells. By using cultured human breast cells as a

“metabolic tumor” model, we attempted to explore the correlation between these two factors.

“Metabolic tumors” are defined as neoplastic conditions frequently associated with features

of the metabolic syndrome, such as hyper-insulinemia and hyper-glycemia. MCF-7 cells (a

well differentiated carcinoma) and MCF-10A cells (a widely used model for studying normal

breast cell transformation) were used in this study. These cells were exposed to known fac-

tors triggering mTOR activation. In both treated cultures, we evaluated the link between

mTOR kinase activity and the level of LDH expression / function. Furthermore, we elabo-

rated the metabolic changes produced in cells by the mTOR-directed LDH-A up-regulation.

Interestingly, we observed that in the non-neoplastic MCF-10A culture, mTOR-directed up-

regulation of LDH-A was followed by a reprogramming of cell metabolism, which showed an

increased dependence on glycolysis rather than on oxidative reactions. As a consequence,

lactate production appeared to be enhanced and cells began to display increased self-

renewal and clonogenic power: signals suggestive of neoplastic change. Enhanced clono-

genicity of cells was abolished by rapamycin treatment, and furthermore heavily reduced by

LDH enzymatic inhibition. These results highlighted a mechanistic link between metabolic

alterations and tumorigenesis, whereby suggesting LDH inhibition as a possible chemo-pre-

ventive measure to target the metabolic alterations driving neoplastic change.

Introduction

mTOR kinase regulates cell growth and proliferation in response to growth factors and nutri-

ents [1]. It forms the catalytical subunit of two distinct complexes, known as TORC1 and

TORC2. The molecular mechanisms regulating mTOR kinase are still poorly understood,

although its constitutive activation has been repeatedly observed in cancer lesions [2]. Further-

more, negative regulation of mTOR by two Tuberous Sclerosis complexes (TSC1-2) was found

to result in tumor suppression [3].
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The TORC1 pathway induces cell growth by promoting protein synthesis [1]. Moreover, it

promotes a shift in glucose metabolism from oxidative phosphorylation to glycolysis, which, as

stated above, facilitates incorporation of nutrients into new biomass [4]. On the other hand,

TORC2 complex is involved in the control of cell proliferation and survival and its direct target

AKT has been found to regulate both glycolytic and oxidative metabolism [5].

Change in energy metabolism is one of the hallmarks of cancer cells and lactate dehydroge-

nase (LDH) is a key player in its orchestration [6]. The A isoform of LDH (the so-called “War-

burg enzyme”) is constantly up-regulated in neoplastic tissues; by actively reducing pyruvate

to lactate, LDH-A ensures rapid ATP production and oxidized NAD regeneration, both

needed to support cancer cell proliferation. However, increased LDH-A activity also causes

enhanced lactate generation, with its consequent export in the extracellular milieu. The metab-

olite diffusing from malignant cells stimulates hyaluronan synthesis in surrounding fibroblasts,

causing a rearrangement of extra-cellular matrix, facilitating invasive cell growth [7]. More-

over, lactate was found to increase cancer cell migration by promoting matrix metalloprotei-

nase-2 (MMP- 2) activity [8]. For these reasons, lactate levels in cancer tissues can be viewed as

both a mirror and a motor of tumor malignancy [7]. In clinical studies, increased LDH-A lev-

els have been found to be associated with poor prognosis in a variety of tumor forms [6, 9].

According to their role in cancer cell metabolism, mTOR and LDH-A could be expected to

be functionally related. To the best of our knowledge, the only study directly examining the

LDH / mTOR relationship concerned the B isoform of the enzyme (LDH-B) and was per-

formed in TSC2 -/- murine embryonic fibroblasts, which display mTOR hyperactivation [10].

However, while LDH-A contribution in neoplastic change is widely rated, the impact of

LDH-B in cancer cell biology is less defined. Furthermore, due to its different kinetics [6],

LDH-B might not be expected to substantially raise lactate levels in tumors, although, as stated

above, this compound seems to be a crucial link between cancer cell metabolism and tumor

progression.

In the present work, we examined the LDH / mTOR relationship using a breast cancer cell

model. The choice of this model found its justification from the data collected in several epide-

miological studies, showing that the most common forms of breast cancer are usually associ-

ated with metabolic alterations, such as hyperglycemia, increased blood levels of insulin and

obesity, so that they can be viewed as “metabolic tumors” [11].

