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Abstract: Parkinson’s disease (PD) is one of the most common progressive neurodegenerative
diseases. Clinical and epidemiological studies indicate that sex differences, as well as genetic
components and ageing, can influence the prevalence, age at onset and symptomatology of PD.
This study undertook a systematic meta-analysis of substantia nigra microarray data using the
Transcriptome Mapper (TRAM) software to integrate and normalize a total of 10 suitable datasets
from multiple sources. Four different analyses were performed according to default parameters, to
better define the segments differentially expressed between PD patients and healthy controls, when
comparing men and women data sets. The results suggest a possible regulation of specific sex-biased
systems in PD susceptibility. TRAM software allowed us to highlight the different activation of
some genomic regions and loci involved in molecular pathways related to neurodegeneration and
neuroinflammatory mechanisms.
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1. Introduction

Parkinson’s disease (PD) is a common progressive neurodegenerative disease, affecting the
older population (1–2% prevalence in individuals over 65 years, about 4% over the age of
85 years) [1,2]. The main clinical manifestations of the disease include resting tremor, bradykinesia
(slowed movements), rigidity (increased muscular tone), postural instability, and gait impairment.
Besides motor symptoms, PD patients manifest a wide range of non-motor symptoms such as
depression, fatigue, sleep disturbance and autonomic dysfunction [3,4]. It has been demonstrated
that the clinical manifestations of the disease, in particular motor symptoms, are mainly a
consequence of the neurodegeneration of dopaminergic (DA) neurons in the substantia nigra (SN) pars
compacta [5], and that symptoms usually appear when about 50–60% of these neurons are lost [2,6].
Furthermore, another pathological hallmark of PD is the presence of eosinophilic intraneuronal
cytoplasmic protein-rich inclusions known as Lewy bodies (LBs) [7].

Parkinson’s disease is considered a complex disease with an etiology that, to date, is not completely
understood. Several factors, including genetic susceptibility and environmental influences, have
been identified as possible causes. It has been demonstrated that Mendelian form of PD are caused
by autosomal dominant and recessive gene mutations; likewise, genome wide experiments have
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highlighted an increasing number of loci that can be predisposed to the development of the sporadic
form of the disease [8–12].

In addition to the well-known Mendelian transmission of PD, several studies have recently drawn
attention to the role of epigenetics in the neurodegeneration that occurs in PD patients [11,13,14].
Epigenetic mechanisms in PD involve DNA demethylation, over-expression of the SNCA (synuclein α)
gene and deregulation of the histone acetylation/deacetylation equilibrium [15–18]. Furthermore, the
ubiquitin-proteasome system (UPS) has a remarkable impact in inherited PD through the well-known
parkin protein, an E3 ubiquitin-ligase protein that changes in PD, loses its function and leads to an
accumulation of anomalous proteins [19]. Finally, long non-coding RNA (lncRNA) and microRNA
(miRNA) are thought to be involved in neuronal pathways and diseases such as PD [20].

As well as the genetic component, ageing [21] and sex [22,23] can also contribute as risk factors
to the onset of the disease. While the role of ageing in PD has already been long established,
epidemiological studies have also shown that, regardless of age and ethnicity, the male sex is associated
with a higher development rate of PD. In fact, on average, men are twice as likely to develop PD
and the disease is 1.3–3.7 times more prevalent in men than in women [22–27]. Clinical studies have
demonstrated that sex differences can also influence the age of PD’s onset and its symptomatology.
Indeed, women develop PD almost two years later than men and initially display tremor symptoms
instead of bradykinesia or rigidity and more pronounced symptoms such as depression, anxiety, pain,
and sleep disturbances [22,24,27].

It has been hypothesized that estrogens may have an important role in defining such differences;
several experiments have shown that estrogens could have a neuroprotective activity towards the
dopaminergic (DA) system, both at dopamine synthesis and function level [22–24,27–29]. It has also
recently been suggested that basic sex differences in brain organization, structure and function may be
due to several genetic factors [30] and could justify some of the differences observed between male
and female PD patients [30–32]. Indeed, experiments performed in animal models (such as on rats
and monkeys) and neuroimaging measurement on the human brain seem to show that females have a
higher number of DA neurons than males, as well as a greater striatal uptake [25,29,31], which could
explain the delayed PD onset in women.

Furthermore, transcriptome analysis has allowed for a better understanding in relation to genes
or loci potentially associated with the disease. Several experiments conducted on post-mortem brain
tissue of PD patients and related controls, mainly on SN whole tissue or DA neurons obtained with
laser capture microdissection (LMD), demonstrated differential gene expression profiles between PD
patients and controls [33–42].

In a previous study, we used Transcriptome Mapper (TRAM) software to analyze a large amount
of publicly available microarray data from independent studies conducted on the SN brain region of
PD patients and controls, analyzing both post-mortem whole tissue and isolated LMD DA neuron
expression data [43]. Thanks to original methods for parsing, normalizing and statistically analyzing
expression data, the software was able to generate maps showing differential expression between
two sample groups and to identify chromosomal segments and gene clusters which are relevant for
different biological conditions [44].

