
08 July 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Rusci, M., Cavigelli, L., Benini, L. (2018). Design Automation for Binarized Neural Networks: A Quantum
Leap Opportunity? [10.1109/ISCAS.2018.8351807].

Published Version:

Design Automation for Binarized Neural Networks: A Quantum Leap Opportunity?

Published:
DOI: http://doi.org/10.1109/ISCAS.2018.8351807

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/644011 since: 2018-09-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/ISCAS.2018.8351807
https://hdl.handle.net/11585/644011

This is the post peer-review accepted manuscript of:

M. Rusci, L. Cavigelli and L. Benini, "Design Automation for Binarized Neural Networks: A Quantum

Leap Opportunity?" 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence,

Italy, 2018, pp. 1-5. doi: 10.1109/ISCAS.2018.8351807

The published version is available online at: https://doi.org/10.1109/ISCAS.2018.8351807

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any

current or future media, including reprinting/republishing this material for advertising or promotional purposes,

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works

Design Automation for Binarized Neural Networks:
A Quantum Leap Opportunity?

Manuele Rusci∗, Lukas Cavigelli†, Luca Benini†∗
∗ Energy-Efficient Embedded Systems Laboratory, University of Bologna, Italy – manuele.rusci@unibo.it

†Integrated Systems Laboratory, ETH Zurich, Switzerland – {cavigelli, benini}@iis.ee.ethz.ch

Abstract—Design automation in general, and in particular
logic synthesis, can play a key role in enabling the design
of application-specific Binarized Neural Networks (BNN). This
paper presents the hardware design and synthesis of a purely
combinational BNN for ultra-low power near-sensor processing.
We leverage the major opportunities raised by BNN models,
which consist mostly of logical bit-wise operations and integer
counting and comparisons, for pushing ultra-low power deep
learning circuits close to the sensor and coupling them with
binarized mixed-signal image sensor data. We analyze area,
power and energy metrics of BNNs synthesized as combinational
networks. Our synthesis results in GlobalFoundries 22 nm SOI
technology shows a silicon area of 2.61mm2 for implementing
a combinational BNN with 32×32 binary input sensor recep-
tive field and weight parameters fixed at design time. This is
2.2× smaller than a synthesized network with re-configurable
parameters. With respect to other comparable techniques for
deep learning near-sensor processing, our approach features a
10× higher energy efficiency.

I. INTRODUCTION

Bringing intelligence close to the sensors is an effective
strategy to meet the energy requirements of battery-powered
devices for always-ON applications [1]. Power-optimized ar-
chitectures for near-sensor processing target the reduction of
the amount of data to be dispatched out from the sensors,
along with significant energy savings, by applying local data
processing over raw sensed data [2]. To this aim, in the context
of visual sensing, novel computer vision chips include in-
sensor computational modules for the early extraction of mid-
and low- level visual features, which are transferred to a digital
processing unit for further computation or used to feed a
first stage classifier [3]. Thanks to the integration of analog
processing circuits on the focal-plane, the amount of data
crossing the costly analog-to-digital border is reduced [4] and,
if compared with a camera-based system featuring a traditional
imaging technology, the system energy consumption is lower
because of (a) a reduced sensor-to-processor bandwidth and
(b) a lower demand for digital computation [5]. Relevant
examples of mixed-signal computer vision capabilities include
the extraction of spatial and temporal features, such as edges or
frame-difference maps, or a combination of them [6]. Because
of the employed highly optimized architectures, the power
consumption of these smart visual chips results to be more than
one order of magnitude lower than off-the-shelf traditional
image sensors [7].

However, to favor the meeting between smart ultra-low
power sensing and deep learning, which is nowadays the
leading technique for data analytics, a further step is required.
At present, the high computational and memory requirement
of deep learning inference models have prevented a full

This project was supported in part by the EU’s H2020 programme under
grant no. 732631 (OPRECOMP) and by the Swiss National Science Founda-
tion under grant 162524 (MicroLearn).

integration of these approaches close to the sensor at an ultra
low power cost [4], [8]. A big opportunity for pushing deep
learning into low-power sensing come from recently proposed
Binarized Neural Networks (BNNs) [9], [10]. When looking
at the inference task, a BNN consists of logical XNOR oper-
ations, binary popcounts and integer thresholding. Therefore,
major opportunities arise for hardware implementation of these
models as part of the smart sensing pipeline [11].