Experiments were performed on MCF-7 and MCF-10A cell cultures. MCF-7 is a well-stud-

ied model reproducing the features of the metabolic breast cancer usually diagnosed in the

post-menopausal female population (a well differentiated tumor, ER and PR positive). MCF-

10A are non-neoplastic, spontaneously immortalized breast epithelial cells [12].

Both cultures have been exposed to known factors leading to mTOR activation and result-

ing changes in LDH expression and/or activity were verified. Since activation of mTOR kinase

was found to have an impact on LDH-A expression and function, we studied the outcome of

this effect on cell biology.

Materials and methods

Cell culture and reagents

MCF-10A and MCF-7 cells (ATCC-LGC Standards) were maintained in DMEM (5 mM glu-

cose) supplemented with 10% FBS. 2 mM glutamine, 100 U/ml penicillin/streptomycin.

Medium of MCF-10A cultures also contained 0.5 μg/ml hydrocortisone and 100 ng/ml cholera

toxin. Experiments were always performed by maintaining the cultured cells at the physiologic

glucose level (5 mM), to avoid forcing metabolism towards aerobic glycolysis. Prior to each
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experiment, cultures were maintained in serum deprived medium for 24 h. Cells were rou-

tinely screened for Mycoplasma contamination and found to be free.

Unless otherwise specified, all media and reagents used for the experiments were from

Sigma-Aldrich.

Immunoblotting detection

Cells were seeded in T25 flasks at a density of 2 x 104 /cm2 and allowed to adhere overnight.

After 24 h incubation in serum deprived medium, cultures were exposed to insulin (10 μg/ml),

enhanced glucose level (20 mM) or leucin (1 mM) in serum deprived medium.

At different time intervals, cells were lysed in RIPA buffer supplemented with protease and

phosphatase inhibitors. Homogenates were left 30 min on ice and then centrifuged 15 min at

10000 g. Proteins of the supernatants (20–30 μg, measured according to the method of Brad-

ford) were loaded onto 4–12% pre-casted polyacrylamide gels (Life Technologies) for electro-

phoresis. The separated proteins were blotted on a low fluorescent PVDF membrane (GE

Lifescience) using a standard apparatus for wet transfer with an electrical field of 80 mA. The

blotted membranes were blocked with 5% BSA in TBS-Tween and probed with the primary

antibodies: p70 S6 Kinase and phospho-p70 S6 Kinase; AKT and phospho-AKT (Ser473)

(193H12); LDH-A and phospho-LDH-A (Tyr10) (all from Cell Signaling); c-MYC (from

ABCAM).

Binding was revealed by a Cy5-labelled secondary antibody (anti rabbit-IgG, GE Life-

science; anti mouse-IgG, Jackson Immuno-Research). All incubation steps were performed

according to the manufacturer’s instructions. Fluorescence of the blots was assayed with the

Pharos FX scanner (BioRad) at a resolution of 100 μm, using the Quantity One software

(BioRad).

For some experiments, after fluorescence detection the PVDF membranes were washed

twice with TBS-Tween, stained with 0.1% Coomassie Blue R-350 dissolved in 50% methanol,

de-stained with acetic acid / ethanol / water (1:5:4), rinsed with water and let to dry. Intensity

of the protein bands migrated in the 20–60 kDa range (assessed with the Pharos FX scanner)

was used to normalize the levels of the immunodetected proteins among the different samples,

according to the method described by Weliner et al. [13].

Real Time-PCR

Real Time-PCR was performed by following the procedure already described in [14]. Cells

were seeded at a density of 2 x 104 /cm2 and allowed to adhere overnight. After 24 h incubation

in serum deprived medium, cultures were exposed to insulin (10 μg/ml) dissolved in serum

deprived medium. For the inhibition of mTOR signaling, some cultures were exposed to both

insulin and rapamycin (100–200 nM) for 24h. At different time intervals, RNA was extracted

according to the procedure described by Chomczynski and Sacchi [15] and was quantified

spectrophotometrically. Retro-transcription to cDNA was performed by using the Revert Aid

TM First Strand cDNA Synthesis Kit, in different steps: 5 min denaturation at 65˚C, 5 min

annealing at 25˚C, 1 h retro-transcription at 42˚C and 5 min denaturation at 70˚C. Real Time

PCR analysis of cDNA was performed using SYBR Green (SSO Advanced, BioRad).