To date only a few gene expression studies have focused on the characterization of transcriptome
in male and female PD patients. Such studies, conducted on LMD DA neurons, have highlighted
a sex-specific gene expression profile and showed a predominantly male deregulation of the genes
involved in the DA neurons degenerative pathways or in mechanisms already associated with the
pathogenesis of PD, thus confirming male sex as a risk factor for the disease [41,42].

We believe that further investigations in male and female brain transcriptome profiles could
therefore contribute to a better understanding of the physiological and pathological molecular
pathways and enable the development of sex-specific therapies.
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For this reason, we conducted a new TRAM meta-analysis study to better define the differences
in gene expression of PD patients vs. controls, when comparing men and women data sets from SN
whole tissue.

2. Materials and Methods

2.1. Database Search and Selection

We conducted our search for gene expression data related to SN whole tissue of PD patients
and healthy controls using the genomics repositories Gene Expression Omnibus (GEO) [45] and
ArrayExpress [46]: in GEO with the search terms “Parkinson Disease” and “Homo sapiens”[Organism];
in the ArrayExpress database with the terms “Parkinson Disease” and then filtered for “Homo
Sapiens”[Organism], “RNA assay” and “array assay”[Experiment type] and “all array”. We then
selected those series including microarray experiments conducted on SN whole tissue and where sex
was specified.

A further search was carried out using the criteria described in the TRAM guidelines [44] and
listed in our previous work [43]. In particular, all the selected experiments were carried out on specific
brain structure and clinical conditions (SN pars compacta from post-mortem brains from individuals
with PD and matched controls), based on availability of raw or pre-processed data (see Supplementary
Table S1 for details). We did not include data from exon array or other probes, as a too high number of
data rows could interfere with program execution. Other exclusion criteria were also: the absence of
identifiers corresponding to those found in the GEO sample records (GSM) or Array express sample
records; platforms without standard format (for example with an atypical number of genes, i.e., <5000
or >60,000); data with expression values not evidently marked as linear or logarithmic.

Searches were executed up to July 2017.

2.2. Literature Search

We performed a systematic literature search to identify further articles related to global gene
expression profile experiments in PD patients that were not present in GEO or ArrayExpress. A general
search was conducted on PubMed up to July 2017, using the terms “Parkinson disease” and “microarray
analysis” and “human”. The medical subject headings (MeSH) terms “Parkinson disease”, “microarray
analysis” (or “gene expression profiling” or “oligonucleotide array sequence analysis”), “substantia nigra”
and “human” were also used for a more advanced search. The search did not detect additional data.

2.3. Tram Analysis

Transcriptome Mapper software is freely available at http://apollo11.isto.unibo.it/software.
We used the TRAM version 1.2 (April 2014) [44] which contains an updated version of UniGene

and Entrez Genes databases compared to the original 2011 version [44].
At first, all platforms used in the array experiment that are not present in the TRAM 1.2 version

were manually extracted and imported, so that, during the import phase, the software could associate
a specific gene symbol via UniGene parsing with each probe identifier.

In order to be imported and analyzed by TRAM, all samples selected for each series were
downloaded as tab-delimited text format. Samples were then divided into pools, according to different
sex and brain condition: SN from male control subjects (pool A); SN from female control subjects
(pool B); SN from male PD-affected patients (pool C); SN from female PD-affected patients (pool D).

As previously stated, when importing the data, the software was able to assign the appropriate
gene symbol to each probe identifier through UniGene parsing and subsequently normalize them
(via intra- and inter-sample normalization) in order to compare gene expression data from experiments
performed with different platforms and/or biological conditions [44]. It is noteworthy that the TRAM
software evaluates the possible risk of bias as it is intrinsically resistant to the systematic differences
between batches (groups) of samples [44].

http://apollo11.isto.unibo.it/software
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Four different analyses were performed according to standard setting (“Map” mode) using default
parameters [43,44,47–49] and named as below:

• TRAM control (CTR), comparing the transcriptome map of SN from male control subjects (pool A)
and SN from female control subjects (pool B);

• TRAM PD, comparing the transcriptome map of SN from male patients affected by PD (pool C)
and SN from female patients affected by PD (pool D);

• TRAM MALE, comparing the transcriptome map of SN from male patients affected by PD (pool C)
and SN from male control subjects (pool A);

• TRAM FEMALE, comparing the transcriptome map of SN from female patients affected by PD
(pool D) and SN from female control subjects (pool B).

Briefly, the “Map” mode analysis was set to evaluate segments of 500,000 bp with a sliding
window of 250,000 bp [44]. The expression value for each genomic segment is calculated as the mean
of the expression values of all the loci included in that segment. As a result, TRAM highlighted those
segments where the expression value was significantly different between the two considered conditions
and contained at least three over/under-expressed genes (genes at the top/bottom 2.5% percentile of
values) [44].

The statistical significance was calculated taking into account all genes in the genome (genome
median) and corrected for multiple comparisons possible causing false discovery rate (FDR) due to the
high number of segments or genes in a genome (q-value). A segment or a gene was considered to be
statistically significantly over- or under-expressed for q < 0.05. [44].

2.4. Other Analyses

European Bioinformatics Institute (EMBL-EBI) Expression Atlas [50], UniGene [51], National
Center for Biotechnology Information (NCBI) Entrez Gene [52] and Gene Ontology (GO) [53] were
used to obtain gene-specific information and to functionally characterize the set of genes derived from
the TRAM analysis.