In this paper, we explore the feasibility of deploying BNNs
as a front-end for an ultra-low power smart vision chip.
The combination of mixed-signal processing and hardware
BNN implementation represents an extremely energy-efficient
and powerful solution for always-ON sensing, serving as an
early detector of interesting events. Therefore, we design and
synthesize a purely combinational hard-wired BNN, which is
fed with the binary data produced by a mixed-signal ultra-low
power imager [7]. The main contributions of this paper are:

• The hardware design and logic synthesis of a combi-
national BNN architecture for always-ON near-sensor
processing.

• The area and energy evaluation of the proposed approach,
for varying network models and configurations.

We evaluate two BNN models with 16×16 and 32×32 binary
input size, either with fixed or variable parameters. In case of
a combinational BNN with 32×32 input data and hardwired
parameters, our synthesis results in GlobalFoundries 22 nm
SOI technology shows an area occupancy of 2.61mm2, which
is 2.2× smaller than the model with variable parameters,
and features a 10× higher energy efficiency with respect to
comparable techniques for deep learning-based near-sensor
processing. Moreover, our study paves the way for exploring a
new generation of logic synthesis tools—aimed at aggressively
optimizing deep binarized networks and enabling focal-plane
processing of images with higher resolution.

II. RELATED WORK

Besides the mixed-signal processing circuits for extracting
basic spatial and temporal visual features in-the-sensor [6],
[12], [13], recent approaches tried to push deep learning
circuits into the analog side to exploit the energy benefits of
focal-plane processing [3]. The work presented in [14] makes
use of angle-sensitive pixels, integrating diffraction gratings on
the focal plane. Based on the different orientations of the pixel-
level filters, multiple feature maps are locally computed as the
first layer of a convolutional network. RedEye [4] embeds
column-wise processing pipelines in the analog domain to
perform 3D convolutions before of the digital conversion. The
chip is implemented in 0.18µm technology and needs 1.4 mJ
to process the initial 5 layers of GoogLeNet, leading to an
energy efficiency of about 2 TOp/s/W. A sensing front-end
supporting analog multiplication is proposed in [15] to operate

on analog sensed data. The authors introduce a MAC unit
composed of only passive switches and capacitors to realize a
switched-capacitor matrix multiplier, which achieves an energy
efficiency of 8.7 TOp/s/W when running convolution opera-
tions. With respect to these analog approaches, we leverage
the potentiality of BNNs to deploy a digital and optimized
purely combinational network to notably increase the energy
efficiency of near-sensor processing circuits.

On the near-sensor digital side, many neural network ac-
celerators have been reported in the literature, most of them
with an energy efficiency in the range of few TOp/s/W [16]–
[18]. Several recent approaches have focused on quantizing
the weights down to binarization in order to gain a significant
advantage in memory usage and energy efficiency [8], [18],
pushing it up to around 60 TOp/s/W while advances in training
methods have achieved accuracy losses of less than 1% for this
setup. A new approach has been to quantize also the activations
down to binary with initial accuracy losses of up to 30% on the
ILSVRC dataset, these have improved to around 11% over the
last two years and even less for smaller networks on datasets
such as CIFAR-10 and SVHN [9], [10], [18]. During this
time, some VLSI implementations have been published, most
of them targeting FPGAs such as the FINN framework [11],
[19]. Only few ASIC implementations exist [19]–[21], of
which XNOR-POP uses in-memory processing and reports the
highest energy efficiency of 22.2 TOp/s/W and thus less than
the best binary-weight-only implementation.