The primers used for analyzing expression of the studied proteins were as follows:

LDH-A: Forw: 50-GACCTACGTGGCTTGGAAGA-30, Rev: 50-TCCATACAGGCACACTGGAA-30;

LDH-B: Forw: 50-CCAACCCAGTGGACATTCTT-30, Rev:50-AAACACCTGCCACATTCACA-30;

ALDH13A: Forw: 50-TGGATCAACTGCTACAACGC-30, Rev: 50-CACTTCTGTGTATTCGG
CCA-30;
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Ki67: Forw: 50-GAGGTGTGCAGAAAATCCAAA-30, Rev: 50-CTGTCCCTATGACTTCTGGTT
GT-30;

OCT4, Forw: 50-CGACCATCTGCCGCTTTG-30, Rev: 50-CCCCCTGTCCCCCATTCCTA-30;

For all examined proteins, except OCT4, annealing temperature of primers was 60˚C and

the thermal cycler (CFX96 TM Real Time System, BioRad) was programmed as follows: 30 sec.

at 95˚C; 40 cycles of 15 sec. at 95˚C; 30 sec. at 60˚C. For the study of OCT4 expression, anneal-

ing temperature of primers was 56˚C and the thermal cycler was programmed as follows: 30

sec. at 95˚C; 40 cycles of 10 sec. at 95˚C; 30 sec. at 56˚C and 1 min at 72˚C. Samples were run

in triplicate, in 10 μl reaction volume containing 100 ng of cDNA.

To select adequate internal controls of the PCR reaction, expression of different genes, con-

ventionally used as internal controls, was tested; beta2-microglobulin (beta2-M) and HPRT

were found to be minimally affected by experimental conditions and used for sample normali-

zation. The used primers were:

beta2-M: Forw: 50-CATTCCTGAAGCTGACAGCATTC-30, Rev: 50-TGCTGGATGACGTGAGTA
AACC-30;

HPRT: Forw: 50- AGACTTTGCTTTCCTTGGTCAGG-30, Rev: 50-GTCTGGCTTATATCCAAC
ACTTCG-30.

Cell viability

Untreated cells and cells exposed to insulin (10 μg/ml, 24 h) were seeded in 96-multiwell plates

(2 x 104 cells/well) and allowed to adhere overnight. After a further 24 h incubation, cell

growth was evaluated by applying the Neutral Red staining, using the following procedure.

Cells were maintained 3 h at 37˚C with the Neutral Red dye dissolved in medium at the final

concentration of 30 μg/ml. Medium was then removed and the cells were solubilized with

200 μl of 1% acetic acid in 50% ethanol. Absorbance of the solutions was measured at

lambda540 using a microplate reader (Multiskan Ascent FL, Labsystems). The same procedure

was used to assess the effect of oxamate (0–60 mM) on the viability of untreated cultures and

of cells exposed to insulin (10 μg/ml, 48 h).

Assay of lactate levels

Untreated cells, cells exposed to insulin (10 μg/ml, 24 h) and cells exposed to insulin + 200 nM

rapamycin were seeded in 6-multiwell plates (5 x 105 cells/well) and allowed to adhere over-

night. Medium was then discarded and cultures were maintained in Krebs-Ringer buffer for 3

h at 37˚C. Produced lactate (released in medium + intracellular metabolite) was assessed by

applying the method described by Farabegoli et al. [16]. The same procedure was used to assess

the effect of oxamate (0–60 mM) on lactate levels of untreated cultures and of cells exposed to

insulin (10 μg/ml, 48 h).

Evaluation of oxygen consumption rate (OCR)

This assay was performed by using a phosphorescent oxygen-sensitive probe (MitoXpress

probe) from Luxcel Biosciences, as previously described [16, 17]. Cells from each line (5 x 104 /

well) were seeded in four wells of a 96-multiwell clear bottom, black body plate and allowed to

adhere overnight. After the addition of the MitoXpress phosphorescent oxygen-sensitive

probe (10 pmoles/well), plate was placed in a VictorTM fluorescence reader (Perkin Elmer) at

30˚C and was monitored for about 20 min to reach temperature and gas equilibrium and to
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obtain basal signals. The wells were then sealed with mineral oil and monitoring of the signal

was resumed for the next 60 min. During this interval, the increase of fluorescence signal,

which indicates oxygen consumption, was measured every 60 sec. with 340/642 nm excitation/

emission filters, a delay time of 30 μsec and a measurement window of 100 μsec. All dispensing

steps of the experiment were performed at 30˚C with pre-warmed solutions. For each cell line,

evaluation of respiration was performed by applying the linear regression analysis to the time

profiles of fluorescence signals obtained from the four wells, in order to determine the slope of

the profile, which indicates OCR. The Prism 5 GraphPad software was used. This assay was

applied to untreated cells and to cultures exposed to insulin (10 μg/ml, 48 h).