3. Results

3.1. Database and Literature Search

The gene expression data search in GEO and ArrayExpress data repository, followed by the
selection according to the criteria described in the Materials and Methods section, allowed us to
include a total of 10 series in the meta-analysis. More details about series and samples are listed in
Table 1 and Supplementary Table S1.

Table 1. Main features of the samples selected for the meta-analysis with Transcriptome Mapper
(TRAM) software.

GEO Series GEO Platform ID CTR/PD Sex Samples Age at Death (Range) Pool PMID

GSE26927 GPL6255

CTR M 6/118 58.7 (54–66) A

22864814 [33]CTR F 2/118 82 (60–104) B
PD M 6/118 82.5 (76–87) C
PD F 6/118 80.6 (77–86) D

GSE20333 GPL201

CTR M 5/12 77.6 (68–88) A

15455214 [34]CTR F 1/12 86 B
PD M 2/12 72.5 (70–75) C
PD F 4/12 79.3 (73–87) D

GSE8397 GPL96

CTR M 10/48 65.1 (46–77) A

16344956 [35]CTR F 4/48 78.5 (77–80) B
PD M 10/48 77.4 (68–83) C
PD F 8/48 84.7 (81–87) D
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Table 1. Cont.

GEO Series GEO Platform ID CTR/PD Sex Samples Age at Death (Range) Pool PMID

GSE8397 GPL97

CTR M 10/48 65.1 (46–77) A

16344956 [35]CTR F 4/48 78.5 (77–80) B
PD M 10/48 77.4 (68–83) C
PD F 8/48 84.7 (81–87) D

GSE7621 GPL570

CTR M 4/25 - A

17571925 [36]CTR F 5/25 - B
PD M 13/25 - C
PD F 3/25 - D

GSE20292 GPL96

CTR M 13/29 63 (41–82) A

15965975 [37]CTR F 5/29 76.8 (72–94) B
PD M 6/29 72.5 (67–80) C
PD F 5/29 79 (70–84) D

GSE20164 GPL96

CTR M 1/11 90 A

20926834 [38]CTR F 4/11 78 (72–88) B
PD M 4/11 82(74–87) C
PD F 2/11 80.5 (79–82) D

GSE20163 GPL96

CTR M 7/17 69 (52–84) A

20926834 [38]CTR F 1/17 71 B
PD M 3/17 81.3 (80–84) C
PD F 1/17 70 D

GSE20159 GPL6497

CTR M 9/33 74.8 (40–95) A

20926834 [38]CTR F 8/33 74.5 (45–87) B
PD M 8/33 77.1 (56–94) C
PD F 8/33 78.2 (78–103) D

GSE3526 GPL570
CTR M 4/353 32 (25–35) A 16572319 [39]CTR F 4/353 40.7 (23–53) B

GSE43490 GPL6480

CTR M 4/41 69.2 (58–85) A

25525598 [40]CTR F 1/41 70 B
PD M 5/41 74 (64–90) C
PD F 3/41 83 (80–85) D

Samples involved in the sex-specific meta-analysis of Parkinson's disease (PD) gene expression data. Gene Expression
Omnibus (GEO) series and platform ID: ID numbers as stated in the GEO database; CTR/PD: Control/PD patient
sample; Sex: Male (M) and female (F) ; Samples: Number of samples selected for each series; Age at death: Mean
value of all the indicated patient/control age at death (the age range was also reported); Pool: In order to perform the
described analysis all samples were divided into pools, based on patients’ sex and brain condition (see Materials and
Methods Section, TRAM analysis section); PMID: PubMed identifier number of the reference reported in the GEO
database. Additional details about series and samples are listed in Supplementary Table S1.

3.2. Male SN Control Samples vs. Female SN Control Samples (TRAM CTR)

TRAM analysis of pool A (73 male SN control samples) vs. pool B (39 female SN control samples)
consisted respectively of 1,798,965 and 1,176,191 data points (gene expression value), corresponding to
36,654 mapped loci (Supplementary Table S2).

Results are listed in Table 2 and highlight the differential expression of nine segments: five
containing over-expressed genes and four classified as under-expressed.

As expected, the highest expression ratio was observed for a segment on chromosome Y (Yq11.1
region) including the ncRNA TTTY15 and the known genes USP9Y and DDX3Y. USP9Y is a member of
the peptidase C19 family, encoding for a protein that is similar to ubiquitin-specific proteases; DDX3Y
is a member of the DEAD-box RNA helicase family.

Conversely, the most under-expressed segment is located on chromosome X (Xq13.2) and
significance was detected for the ncRNAs XIST and JPX and for the EST cluster Hs.720466.

Eleven EST clusters (Hs.731466 EST was validated for coding UBE2QL1 as seen in the UniGene
database search) were found as over- or under-expressed, but not associated with known genes.
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Table 2. Chromosomal segments statistically significant in TRAM “Map” mode analysis of male substantia nigra (SN) control samples vs. female SN control samples
(TRAM CTR).