III. COMBINATIONAL HARDWARE BNN DESIGN

A BNN design represents both the networks weights and the
activation layers with single-bit precision, leading to an intrin-
sic 32× memory footprint reduction with respect to a baseline
full-precision model. When applying the binarization scheme
to a Convolutional Neural Network (CNN), the resulting BNN
features a stacked architecture of binary convolutional layers,
where every layer transforms IF binary input feature maps
into OF binary output feature maps through the well-known
convolution operation. Because of the binary domain, denoted
as {0,1}, of both the input data and the weight filters, the
convolution kernel can be rewritten as
ϕ(m,x, y) = popcount(weights(m) xnor recField(x,y)), (1)

where ϕ(m,x, y) is the result of the convolution, weights(m)
is the array of binary filter weights and recField(x,y) is the
receptive field of the output neuron located at position (x, y)
of the m-th output feature map. The popcount(·) function
returns the numbers of asserted bits of the argument. Note
that the convolution output ϕ(m,x, y) is an integer value. As
presented by [9], the popcount result is binarized after a batch
normalization layer. However, the normalization operation can
be reduced to a comparison with an integer threshold,

outMap(m,x, y) =

ϕ(m,x, y) ≥ thresh(m) if γ > 0

ϕ(m,x, y) ≤ thresh(m) if γ < 0

1 if γ = 0 and β ≥ 0

0 if γ = 0 and β < 0

,

(2)
where thresh(m) is the integer threshold that depends on the
convolution bias b and on the parameters learned by the batch
normalization layer µ, σ, γ and β. After training the network,
the thresh(m) parameters are computed offline as bµ − b −
β · σ/γc if γ > 0 or dµ− b− β · σ/γe if γ < 0.

Fig. 1 graphically schematizes the binary convolution op-
eration. The BinConv module applies (1) and (2) over the

Fig. 1. Computational flow of a binary convolutional layer. For each of the
OF output feature maps, the binary value at position (x, y) is produced by
overlapping the m-th weight filter to the array of the receptive field of the
input feature map centered at the spatial position (x, y).

receptive field values associated to any of the output neurons
outMap(m,x, y). Hence, to build a convolutional layer, the
BinConv is replicated for every output neuron. The hardware
architecture of a BinConv element is shown in Fig. 2. In
the figure, the input signals recField(x,y), weights(m) and
thresh(m) and the output signal outMap(m,x,y) of the block
refer to (1) and (2). Additionally, the sign(m) signal drives
the selection of the correct output neuron’s value depending
on the batch normalization parameters (eq. (2)). The network
parameters, weights, thresh and sign, highlighted in red, can
be stored in a memory block, to allow online reconfiguration,
or can be fixed at design time. In the first case, the memory
footprint required to store the parameters of a convolutional
layer is OF · (IF · kw · kh+ blog2(IF · kw · kh)c+ 3) bits.
On the contrary, if hard-wiring the binary weights, the circuit
implementation lacks flexibility but benefits in terms of silicon
occupation.

To explore the feasibility of deep combinational BNNs,
we focus on VGG-like network topologies as in [9]. These
networks include convolutional layers with a small filter size
(typically kw = kh = 3) and an increasing feature dimension
going deeper into the network. The spatial dimension tends to
decrease by means of strided pooling operations placed after
the binary convolution of (1). Following the intuition of [11],
a MaxPooling layer can be moved behind the binarization
by replacing the MAX with an OR operation among the
binary values of the activations. The network frontend is
composed by multiple fully-connected layers. Their hardware
implementation is similar to the binConv module of Fig. 2,
where the convolutional receptive field contains all the input
neurons of the layer. The last fully-connected layer generates a
confidence score for every class. Differently from the original
BNN scheme, our network architecture is fed with a binary

Fig. 2. Hardware architecture of the combinational building block for
computing binary convolutions. Every binConv(m,x,y) module instantiated
within a convolutional layer produces the binary value of the output neuron
at location (x, y) of the m-th output feature map.

TABLE I
VGG-LIKE BNN MODELS1

layer Model with a 16×16 input map Model with a 32×32 input map

1 bConvLyr3x3(1,16)+MaxP2x2 bConvLyr3x3(1,16)+MaxP2x2
2 bConvLyr3x3(16,32)+MaxP2x2 bConvLyr3x3(16,32)+MaxP2x2
3 bConvLyr3x3(32,48)+MaxP2x2 bConvLyr3x3(32,48)+MaxP2x2
4 bFcLyr(192,64) bConvLyr3x3(48,64)+MaxP2x2
5 bFcLyr(64, 4) bFcLyr(256,64)
6 bFcLyr(64, 4)

single-layer signal coming from a mixed-signal imager [7].
However, the presented approach also holds for multi-channel
imagers.