Assay of ATP levels

ATP levels were measured using the CellTiter-Glo Luminescent Cell Viability Assay from Pro-

mega, as described previously [16, 17]. For this experiment, 2 x 104 cells in 200 μl of culture

medium were seeded into each well of a 96-multiwell white body plate and allowed to adhere

overnight. After incubation in the presence of scalar amounts of oxamate (0–60 mM), the plate

was allowed to equilibrate at room temperature for 30 min and the CellTiter-Glo reactive was

directly added to each well. The plate was kept on a shaker for 10 min to induce cell lysis and

its luminescence was measured by using a Fluoroskan Ascent FL reader (Labsystems). This

assay was applied to untreated cells and to cultures exposed to insulin (10 μg/ml, 48 h).

Clonogenicity assay

It was performed as previously described in [14]. MCF-10A cells were plated into 6-well plates,

at the density of 250 cells/well, in triplicate. Three wells received no treatment (control cul-

tures). All other cultures (9 wells) were exposed to 10 μg/ml insulin for 48 h; in the following

24 h three wells were treated with 200 nM rapamycin and another three wells received 60 mM

oxamate. Compounds were then removed and cultures were maintained for additional 15

days. Medium was changed every other day. Cells were stained with 0.5% crystal violet (dis-

solved in 6% glutaraldehyde). Visible colonies were counted to generate a histogram.

Statistical analysis

All statistical analyses were performed using the software GraphPad Prism 5. Each experiment

was repeated two or three times, with at least triplicate samples per treatment group. Results

are expressed as mean ± SE of replicate values. P values < 0.05 were considered statistically

significant.

Results

mTOR activation in cancer and immortalized normal cells

As a first step in our study, we induced mTOR activation by exposing both MCF-7 and MCF-

10A cells to hormonal factors or nutrients. After 24 h incubation in serum-free media cells

were probed with either 10 μg/ml insulin, 1 mM leucin or 20 mM glucose. For both cell lines,

insulin response had been repeatedly documented in previous studies [18, 19]. Metabolic sub-

strates and growth factors are well-recognized triggers of TORC1 pathway [1]. On the con-

trary, upstream signals of the TORC2 complex have been less extensively studied; the second

mTOR complex is considered part of the PI3K-AKT pathway and is involved in response to

growth factor signaling [5].

In treated cells, mTOR activation was assessed by verifying the phosphorylation of S6K and

AKT, the direct targets of TORC1 and TORC2 pathways, respectively [1]. As shown in Fig 1,
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MCF-10A and MCF-7 cells showed a different mTOR activation profile. Moreover, in agree-

ment with the notion of a competitive relationship between TORC1 and –2 induction [1], in

both cell lines a prevalent activation of a single enzymatic complex was observed. Insulin was

the most efficient inducer. It caused a rapid activation of the TORC2 pathway in MCF-10A

Fig 1. Profile of mTOR activation observed in MCF-10A (A) and MCF-7 cells (B) exposed to 10 μg/ml insulin, 1 mM leucin or 20 mM glucose. The experimental

procedure was reported in Materials and Methods. For each time interval, the same sample (20 μg) was separately loaded onto two gels. After blotting, one of the PVDF

membranes was probed with either the anti-S6K or anti-AKT antibody; the second membrane was probed with either the anti-phospho-S6K or the anti-phospho-AKT

antibody. Activation of the mTOR pathways can be evaluated from the appearance of signals of protein phosphorylation. TORC2 pathway was found to be activated in

MCF-10A cells; TORC1 pathway in MCF-7 cells.

https://doi.org/10.1371/journal.pone.0202588.g001
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cells (Fig 1A), as indicated by the immunoblotting detection of phosphorylated AKT, which

markedly appeared at 3–6 h and subsequently declined at 18 h. No sign of TORC1 activation

was observed in these cells. On the contrary, in MCF-7 cells insulin challenge induced the

phosphorylation of S6K, which appeared at 18 h and reached sharp evidence at 24 h (Fig 1B).

Some minor activation of TORC2 was observed in these cells. In our experimental conditions,

the exposure to metabolic substrates in high doses (1 mM leucin, 20 mM glucose) did not sub-

stantially induce mTOR kinase activation up to 48 h. For this reason, insulin challenge was

used to investigate the mTOR / LDH relation in subsequent experiments.