Chr Location Segment Start Segment End Expression Ratio q-Value Genes in the Segment

ChrY Yq11.1 * 12,500,001 13,000,000 2.09 1.20E-04 Hs.161318+ TTTY15+ USP9Y+ DDX3Y+

Chr8 8p23.1 9,750,001 10,250,000 1.57 2.20E-04 TNKS+ LINC00599+ Hs.566938+ MSRA+ Hs.669947−

Chr2 2q24 * 165,000,001 165,500,000 1.48 1.00E-05 Hs.541684+ SCN3A+ SCN2A+ Hs.541682+ CSRNP3+

Chr5 5p15.31 * 6,250,001 6,750,000 1.37 7.00E-05 Hs.582434+ Hs.544271− FLJ33360− Hs.360957− MED10+ Hs.561435+ UBE2QL1+ Hs.731466+
Hs.734710− NSUN2+ SRD5A1+ LOC100505625− PAPD7+ Hs.669866+ Hs.656059−

Chr1 1p22.2 * 90,250,001 90,750,000 0.77 6.70E-04 Hs.253993− Hs.571857− Hs.441432− Hs.308351+ Hs.212483− BARHL2− Hs.576073−

Chr6 6q14.1 * 75,500,001 76,000,000 0.74 6.70E-04 Hs.583003− SENP6− Hs.597951− Hs.661961− Hs.666419− MYO6− IMPG1−

Chr2 2q33.3 205,500,001 206,000,000 0.73 6.70E-04 PARD3B− Hs.271903− NRP2− Hs.663547− INO80D+ Hs.713983− Hs.610328−

ChrX Xq13.2 73,750,001 74,250,000 0.70 2.89E-03 XIST− JPX− Hs.611693− Hs.720466− Hs.648496− FTX− Hs.619548+ BMP2KL− Hs.276976−
Hs.607917− Hs.742329− Hs.729494−

Statistically significant segments obtained with TRAM “Map” mode analysis (default parameters) comparing pool A (SN samples from male controls) vs. pool B (SN samples from
female controls). Segments are sorted by decreasing the Expression Ratio. Chr: Chromosome; Location: Segment cytoband derived from the first mapped gene within the segment;
Segment Start/End: Chromosomal coordinates for each segment; Genes in the segment: Bold and +: Over-expressed gene; Bold and −: Under-expressed gene; ‘+’ or ‘−’: Gene expression
value higher or lower than the median value, respectively. UniGene EST clusters (named with the prefix Hs. for Homo sapiens) with an expression value are also reported in Table 2.
* Cytoband was derived from the UCSC Genome Browser [54].
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3.3. Male SN PD Patient Samples vs. Female SN PD Patient Samples (TRAM PD)

Transcriptome Mapper analysis of pool C (67 male SN PD patient samples) vs. pool D (48 female
SN PD patient samples) consisted respectively of 1,812,722 and 1,148,193 data points (gene expression
value), corresponding to 36,654 mapped loci (Supplementary Table S3).

Results are reported in Table 3 and underline the differential expression of nine segments, only one
of which is under-expressed.

As per TRAM CTR results, the first over-expressed segment maps on chromosome Y and includes
the significant genes TTTY15, USP9Y and DDX3Y.

Only one segment is reported as under-expressed and is located on chromosome 8 (8p23.1),
including three genes of the defensins family (DEFA4, DEFA1 and DEFA3).

Eleven expressed sequence tags (EST) clusters (Hs.635716 EST was validated for coding CDR1-AS1
as seen in the UniGene database search) were found as over- or under-expressed, but not associated
with known genes.

3.4. Male SN PD Patient Samples vs. Male SN Control Samples (TRAM MALE)

Transcriptome Mapper analysis of pool C (67 male SN PD patient samples) vs. pool A (73 male
SN control samples) consisted respectively of 1,812,722 and 1,798,965 data points (gene expression
value), corresponding to 36,654 mapped loci (Supplementary Table S4).

The results, as reported in Table 4, underline the deregulation of 12 segments, only two of which
are under-expressed.

The segment with the highest expression ratio is located on chromosome 1 (1p22.2), showing as
statistically significant GBP1, a gene of the GBP family of guanylate binding protein, the protein kinase
coding gene PKN2 and the EST cluster Hs.732899 as statistically significant. Another segment with the
same expression ratio (1.31) maps on chromosome 15 (15q21.1) and includes the genes SHC4, an SHC
adaptor protein 4, EID1, an EP300 interacting inhibitor of differentiation and the EST cluster Hs.585204.

The lowest expression ratio was reported for the segment on chromosome 19 comprising the genes
POP4, encoding for a protein subunit of the small nucleolar ribonucleoprotein complexes, C19orf12,
encoding for a small transmembrane protein and the ncRNA LOC284395.

Seventeen EST clusters (Hs.732899 was validated for coding GBP2 as seen in the UniGene database
search, Hs.98445 for coding RASA2, Hs.741442 for coding GS1-124K5.11) were found as over- or
under-expressed, but not associated with known genes.

3.5. Female SN PD Patient Samples vs. Female SN Control Samples (TRAM FEMALE)

Transcriptome Mapper analysis of pool D (48 female SN PD patients samples) vs. pool B (39 female
SN control samples) consisted respectively of 1,148,193 and 1,176,191 data points (gene expression
value), corresponding to 36,654 mapped loci (Supplementary Table S5).