A. Estimating Area

Before looking at synthesis results, we estimate the area of
a binary convolutional layer. For each output value (output
pixel and feature map, Nout = H · W · OF), we have a
receptive field of size NRF = IF · kw · kh and thus need
a total of NoutNRF XNOR gates. These are followed by
popcount units—adder trees summing over all NRF values
in the receptive field. The resulting full-precision adder trees
require

∑log2(NRF)
i=1 NRF2

−i = NRF − 1 half-adders and∑log2(NRF)
i=1 (i − 1)NRF2

−i = NRF − log2(NRF) − 1 full-
adders (FAs) each, and are replicated for every output value.
The subsequent threshold/compare unit is insignificant for the
total area.

To provide an example, we look at the first layer of the
network for 16× 16 pixel images with 1 input and 16 output
feature maps and a 3×3 filter (NRF = 9, Nout = 4096). Eval-
uating this for the GF22 technology with AXNOR = 0.73µm2,
AHA = 1.06µm2 and AFA = 1.60µm2, we obtain an area
of AXNOR,tot = 0.027mm2, AHA,tot = 0.033mm2 and
AFA,tot = 0.029mm2—a total of 0.089 mm2. Note that this
implies that the area scales faster than linearly with respect to
the size of the receptive field NRF since the word width in the
adder tree increases rapidly. This is not accounted for in the
widely used GOp/img complexity measure for NNs, as it is
becoming only an issue in this very low word-width regime.

IV. EXPERIMENTAL RESULTS

A. BNN Training

The experimental analysis focuses on two VGG-like net-
work topologies described in Tbl. I to investigate the impact
of different input and network size. As a case-study, we
trained the networks with labelled patches from the MIO-
TCD dataset [22] belonging to one of the following classes:
car, pedestrian, cyclist and background. The images from the
dataset are resized to fit the input dimension before applying
a non-linear binarization, which simulates the mixed-signal
preprocessing of the sensor [7]. By training the BNNs with
ADAM over a training set of about 10ksamples/class (original
images are augmented by random rotation), the classification
accuracy against the test-set achieves 64.7% in case of the
model with 32×32 input data, while a 50% is measured for the
16×16 model because of the smaller input size and network.
Since this work focuses on hardware synthesis issues of
BNN inference engines, we do not explore advanced training

1bConvLyr3x3(x,y) indicates a binary convolutional layer with a 3×3 filter,
x input and y output feature maps, MaxP2x2 is a max pooling layer of size
2×2, bFcLyr(x, y) is a binary fully connected layer with x binary input y
binary output binary neurons.

TABLE II
SYNTHESIS AND POWER RESULTS FOR DIFFERENT CONFIGURATIONS

—— area —— — time/img — E/img leak. E-eff.
netw. type [mm2] [MGE]† [ns] [FO4]‡ [nJ] [µW] [TOp/J]

16×16 var. 1.17 5.87 12.82 560 2.40 945 470.8
16×16 fixed 0.46 2.32 12.40 541 1.68 331 672.6
32×32 var. 5.80 29.14 17.27 754 11.14 4810 479.4
32×32 fixed 2.61 13.13 21.02 918 11.67 1830 457.6
† Two-input NAND-gate size equivalent: 1GE = 0.199µm2

‡ Fanout-4 delay: 1FO4 = 22.89 ps

TABLE III
AREA BREAKDOWN FOR THE 16×16 NETWORK

compute area estim. var. weights fixed weights
layer [kOp/img] [mm2] area [mm2] area [mm2]

1 74 (6.5%) 0.093 0.077 (6.6%) 0.008 (1.7%)
2 590 (52.2%) 0.971 0.647 (55.4%) 0.204 (44.3%)
3 442 (39.1%) 0.738 0.417 (35.8%) 0.241 (52.3%)
4 25 (2.2%) 0.041 0.026 (2.2%) 0.008 (1.7%)

approaches for NNs with non-traditional input data, which
have been discussed in the literature [23].