Activation of mTOR kinase results in increased LDH-A expression and

activity

Fig 2 shows changes in LDH-A and -B expression measured by real time PCR in MCF-10A

(panel A) and MCF-7 cultures (panel B) challenged with insulin. Evaluations were performed

at the time intervals indicated by the results reported in Fig 1. The levels of LDH mRNA of

treated cultures were compared with those measured in control cells maintained in standard

medium for the indicated time intervals after a 16 h serum starvation.

Fig 2. mTOR activation enhances LDH-A expression. Evaluation of LDH-A and LDH-B expression in MCF-10A (A) and MCF-7 cells (B) exposed to insulin.

(C) In MCF-10A cells, rapamycin co-administration reduced AKT phosphorylation and LDH-A expression. (D) Rapamycin abolished the effects of insulin in

MCF-7 cells. All results were statistically evaluated by ANOVA, followed by Tukey post-test. � and �� indicate a statistically significant difference compared to

control cells with p< 0.05 and 0.01, respectively. (R, rapamycin).

https://doi.org/10.1371/journal.pone.0202588.g002
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MCF-10A cells were found to express both the LDH isoforms. After a 18 h exposure to

insulin a sharp increase of LDH-A mRNA was observed, which followed the peak of TORC2

activation reported at 3–6 h (see Fig 1A). A less marked, but statistically significant increase of

LDH-B mRNA was also observed.

To assess whether the increased LDH expression observed in the experiments of Fig 2A

could be attributed to mTOR activation, we had previously verified the effect of rapamycin on

the activation of TORC2 pathway. Rapamycin is a well-known TORC1 inhibitor, which also

showed activity on the TORC2 complex, especially on sustained treatments [20]. Fig 2C shows

that a 24 h-exposure to rapamycin reduced AKT phosphorylation. At the same time, this com-

pound almost completely abolished the increase of LDH-A expression when administered

together with insulin (24 h). This experiment also showed that the mRNA level of LDH-B was

not affected by rapamycin, suggesting that the increased expression observed in insulin-treated

MCF-10A cells at 18 h is not related to mTOR activation. Furthermore, a comparison between

the respective mRNAs levels (Fig 2A) showed that in MCF-10A, LDH-A mRNA is 10 to15-fold

higher than that of LDH-B; for these reasons in subsequent experiments only LDH-A was

considered.

Fig 2B shows that in MCF-7 cells exposed to insulin a progressive increase of LDH-A

mRNA was observed, which paralleled the activation of TORC1 complex. Again, this increase

was found to be completely reversed by rapamycin (Fig 2D). Contrary to MCF-10A cells, in

MCF-7 cultures LDH-B mRNA was not detectable.

In both cell cultures, increased transcription of LDH-A resulted in enhanced protein levels,

as shown in the immunoblotting evaluations reported in Fig 3.

One of the major factors inducing LDH-A gene transcription is c-MYC. c-MYC is also a

direct target of the TORC1 / S6K pathway [21] and is enhanced by TORC2 activation [22]. In

agreement with these data, increased levels of MYC protein were detected in both cell cultures

following insulin challenge (Fig 3), producing a mechanistic link between mTOR activation

and the increased LDH-A levels.

Remarkably, in MCF-10A a progressive increase of LDH-A phosphorylation on Tyr-10 was

also observed. This post-translational modification has been repeatedly reported in cancer

cells with over-activated LDH-A and, to the best of our knowledge, has never been detected in

non-tumor tissues [23]. It can presumably contribute to the heavily increased enzymatic activ-

ity measured in MCF-10A cells after insulin challenge (see below and Fig 4B).

The bar graph of Fig 3 reports a semi-quantitative evaluation of the increased levels of

LDH-A and phospho-LDH-A. Calculation was performed by using the densitometric evalu-

ation of Coomassie-stained protein bands migrating in the 20–60 kDa molecular weight

range as loading control of the blot membrane. This procedure is usually applied when

treatment of cells is found to affect the level of structural proteins commonly used as inter-

nal controls in immunoblotting experiments. The method described by Weliner et al. [13]

was utilized.

mTOR-activated LDH-A causes metabolic changes in immortalized normal

cells

Previous studies have indicated that insulin can stimulate the growth and proliferation of a

variety of cells in culture [24]. This was not the case in our experimental conditions.