Table 5 are listed the statistically significant segments obtained, six of which are over-expressed
and only one segment is under-expressed.

The highest expression ratio was observed for a segment on chromosome 8 (8p23.1) that includes
three genes belonging to the Defensins protein family (DEFA4, DEFA1, DEFA3) as over-expressed.

The only under-expressed segment is located on chromosome X (Xq27.1), containing the ncRNA
LINC00632, the gene CDR1 named as cerebellar degeneration related protein 1, not yet functionally
characterized, and the antisense CDR1-AS1 (corresponding in Table 4 to Hs.635716).

Four EST clusters (Hs.637575 was validated for coding LOC101928809 as seen in the UniGene
database search, C8orf46 for coding VXN vexin, Hs.660769 for coding ARID3A, Hs.635716 for coding
CDR1-AS) were found as over- or under-expressed, but not associated with known genes.
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Table 3. Chromosomal segments statistically significant in TRAM “Map” mode analysis of male SN PD patient sample vs. female SN PD patient samples (TRAM PD).

Chr Location Segment Start Segment End Expression Ratio q-Value Genes in the Segment

ChrY Yq11.1 * 12,500,001 13,000,000 2.97 1.22E-04 Hs.161318+ TTTY15+ USP9Y+ DDX3Y+

Chr5 5q34 161,500,001 162,000,000 1.97 1.24E-04 GABRB2+ GABRA6+ GABRA1+

Chr2 2p22.3 * 34,500,001 35,000,000 1.58 1.22E-04 Hs.580379+ Hs.551445+ Hs.542103+ Hs.542102+

ChrX Xq27.1 140,500,001 141,000,000 1.49 2.00E-04 SOX3+ LINC00632+ Hs.635716+ CDR1+ Hs.562002+

Chr3 3p21 * 41,000,001 41,500,000 1.40 1.77E-04 Hs.147846+ Hs.581542− Hs.565967+ Hs.581431+ CTNNB1+ Hs.658202+ Hs.622506+ ULK4− Hs.543182+

Chr16 16p13.3 6,750,001 7,250,000 1.40 3.36E-04 RBFOX1+ Hs.737046− Hs.606954+ Hs.675515− Hs.680357+ Hs.655766+

Chr3 3q26.1 167,500,001 168,000,000 1.33 7.93E-04 WDR49− Hs.572920+ Hs.171377+ Hs.589980+ PDCD10+ SERPINI1+ Hs.575028+ Hs.542878+

Chr8 8p23.1 6,750,001 7,250,000 0.77 3.69E-03 AGPAT5+ Hs.545543− XKR5+ DEFB1− DEFA6− Hs.583889− DEFA4− DEFA1− DEFA3− DEFA5−
Hs.583868− Hs.552561− Hs.545542+

Statistically significant segments obtained with TRAM “Map” mode analysis (default parameters) comparing pool C (SN samples from males affected by PD) vs. pool D (SN samples from
females affected by PD). Segments are sorted by decreasing the Expression Ratio. Chr: Chromosome; Location: Segment cytoband derived from the first mapped gene within the segment;
Segment Start/End: Chromosomal coordinates for each segment; Genes in the segment: Bold and +: Over-expressed gene; Bold and −: Under-expressed gene; ‘+’ or ‘−’: Gene expression
value higher or lower than the median value, respectively. UniGene EST clusters (named with the prefix Hs. for Homo sapiens) with an expression value are also reported in Table 3.
* Cytoband was derived from the UCSC Genome Browser [54].
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Table 4. Chromosomal segments statistically significant in TRAM “Map” mode analysis of male SN PD patient samples vs. male SN control samples (TRAM MALE).

Chr Location Segment Start Segment End Expression Ratio q-Value Genes in the Segment

Chr1 1p22.2 88,750,001 89,250,000 1.31 4.02E-03 PKN2+ Hs.537994+ GTF2B− CCBL2+ Hs.562190+ GBP3+ GBP1+ Hs.205458− Hs.170957−
Hs.732899+ GBP2+ GBP7− GBP4+

Chr15 15q21.1 48,500,001 49,000,000 1.31 1.36E-03 FBN1+ Hs.610605+ CEP152+ Hs.585204+ SHC4+ EID1+ Hs.714048+ SECISBP2L+

Chr5 5q15 95,750,001 96,250,000 1.27 1.56E-03 RHOBTB3+ GLRX+ Hs.543999− Hs.543998− C5orf27+ ELL2+ Hs.608694+ Hs.656129+ Hs.259567+

Chr13 13q32.1 97,000,001 97,500,000 1.26 6.50E-04 MBNL2+ Hs.660409+ Hs.662697+ Hs.672758+ Hs.657782+ Hs.732232+ Hs.577859− Hs.326718+
Hs.539599+ Hs.539598+ RAP2A+ Hs.646603+

Chr18 18q21.33 62,500,001 63,000,000 1.26 9.00E-04 ZCCHC2+ Hs.656351+ Hs.333785− PHLPP1+ Hs.679153+

Chr3 3q26.1 167,500,001 168,000,000 1.26 1.36E-03 WDR49− Hs.572920+ Hs.171377+ Hs.589980+ PDCD10+ SERPINI1− Hs.575028+ Hs.542878+