B. Synthesis Results
We analyze both aforementioned networks for two configu-

rations, with weights fixed at synthesis time and with variable
weights (excl. storage, modeled as inputs). The fixed weights
are taken from the aforementioned trained models.

We provide an overview of synthesis results for different
configurations in Tbl. II. We synthesized both networks listed
in Tbl. I in GlobalFoundries 22 nm SOI technology with LVT
cells in the typical case corner at 0.65 V and 25◦C. The
configuration with variable weights scales with the computa-
tional effort associated with the network (1.13 MOp/img and
5.34 MOp/img for the 16×16 and 32×32 networks) with 0.97
and 0.92 MOp/cycle/mm2, respectively. The variable parame-
ters/weights configuration does not include the storage of the
parameters themselves, which would add 1.60 µm2 (8.0 GE)
per FF. This weight memory could be loaded through a scan-
chain without additional logic cells (from some flash memory
elsewhere on the device). Alternatively, non-volatile memory
cells could be used to store them. The number of parameters
is 33 and 65 kbit and thus 0.05mm2 (264 kGE) and 0.10mm2

(520 kGE) for the 16×16 and 32×32 network, respectively.
Looking at the more detailed area breakdown in Tbl. III,

we can see that there is a massive reduction when fixing the
weights before synthesis. Clearly, this eliminates all the XNOR
operations which become either inverters or wires, and even
some of the inverters can now be shared among all units having
this particular input value in their receptive field. However,
based on the estimates described in Sec. III-A, this cannot
explain all the savings. Additional cells can be saved through
the reuse of identical partial results, which not only can occur
randomly but must occur frequently. For example, consider 16
parallel popcount units summing over 8 values each. We can

TABLE IV
ENERGY AND LEAKAGE BREAKDOWN FOR THE 16×16 NETWORK

——– var. weights ——– ——– fixed weights ——–
layer energy/img [pJ] leakage energy/img [pJ] leakage

1 38 (1.6%) 68 µW 9 (0.5%) 8 µW
2 806 (33.7%) 547 µW 478 (28.5%) 152 µW
3 1440 (60.2%) 310 µW 1037 (61.9%) 163 µW
4 107 (4.5%) 20 µW 151 (9.0%) 7 µW

TABLE V
COMPARISON WITH STATE-OF-THE-ART APPROACHES FOR DEEP-LEARNING NEAR SENSOR PROCESSING

Approach [15] [19] XNOR-POP [21] YodaNN [8] This Work

Description Analog switched-
capacitor matrix-mult

Cluster of 256 BNN
Digital Engines

In-memory XNOR
Engines

Binary-weight digital
accelerator

Combinational BNN
with fixed weights

Technology 40 nm 14 nm 32 nm (logic) 65 nm 22 nm SOI
Peak Performance 2 GOp/s 16 TOp/s 5.2 TOp/s 1.5 TOp/s 91.12 TOp/s
Power Consumption 228 µW@ 1 V – 237 mW 25 mW @ 0.6 V 135 mW (dyn) @ 0.65 V
Peak Energy-efficiency 8.77 TOp/s/W – 22.2 TOp/s/W 61.2 TOp/s/W 672.6 TOp/s/W
Area – – 2.24mm2 1.9mm2(1.33 MGE) 0.46mm2(2.32 MGE)

split the value into 4 groups with 2 values each. Two binary
values can generate 22 = 4 output combinations. Since we
have 16 units of which each will need one of the combinations,
they will on average be reused 4 times. This is only possible
with fixed weights, otherwise the values to reuse would have
to be multiplexed, thereby loosing all the savings.

Generally, we can observe that these already small networks
for low-resolution images require a sizable amount of area,
such that more advanced ad-hoc synthesis tools exploiting the
sharing of weights and intermediate results are needed.

C. Energy Efficiency Evaluations
We have performed post-synthesis power simulations using

100 randomly selected real images from the dataset as stimuli.
The results are also reported in Tbl. II while a detailed per-
layer breakdown is shown in Tbl. IV. We see that the 32×32
model has lower energy-efficiency and higher latency with
fixed weights, opposed to the smaller model. We attribute this
to the optimization towards minimal area without a timing
constraint, which favors weak drivers and high-fanout nets
with accordingly long transition times. We have observed that
particularly many cells are driven by signals corresponding to
the feature maps between layers, and that fixed-weight circuits
are more affected by this due to the significantly higher input
capacitance of FAs relative to XOR gates.