As shown in Fig 4A, neither MCF-10A nor MCF-7 cells displayed enhanced proliferative

potential, when maintained for 24 h in the presence of increased insulin level but at the physio-

logical glucose concentration (5 mM). In the case of MCF-10A cells, this was also confirmed

by an evaluation of Ki-67 levels (see below).
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Fig 4B shows that in both normal and cancer cells insulin challenge sharply enhanced the

rate of lactate production. LDH-A increase and/or activation observed as a consequence of

insulin exposure would account for this result; the finding that rapamycin co-treatment suc-

ceeded in abolishing the enhanced lactate production (Fig 4B) allowed us to link this metabolic

change to mTOR activation.

These results prompted a more detailed evaluation of the metabolic features induced by

mTOR activation in both cell cultures. In control cultures and in insulin-challenged cells we

evaluated the rate of oxygen consumption (OCR); moreover, to highlight possible changes in

the metabolic asset after insulin treatment, we also studied the effect caused by oxamate on

Fig 3. mTOR activation enhances LDH-A protein level and phosphorylation in MCF-10A cells. Evaluation of LDH-A and c-MYC protein levels in MCF-10A and

MCF-7 cells at different times after insulin exposure. Activation of LDH-A through Tyr10 phosphorylation was also assessed. The Blue Coomassie staining of protein

bands was used as loading control (for explanation, see text). The bar graph shows the quantification of relative levels of LDH-A and phospho-LDH-A in insulin-treated

vs untreated cells.

https://doi.org/10.1371/journal.pone.0202588.g003
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lactate and ATP levels and on cell proliferation. Oxamate is a pyruvate analogue which specifi-

cally inhibits LDH by competition with its natural substrate [25]. Results are reported in Fig 5.

Upper panel (graphs A-D) show the results observed in MCF-10A cultures; results obtained in

MCF-7 are reported in the lower panel (graphs E-H). To evaluate the differences in OCR and

in response to OXA caused by insulin exposure, experimental data were subjected to linear

Fig 4. Effect of insulin on cell proliferation and lactate production. (A) MCF10-A and MCF-7 cell proliferation

measured after 24 h exposure to insulin. (B) Lactate production rate was significantly increased by insulin (�, p< 0.01

compared to control cells); the increase was abolished by rapamycin co-treatment. Statistical analysis was performed

by ANOVA followed by Tukey post-test. R, 200 nM rapamycin.

https://doi.org/10.1371/journal.pone.0202588.g004
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regression. The differences between the curve slopes (before and after insulin treatment, respec-

tively) were then evaluated by using the software Prism 5. Compared to MCF-7 cultures,

untreated MCF-10A cells showed a markedly higher oxygen consumption, which is indicative of

an energy metabolism predominantly based on oxidative reactions, as expected in non-tumor

cells (Fig 5A and 5E). Remarkably, treatment with insulin significantly affected MCF-10A oxy-

gen consumption (p< 0.001), which dropped to levels close to that of the neoplastic culture

while it did not modify OCR of MCF-7 cells (Fig 5A and 5E). This finding suggested a mTOR/

LDH induced change in the metabolic profile of MCF-10A culture, which was confirmed in the

following experiments. Fig 5B shows that lactate levels of untreated MCF-10A cultures were not

affected by oxamate, even when administered at high doses. This finding can be explained con-

sidering that in cells with functional oxidative energy metabolism, lactate is not simply a waste

product but, after re-oxidation by the mitochondrial form of LDH [26], it can enter the TCA

cycle, becoming an ATP source [27]. By inhibiting LDH, oxamate can affect both lactate produc-

tion and utilization, whereby maintaining unchanged the level of this metabolite. Fig 5B also

shows that after insulin exposure, oxamate caused a dose-dependent and statistically significant

reduction of lactate production, as might be expected when energy metabolism has settled on

Fig 5. mTOR-driven LDH-A activation changes the metabolic features of MCF-10A cells. Metabolic parameters measured in MCF10-A (A-D) and MCF-7

cells (E-H) before and after a 48-h exposure to insulin. B-D and F-H graphs show the effect of OXA (a LDH inhibitor) on metabolic parameters. To evaluate the

effect of insulin exposure on LDH inhibition, the experimental data were subjected to linear regression and the differences between curve slopes (data measured

before vs data measured after insulin challenge, respectively) were statistically evaluated using the Prism 5 GraphPad software. A detailed explanation is reported

in the text.

https://doi.org/10.1371/journal.pone.0202588.g005
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aerobic glycolysis. These considerations also explain the findings reported in Fig 5C. By inhibit-

ing lactate re-oxidation and its consequent utilization as energy source, oxamate caused a dose-

dependent reduction of ATP levels in MCF-10A cells. This effect was found to be significantly

reduced after insulin exposure, which hindered oxidative metabolism, the most efficient path of

ATP generation. On the other hand, the metabolic impairment caused by the 3 h-incubation

with OXA appeared to be overcome by MCF-10A cells at short times, since at 24 h their viability

was not compromised by LDH inhibition (Fig 5D). These results are in agreement with the

notion that LDH inhibition preferentially affects neoplastic tissues and is not toxic for normal

cells [6]. Interestingly, insulin treatment was found to increase the effect of oxamate on MCF-

10A cell viability, causing a moderate extent, but statistically significant reduction.