Chr3 3q22-q23 141,500,001 142,000,000 1.23 5.30E-04 RASA2+ Hs.98445+ Hs.603855+ LOC646730+ RNF7− GRK7− ATP1B3+ Hs.660667+ TFDP2+

Chr7 7p15 23,250,001 23,750,000 1.23 6.90E-04 GPNMB+ MALSU1+ IGF2BP3+ Hs.29733− TRA2A+ Hs.644466+ Hs.608901+ Hs.743502+
CCDC126+ Hs.737536+ Hs.128757+ FAM221A+ STK31+

Chr12 12q15 70,250,001 70,750,000 1.23 1.21E-03 CNOT2+ Hs.663352+ Hs.577543− KCNMB4+ Hs.665051+ PTPRB+ PTPRR−

Chr7 7q11.21 66,000,001 66,500,000 0.69 3.00E-05 ASL− CRCP+ TPST1− Hs.677061− LINC00174− Hs.741442− LOC100289098+

Chr19 19q12 29,250,001 29,750,000 0.61 1.50E-04 LOC284395− POP4− PLEKHF1+ C19orf12− Hs.551392−
Statistically significant segments obtained with TRAM “Map” mode analysis (default parameters) comparing pool C (SN samples from males affected by PD) vs. pool A (SN samples from
male control subjects). Segments are sorted by decreasing the Expression Ratio. Chr: Chromosome; Location: Segment cytoband derived from the first mapped gene within the segment;
Segment Start/End: Chromosomal coordinates for each segment; Genes in the segment: Bold and +: Over-expressed gene; Bold and −: Under-expressed gene; ‘+’ or ‘−’: Gene expression
value higher or lower than the median value respectively. UniGene EST clusters (named with the prefix Hs. for Homo sapiens) with an expression value are also reported in Table 4.
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Table 5. Chromosomal segments statistically significant in TRAM “Map” mode analysis of female SN PD patient sample vs. female SN control samples
(TRAM FEMALE).

Chr Location Segment Start Segment End Expression Ratio q-Value Genes in the Segment

Chr8 8p23.1 6,750,001 7,250,000 1.38 5.53E-03 AGPAT5− Hs.545543+ XKR5− DEFB1+ DEFA6− Hs.583889+ DEFA4+ DEFA1+ DEFA3+ DEFA5−
Hs.583868+ Hs.552561+ Hs.545542−

Chr4 4q21.1 75,750,001 76,250,000 1.17 5.92E-03 USO1+ Hs.662684+ PPEF2+ NAAA+ Hs.633144+ SDAD1+ Hs.637575− CXCL9+ ART3+ CXCL10+
CXCL11+ NUP54+ SCARB2+ FAM47E−

Chr2 2q33.1 197,250,001 197,750,000 1.16 1.43E-03 ANKRD44+ Hs.687027+ Hs.570284+ Hs.471011+ SF3B1− COQ10B+ HSPD1+ HSPE1+ MOB4−
Hs.595504+ RFTN2+ Hs.676585− MARS2+ BOLL−

Chr1 1q21.1 149,500,001 150,000,000 1.16 2.01E-03
LINC00869+ HIST2H2BF− FCGR1A− Hs.624313+ HIST2H3D+ Hs.741509− Hs.528615− HIST2H4A+

Hs.597557+ HIST2H3C− HIST2H2AA3+ Hs.713638+ HIST2H2AA4− HIST2H4B+ HIST2H2BE+
HIST2H2AC+ HIST2H2AB− BOLA1− SV2A− SF3B4+ MTMR11+ Hs.194081+ OTUD7B+

Chr8 8q13.1 66,500,001 67,000,000 1.13 4.97E-03 C8orf46+ MYBL1+ Hs.732745+ VCPIP1+ C8orf44+ Hs.734405− SGK3+ MCMDC2+ SNHG6+
TCF24+ PPP1R42+

Chr19 19p13.3 500,001 1,000,000 1.12 3.51E-02
MADCAM1− TPGS1− CDC34+ GZMM− Hs.214491− BSG+ HCN2− FLJ45684+ POLRMT+ FGF22−
RNF126+ Hs.638433− FSTL3− PRSS57+ PALM+ MISP− PTBP1+ LPPR3− AZU1+ PRTN3+ ELANE+

CFD+ MED16+ R3HDM4+ KISS1R− ARID3A+ Hs.735832+ Hs.660769− WDR18+

ChrX Xq27.1 140,500,001 141,000,000 0.65 1.50E-04 SOX3− LINC00632− Hs.635716− CDR1− Hs.562002+

Statistically significant segments obtained with TRAM “Map” mode analysis (default parameters) comparing pool D (SN samples from females affected by PD) vs. pool B (SN samples
from female control subjects). Segments are sorted by decreasing the Expression Ratio. Chr: Chromosome; Location: Segment cytoband derived from that of the first mapped gene within
the segment; Segment Start/End: Chromosomal coordinates for each segment; Genes in the segment: Bold and +: Over-expressed gene; Bold and −: Under-expressed gene; ‘+’ or ‘−’:
Gene expression value higher or lower than the median value, respectively. UniGene EST clusters (named with the prefix Hs. for Homo sapiens) with an expression value are also reported
in Table 5.
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4. Discussion

The main aim of this study was to characterize the male vs. female gene expression differences
observed in the SN brain region of PD patients and matched controls.