When heavily duty-cycling a device, leakage can become a
problem. In this case, we see 945 µW and 331 µW of leakage
power, which might be significant enough in case of low
utilization to require mitigation through power-gating or using
HVT cells. Generally, voltage scaling can also be applied,
not only reducing leakage, but also active power dissipation.
The throughput we observe in the range of 50 Mframe/s is
far in excess of what is meaningful for most applications.
Thus aggressive voltage scaling, power gating and the reverse
body biasing available in this FD-SOI technology should be
optimally combined to reach the minimum energy point where
leakage and dynamic power are equal while the supply is ON.

A comparison with state-of-the-art approaches is reported in
Tbl. V. The energy efficiency numbers of our approach are in
the order of 10× higher than those of the next competitor
YodaNN [8]. However, they are fundamentally different in
the sense that YodaNN (a) runs the more complex binary
weight networks, (b) requires additional off-chip memory for
the weights and intermediate results, (c) can run large networks
with a fixed-size accelerator, and (d) is in an older technology
but doing aggressive voltage scaling.

We expect the energy values to be highly dependent on
the input data, since energy is consumed only when values
toggle. While a single pixel toggling at the input might
affect many values later in the network, it has been shown
that rather the opposite effect can be seen: changes at the
input tend to vanish deeper into the network [24]. A purely

Fig. 3. Silicon area estimation (in red) and measurements with variable
(green) and fixed (blue) weights of three BNNs featuring a model complexity
which scales depending on the imager resolution. The area occupation of the
64×64 model is not reported because the synthesis tool is not able to handle
such a complex and large design.

combinational implementation fully leverages this and BNNs
naturally have a threshold that keeps small changes from
propagating and might thus perform even better for many real-
world applications.

D. Scaling to Larger Networks
Our results show an area requirement in the range of

2.05 to 2.46 GE/Op and an average 1.9 fJ/Op. Scaling this
up to 0.5 cm2 (250 MGE) of silicon and an energy consump-
tion of only 210 nJ/img, we could map networks of around
110 MOp/img—this is already more than optimized high-
quality ImageNet classification networks such as ShuffleNets
require [25].

Fig. 3 shows the estimation and measurements of the silicon
area corresponding to the synthesized BNNs for fixed and
variable weights. We also consider a model with a larger
64×64 input imager receptive field and a higher complexity (5
convolutional and 2 fully-connected layers, 23.05 GOp/img).
Such a model presents is more accurate on the considered
classification task (73.6%) but current synthesis tool cannot
handle the high complexity of the design, using in excess of
256 GB of memory. When estimating the area occupancy, the
64×64 BNNs result to be 4.3× larger than the area estimated
for the 32×32 model. A direct optimization of such large
designs is out of scope of today’s EDA tools, clearly showing
the need for specialized design automation tools for BNNs.

V. CONCLUSION

We have presented a purely combinational design and
synthesis of BNNs for near-sensor processing. Our results
demonstrate the suitability and the energy efficiency benefits
of the proposed solution, fitting on a silicon area of 2.61mm2

when considering a BNN model with 32×32 binary input data
and weight parameters fixed at design time. Our study also
highlighted the need for novel synthesis tools able to deal with
very large and complex network designs, that are not easily
handled by current tools.

REFERENCES

[1] M. Alioto, Enabling the Internet of Things: From Integrated Circuits to
Integrated Systems. Springer, 2017.

[2] M. Rusci, D. Rossi et al., “An event-driven ultra-low-power smart visual
sensor,” IEEE Sensors Journal, vol. 16, no. 13, pp. 5344–5353, 2016.

[3] Á. Rodrı́guez-Vázquez, R. Carmona-Galán et al., “In the quest of vision-
sensors-on-chip: Pre-processing sensors for data reduction,” Electronic
Imaging, vol. 2017, no. 11, pp. 96–101, 2017.

[4] R. LiKamWa, Y. Hou et al., “Redeye: analog convnet image sensor
architecture for continuous mobile vision,” in Proc. IEEE ISCA, 2016,
pp. 255–266.