The findings reported in Fig 5F–5H show that insulin treatment did not significantly

change oxamate effects in MCF-7 cells, both on lactate / ATP levels and on cell proliferation.

These results suggest that when the glycolysis-based metabolic program has already been acti-

vated by neoplastic change, its further escalation is not easily evidenced, at least in the short

observation time of our experimental settings.

By comparing the data reported in Fig 5A–5D with those in Fig 5E–5H, it can be concluded

that in MCF-10A cells the reduced OCR observed after insulin exposure led to a reprogram-

ming of cell metabolic asset. This is evidenced by the increased response to LDH inhibition,

which appeared to acquire a similar profile as that observed in MCF-7 cells. Taken altogether,

these results suggested that insulin-activated mTOR/LDH-A axis can significantly impact on

MCF-10A cell physiology, inducing a metabolic profile close to that commonly observed in

transformed, neoplastic cells.

LDH-A-linked metabolic changes induce stem signatures, which are

reversed by the enzyme inhibition

Since the metabolic features of cancer cells have repeatedly found to be linked with their infil-

trative growth and with neoplastic progression [28], it seems reasonable to hypothesize that

stimulation of the mTOR/LDH-A axis in non-tumor cells can result in a significant step

towards neoplastic change.

This hypothesis was tested by searching in insulin-challenged MCF-10A cells features sug-

gestive of a tumor-like phenotype. Increased capacity of self-renewal, clonal evolution and

tumor initiating properties are conventionally indicated by the expression of stem markers

[29]. Moreover, it is well known, that the presence of cells with stem-like properties is also

indicative of worse prognosis in a variety of tumor diseases, including breast cancer [30, 31].

In breast neoplastic tissues, possible interconversion of cells from a stem to non-stem status

has been observed [32]; furthermore, breast cancer stem cells were found to differentiate into

different cell phenotypes. Regarding the MCF-10A line, previous studies have shown that

these cells exhibit a basal-like phenotype while sharing many properties of mesenchymal can-

cer cell lines [33]. This aspect raised difficulties for the identification of reliable markers sug-

gestive of the stem phenotype, since stem status cells often also express mesenchymal

transition signatures [34]. In our experiments, the expression of Ki-67, OCT-4 and ALDH1A3

was analyzed in control and insulin-treated MCF-10A cells. Ki-67 is a well-established marker

of proliferative potential [35]. OCT-4 is a homeodomain transcription factor with a key role in

cell self-renewal and pluripotency [36]; its expression was found to be under the control of

LDH-A [37]. ALDH1A3 is the ALDH isoform predominantly detected in breast cancer stem

cells [38]. In patients, it was found to significantly correlate with tumor grade, metastasis, and

cancer stage [39]. Furthermore, an assay to evaluate cell clonogenic potential was performed.

Results are reported in Fig 6.
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As shown in Fig 6A, insulin treatment did not affect the level of Ki-67 expression; this result

is in agreement with the data reported in Fig 4A, which had already showed an un-changed

proliferation rate in MCF-10A cells exposed to insulin. On the contrary, mTOR/LDH-A acti-

vation appeared to affect both OCT-4 and ALDH1A3 expression, which were increased by

50% and 100%, respectively. Remarkably, rapamycin co-treatment did not succeed in control-

ling the insulin-induced effects, which, on the contrary, were significantly reversed by oxa-

mate. Consistent results were also obtained by applying the clonogenic assay (Fig 6B). A 48-h

exposure to insulin was found to significantly increase the number of colonies formed by

MCF-10A cells; this increase was abolished by the administration of rapamycin (200 nM, 24

h), since cells treated with this inhibitor showed a clonogenic potential superimposable to that

of control, untreated cells. Inhibition of LDH (60 mM oxamate, 16 h) caused a sharp decrease

of formed colonies (p< 0.01, compared to insulin treated cultures).