Our meta-analysis was conducted on SN whole tissue to assess the global alteration occurring in
this brain region, considering the contribution of both DA neurons, whose degeneration leads to the
onset of the major (motor and non-motor) symptoms, and glial cells (non-neuronal cells). The TRAM
software was chosen for its particular features, mainly for its ability to process microarray data obtained
from independent studies performed with different array platforms and for the intra- and inter-sample
normalization (scaled quantile) method, useful to avoid possible batch effect [44]. In addition, the
statistical validity of the software has been confirmed in different studies [43,47–49].

In our previous study, we used TRAM to focus on segments differentially expressed by the disease
but not by sex [43]. Starting from the same data collection, plus new microarray series, we specifically
investigated the sex differences. In particular, we performed a comparison of healthy controls in order
to generate a sex-specific transcriptome reference map of normal substantia nigra (TRAM CTR) to
compare with the others of unhealthy tissues (TRAM PD, TRAM MALE and TRAM FEMALE) and
possibly evaluate the differences due only to the disease and not to the sex.

4.1. Sex-Biased Gene Expression in Parkinson’s and Control SN

The transcriptome map of healthy controls showed the evident different expression in male vs.
female SN of segments located on sex chromosomes (TRAM CTR, Table 2). This confirm the robustness
of TRAM statistics, as it identifies sample-specific segments. In particular, we can note that the Y
chromosome segment, containing the male sex specific genes TTTY15, USP9Y and DDX3Y, is the most
over-expressed in both analyses involving the comparison between male vs. female subjects (TRAM
CTR and TRAM PD, respectively Tables 2 and 3).

Therefore, the present study supports the known differential expression of X- and Y-linked genes
in a sex-specific brain gene expression analysis [41,55] as well as the obvious deregulation of loci not
mapping on sex chromosomes [41,42]. Among them, we can highlight several genes which encode for
proteins with specific neuronal function, found to be upregulated in males. i.e., the MSRA gene in SN
control samples (TRAM CTR, Table 2), whose product has a key role in oxidative stress response and
a high expression in the brain, including the SN, with a higher immuno-reactivity in neurons than
in glial cells [56,57]; the SCN3A and SCN2A genes, that encode for glycoprotein members of a family
of voltage-gated sodium channels involved in the generation and propagation of action potentials in
neurons and muscle cells [58,59]; the CSRNP3 gene, encoding for a transcriptional activator, whose
mouse ortholog Mbu-1 shows a high expression in the central nervous system, in particular in the
brain and spinal cord in the course of embryonic development but also in adults [60]; the NSUN2 gene,
whose product is a methyltransferase involved in the stabilization of the anticodon-codon pairing and
the correct translation of the mRNA, and whose loss-of-function is associated with increased cellular
stress and neurodevelopmental disorders [61].

It is noteworthy that these genes have not yet been reported in relevant research literature as being
associated with sex-biased gene expression, so they could be further investigated to better understand
the anatomical and functional dimorphism of SN tissue.

Nonetheless, the under-expressed segments in Table 2 reflect the main deregulation of ncRNA
genes or unknown transcripts in men, indicating a possible higher activity of epigenetic mechanisms
in women. Other studies have pointed out the significance of epigenetic mechanisms in promoting
sexual dimorphism in the brain and also their involvement in several neurological and psychiatric
disorders, suggesting that epigenetics could have a role in the different regulation and susceptibility of
these diseases [62].

In the TRAM PD analysis (Table 3), in addition to the confirmed presence of the segment
on chromosome Y, we can also note the over-expression of GABRB2, GABRA6, and GABRA1
genes, encoding for various subunits of a chlorine channel that mediates the rapid inhibition of



Genes 2018, 9, 275 12 of 17

synaptic transmission in the central nervous system. Gamma-aminobutyric acid GABA is the major
inhibitory neurotransmitter of the brain. Sex differences in brain neurochemistry have been well
documented, with studies reporting GABAergic variations together with DA and serotonergic systems
alterations [31]. In addition, in vitro and in vivo studies are focused on the relationship between
deregulation of GABA receptors and PD [63,64]. In particular, it has been assumed that a decrease in
GABA receptors in the dentate nucleus is related to tremors generation [65]. As shown by the results
of the TRAM PD analysis, the under-expression of some GABA receptors genes in females could
suggest that the early tremor symptom in women could be associated with the down-regulation of the
GABA system.

Furthermore, in Table 3 we connote another nervous tissue-associated gene, CDR1 (cerebellar
degeneration related protein 1) and the antisense CDR1-AS1 (Hs.635716), both of which are
over-expressed in male PD. These two loci are also reported as significant in the TRAM FEMALE
analysis (Table 5), where they are under-expressed in female PD vs. control subjects. Recent studies
described CDR1 and its antisense counterpart as highly expressed in the brain [66]. CDR1-AS1 is a
circular RNA (circRNA) that binds and inhibits microRNA (miRNA) such as miR-7, which are in turn
involved in alpha synuclein repression; in particular, this mechanism has been investigated in humans
and mice, where the loss-of-function of CDR1-AS1 is associated with brain dysfunctions [67].