[5] S. Zhang, M. Kang et al., “Reducing the energy cost of inference via
in-sensor information processing,” arXiv:1607.00667, 2016.

[6] J. Fernández-Berni, R. Carmona-Galán et al., “Focal-plane sensing-
processing: A power-efficient approach for the implementation of
privacy-aware networked visual sensors,” Sensors, vol. 14, no. 8, pp.
15 203–15 226, 2014.

[7] M. Gottardi, N. Massari, and S. A. Jawed, “A 100µ w 128×64 pixels
contrast-based asynchronous binary vision sensor for sensor networks
applications,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp.
1582–1592, 2009.

[8] R. Andri, L. Cavigelli et al., “Yodann: An architecture for ultra-
low power binary-weight cnn acceleration,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2017.

[9] M. Courbariaux, I. Hubara et al., “Binarized neural networks: Training
deep neural networks with weights and activations constrained to+ 1
or-1,” arXiv:1602.02830, 2016.

[10] M. Rastegari, V. Ordonez et al., “Xnor-net: Imagenet classification using
binary convolutional neural networks,” in Proc. ECCV. Springer, 2016,
pp. 525–542.

[11] Y. Umuroglu, N. J. Fraser et al., “Finn: A framework for fast, scalable
binarized neural network inference,” in Proc. ACM/SIGDA FPGA, 2017,
pp. 65–74.

[12] J. Choi, S. Park et al., “A 3.4-µw object-adaptive cmos image sensor
with embedded feature extraction algorithm for motion-triggered object-
of-interest imaging,” IEEE Journal of Solid-State Circuits, vol. 49, no. 1,
pp. 289–300, 2014.

[13] G. Kim, M. Barangi et al., “A 467nw cmos visual motion sensor with
temporal averaging and pixel aggregation,” in Proc. IEEE ISSCC, 2013,
pp. 480–481.

[14] H. G. Chen, S. Jayasuriya et al., “Asp vision: Optically computing the
first layer of convolutional neural networks using angle sensitive pixels,”
in Proc. IEEE CVPR, 2016, pp. 903–912.

[15] E. H. Lee and S. S. Wong, “Analysis and design of a passive switched-
capacitor matrix multiplier for approximate computing,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 261–271, 2017.

[16] Z. Du, R. Fasthuber et al., “Shidiannao: Shifting vision processing closer
to the sensor,” in ACM SIGARCH Computer Architecture News, vol. 43,
no. 3, 2015, pp. 92–104.

[17] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional
network accelerator,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 27, no. 11, pp. 2461–2475, 2017.

[18] V. Sze, Y.-H. Chen et al., “Efficient processing of deep neural networks:
A tutorial and survey,” arXiv:1703.09039, 2017.

[19] E. Nurvitadhi, D. Sheffield et al., “Accelerating binarized neural net-
works: Comparison of fpga, cpu, gpu, and asic,” in Proc. FPT, 2016,
pp. 77–84.

[20] K. Ando, K. Ueyoshi et al., “Brein memory: A 13-layer 4.2 k neuron/0.8
m synapse binary/ternary reconfigurable in-memory deep neural network
accelerator in 65 nm cmos,” in Proc. VLSI Symposium, 2017.

[21] L. Jiang, M. Kim et al., “Xnor-pop: A processing-in-memory architec-
ture for binary convolutional neural networks in wide-io2 drams,” in
Proc. IEEE/ACM ISLPED, 2017.

[22] “The traffic surveillance workshop and challenge 2017 (tswc- 2017),”
2017, MIO-TCD: MIOvision Traffic Camera Dataset. [Online].
Available: http://podoce.dinf.usherbrooke.ca

[23] S. Jayasuriya, O. Gallo et al., “Deep learning with energy-efficient
binary gradient cameras,” arXiv:1612.00986, 2016.

[24] L. Cavigelli, P. Degen, and L. Benini, “Cbinfer: Change-based inference
for convolutional neural networks on video data,” arXiv:1704.04313,
2017.

[25] X. Zhang, X. Zhou et al., “Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices,” arXiv:1707.01083, 2017.