These results suggest that, although ineffective on the proliferative capacity of MCF-10A

cells, the metabolic changes induced by mTOR/LDH activation had a significant impact on

their biology, causing the enhanced manifestation of features indicative of neoplastic potential.

These features appeared to be reverted by a reprogramming of cell metabolism obtained by

LDH inhibition. This finding is in agreement with previous data showing that breast cancer

stem cells are dependent on glycolysis for their survival [40, 41].

Discussion

Constitutive activation of mTOR kinase is constantly observed in neoplastic tissues and its

contribution to cancer cell biology has been extensively studied [2]. However, in spite of the

crucial role of this kinase in metabolic regulation, its possible relationship with LDH has not

been clearly demonstrated. The A isoform of LDH is the so-called “Warburg enzyme”; it is

constantly up-regulated in neoplastic tissues and confers to cancer cells peculiar metabolic fea-

tures which are considered one of the hallmarks of tumorigenesis [6]. The experiments

reported in this paper showed that both the functionally active complexes TORC1 and TORC2

converge on LDH-A, by increasing its expression and/or activation. Our data showed that

both LDH-A increase and its derived metabolic changes were reversed by rapamycin, the most

Fig 6. mTOR-driven LDH-A activation causes signs of tumor progression in MCF-10A cells. (A) Expression of Ki67, OCT4 and ALDH1A3 evaluated in MCF-10A

cells after 48 h exposure to insulin. � indicates a statistically significant difference with insulin treated cells with p< 0.05. (B) Colony formation assay. Statistical analysis

was performed by ANOVA followed by Tukey post-test. � indicates a statistically significant difference with control cells, with p< 0.05. �� indicates a statistically

significant difference with insulin treated cells, with p< 0.01. NS, no significant difference compared to control cells. R, 200 nM rapamycin; OXA, 60 mM oxamate.

https://doi.org/10.1371/journal.pone.0202588.g006
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studied mTOR inhibitor. Published results also showed that mTOR pathway was inhibited by

glycolysis inhibitors [42, 43]. Taken altogether, these data suggest a reciprocal functional rela-

tionship between mTOR and LDH-A.

Interestingly, our results showed that induction of mTOR/LDH-A did not cause evident

effects on the metabolic asset of MCF-7 cells, which because of their neoplastic nature already

expressed the glycolysis-based metabolic program. On the contrary, the non-tumor immortal-

ized MCF-10A cells appeared to be more susceptible to the effects of mTOR/LDH-A activation

and underwent a metabolic reprogramming resulting in the manifestation of increased self-

renewal and clonogenic potential. Previous data confirmed that breast cancer cells maintained

in the presence of increased lactate levels could change their transcriptional profile, exhibiting

increased progression markers [44]. Interestingly, in a variety of tumor forms lactate produc-

tion is a recognized predictor of poor prognosis and lactate acidosis was found to be associated

with breast cancer metastasis [7, 45]. By applying these results to our experimental model, it

can be hypothesized that the 300% increased lactate levels measured in MCF-10A cells after

mTOR/LDH-A activation (Fig 4B) could have affected gene expression, causing the appear-

ance of the observed “stemness” signatures. The reduced capacity of using this metabolite as

energy substrate because of the lower OCR of activated cells (Fig 5A) could have promoted

this phenomenon.

These observations also imply that the strong dependence on glycolysis, which characterizes

the energy metabolism of tumors, is not necessarily linked to gene mutations, but might also

be induced by epigenetic mechanisms.

Our results appear to be significant, particularly in the light of the used cellular model. The

MCF10A human mammary epithelial cell line is a widely used in vitro model for studying nor-

mal breast cell function and transformation. It was derived from a fibrocystic lesion [12], a tis-

sue change very commonly observed in the female population, for which a possible association

with increased cancer risk was debated.

Our experiments highlight a possible mechanism linking metabolic alterations such as

hyper-insulinemia and/or hyper-glycemia to the induction of neoplastic change, confirming

the association repeatedly observed in the epidemiological studies. Furthermore, our results

are in agreement with progressively emerging data suggesting the possibility of epigenetic

changes linked to metabolic factors, a notion underlying the concept of “metabolo-genomics”.

Currently, a number of therapeutic alternatives are available for curing breast cancer; a sub-

stantial advance in the fight against this disease could also come from a new approach, aimed

at targeting through chemo-preventive procedures the metabolic alterations driving the neo-

plastic change. LDH inhibitors, which are not toxic for normal tissues [6], could be good can-

didates to test the validity of this approach.
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