If we consider the two specific analyses for PD, TRAM MALE and TRAM FEMALE, the difference
between their relative results is noticeable.

In the TRAM FEMALE analysis (Table 5), the main over-expression in pathological tissue of
segments including immune system activation-related loci is very clear: i.e., DEFA4, DEFA1 and DEFA3
genes belonging to the defensins family of proteins and involved in host defense; CXCL9, CXCL10
and CXCL11 genes, that encode for the Chemokine protein family; AZU1, PRTN3 and ELANE genes,
known to be expressed coordinately and to encode for proteins incorporated into azurophil granules
during neutrophil differentiation.

When we compare all the affected males vs. females in the TRAM PD analysis, the only
under-expressed segment is the one on chromosome 8 including the defensins gene family, confirming
the sexually dimorphic activation of gliosis/inflammation specific genes in PD female subjects. Some of
these genes were already commented on in our previous work [43] and several studies described the
activation of microglia and increased expression of immune system mediators in the brain as a common
feature of many neurodegenerative diseases, including PD [68–70]. Notably, recent findings have
associated higher brain levels of inflammatory markers with more severe symptoms of stress-related
depression and fatigue [71] and suggested that sex differences in neuroinflammation may explain
the female bias in these symptoms [72]. Based on these data, we can hypothesize that depression
and anxiety which mainly characterize females affected by PD could be related to the alteration of
inflammatory pathways.

In the TRAM MALE analysis, the results highlight several genes that cannot be related to
common functional pathways. Among them, we can underline as over-expressed the GPNMB gene
(glycoprotein nmb) whose locus has been indicated as a susceptibility factor for PD in gene expression
and methylation assays [73]. The locus is also present in the “Top Results” list of PDGene, a publicly
available database providing collection of genome wide association studies (GWAS) performed on
PD phenotypes [74]. Interestingly, other segments resulted in our study seem to include genes with
genetic variant associated to the disease. Further investigation integrating GWAS and gene expression
data, could be a robust approach for the identification of candidate genes and functions associated.

4.2. Other Results

It is interesting to observe the high number of Hs. sequences shown to be under- or over-expressed
in a statistical manner. These sequences are from H. sapiens transcriptome, still not fully characterized
and supposedly coding for proteins or non-coding transcripts, such as lncRNA, miRNA or other small
non-coding RNAs (sncRNAs). Also noticeable is the presence of LOC sequences (genes of uncertain
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function) and large intergenic non-coding RNAs (lincRNAs), recently emerging as key regulators
of several cellular processes. Some evidence suggests their possible function in the central nervous
system as regulators in brain evolution and neuronal development [75]. It is worthwhile considering
that the Homo sapiens (Hs.). sequences are constantly updated in the UniGene database, and they could
be linked to gene sequences in the future.

One of the TRAM software’s main features is to detect the differential expression of a chromosomal
segment region, not just single genes, providing statistical analysis of over- or under-expressed regions
when compared to the whole genome or to the relative chromosome [44]. Results could suggest
common regulatory mechanisms for the many genes within the significant segment, whose genetic
variability has already been associated with PD.

Remarkably, the present study identifies some segments immediately adjacent to known
PD-related genes, i.e., the segment on chromosome 4 (4q21.1) that in the TRAM FEMALE analysis
(Table 5), was shown to be adjacent to the one comprising the SNCA gene (PARK1/PARK4), encoding
for alpha-synuclein. Currently, this protein is one of the main pathophysiological hallmarks of PD since
its accumulation forms the typical intracellular aggregates characteristic of some neurodegenerative
diseases, the LBs [8–12].

In the same analysis, we can note the segment on chromosome 1 (1q21) known to be the location
of the GBA gene (glucosylceramidase β), another important risk factor for PD and dementia with
LBs [12,76]. In addition, in the TRAM CTR analysis the segment on chromosome 2 was over-expressed
in men vs. women (2q24) and including the SCN3A gene as statistically significant, it is very near to
SKT39 (serine/threonine kinase 39), a gene recently confirmed as associated with PD in a genome-wide
association study [77]. Interestingly, the same study also indicates also SCN3A as a novel risk locus.

5. Conclusions

Taken together, the TRAM meta-analysis results lead us to hypothesize a possible activation of
specific sex-biased systems in PD susceptibility, although further investigations are needed to confirm
the hypothesis.

Most notably, these data could suggest the existence of differences in the activation of
neurodegeneration and neuroinflammatory mechanisms. In particular, the under-expression of some
GABA receptors genes observed in females could be related to the prevalence of tremors as their initial
symptom. In addition, the increased expression of proinflammatory genes detected in women could
explain the different development of the PD in the two sexes, with females shown to be more likely to
be affected by depression and anxiety, symptoms that reduce patients’ quality of life.

The validation of the molecular pathways and genes which proved to be significant in this study
could help to understand the etiology of PD and contribute in identifying those factors underpinning
differences between men and women. Having a better understanding of the genes involved in the
disease could also be helpful in the design of new drugs to slow disease progression and to potentially
define sex-specific therapies.

Finally, the TRAM software has provided some confirmation and some new insights into PD,
proving to be a useful tool in the study of a complex disease, where the need to integrate different
types of genetic technologies and approaches is fully acknowledged.
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