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Context-dependent extinction of 
threat memories: influences of 
healthy aging
Simone Battaglia1, Sara Garofalo2 & Giuseppe di Pellegrino   1

Although a substantial progress has been made in recent years on understanding the processes 
mediating extinction of learned threat, little is known about the context-dependent extinction of 
threat memories in elderly individuals. We used a 2-day differential threat conditioning and extinction 
procedure to determine whether young and older adults differed in the contextual recall of conditioned 
responses after extinction. On Day 1, conditioned stimuli were paired with an aversive electric shock 
in a ‘danger’ context and then extinguished in a different ‘safe’ context. On Day 2, the extinguished 
stimulus was presented to assess extinction recall (safe context), and threat renewal (danger context). 
Physiological and verbal report measures of threat conditioning were collected throughout the 
experiment. Skin conductance response (SCR data revealed no significant differences between age 
groups during acquisition and extinction of threat conditioning on Day 1. On Day 2, however, older 
adults showed impaired recall of extinction memory, with increased SCR to the extinguished stimulus 
in the ‘safe’ context, and reduced ability to process context properly. In addition, there were no age 
group differences in fear ratings and contingency awareness, thus revealing that aging selectively 
impairs extinction memories as indexed by autonomic responses. These results reveal that aging affects 
the capacity to use context to modulate learned responses to threat, possibly due to changes in brain 
structures that enable context-dependent behaviour and are preferentially vulnerable during aging.

Extinction of threat memories is a phenomenon that allows animals and humans to adapt their behaviour to a 
changing environment. During extinction, repeated presentation of the conditioned stimulus (CS) alone after 
Pavlovian or classical, threat conditioning (CS–unconditional stimulus (US) pairings) causes attenuation of 
defensive responses1 (see ref.2 for a recent review). Several key studies3,4 indicate that extinction does not involve 
permanent erasure (i.e., unlearning) of the original associative (i.e., CS-US) memory. Instead, there is converging 
evidence from animal5–8 and human9,10 studies that the mechanisms supporting extinction entail new learning 
(i.e., CS-no US) that competes, and temporarily interferes, with the expression of the original conditioning trace. 
During this competition, contextual information appears to be a critical regulatory factor in determining whether 
the original threat memory or the new extinction memory should control defensive CS responses. For example, a 
renewal of responding is observed11–13 when, after extinction in a context (Context B) different from the acquisi-
tion context (Context A), the CS is presented in the original acquisition context (Context A). This “ABA renewal 
effect” has been repeatedly demonstrated in both rats14–16 and humans17,18, and suggests that extinction involves 
just one more form of learning that is particularly context-dependent (for excellent comprehensive reviews on 
threat extinction and renewal, see2,19,20).

It is widely agreed that aging is accompanied by a cognitive decline in laboratory animals, as well as in 
humans21–23. Declines in the ability to process contextual information, and flexibly adapt behaviour to situa-
tional changes, may represent a fundamental mechanism of age-related cognitive alterations24. Furthermore, 
considerable research in animals and humans reveals that contextual regulation of extinction memory requires 
coordinated activity of regions of prefrontal cortex, hippocampus, and amygdala20. Of these, prefrontal cortex 
and hippocampus-dependent behaviours are preferentially vulnerable during aging, suggesting that impairments 
within these structures could underlie extinction deficits in advanced age25,26. Although a substantial progress has 
been made in recent years on understanding the processes mediating extinction of learned threat2,27, the impact 
of healthy aging on the context-dependent extinction of threat memories has been relatively unexplored.
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Previous deficits in the extinction of escape from spatial water maze have been reported in aged rats28,29. 
However, these rats were also impaired at the initial acquisition of spatial water maze, thereby confounding clear 
assessment of how aging may specifically alter extinction. Recent studies have specifically demonstrated a decline 
of the capacity to extinguish in aged rats30,31, and mice32, associated with difficulties in contextual regulation 
of extinction memory in older animals. Interestingly, age-related extinction deficits occurred in the absence 
of impairments in the initial acquisition and expression of defensive responses to threat stimuli, thus indicat-
ing that older animals have a selective difficulty using contextual information to modulate the expression of 
stimulus-response contingencies20.

In humans, one prior study by LaBar and colleagues33 examined the impact of aging on the acquisition and 
subsequent extinction of threat conditioning using a simple conditioning paradigm conducted within a single ses-
sion. LaBar et al.33, reported no age-related reduction in threat conditioning and immediate extinction, provided 
that awareness of the CS–US contingency and arousal, assessed by unconditioned responding, were taken into 
account. There is increasing evidence from the animal34–38 and human10,39,40 studies that within-session extinction 
(i.e., extinction conducted immediately after threat conditioning or short-term extinction) and between-session 
extinction recall (e.g., long-term extinction memory) involve different mechanisms and neurobiological sub-
strates. To date, however, no prior study has directly examined age-related differences in delayed recall of extinc-
tion memory, and the contextual dependency of long-term extinction recall in young and older adults.

To test for context-dependent recall of extinction memory in aging, we used a 2-day differential threat con-
ditioning and extinction procedure, modified from that previously described by Milad and colleagues39,41 (see 
Fig. 1). This protocol incorporates a temporal delay (24 hr) between extinction training and subsequent prob-
ing of extinction and threat memories, thus providing a more ecological test of long-term extinction memories 
in young and older adults. On Day 1, subjects received conditioning followed by extinction, with pictures of 
common objects as CSs, and electric shock as the US. To manipulate context, we presented visual CSs embed-
ded within pictures of two distinct rooms, such that, on Day 1, threat acquisition and extinction training were 
performed in contexts A and B, respectively. On Day 2, participants were presented with two additional phases: 
extinction recall, and threat renewal, in context B (extinction context) and context A (conditioning context), 
respectively. No US was delivered on Day 2. Physiological (skin conductance) and verbal report measures of 
threat conditioning were collected throughout the experiment.

Consistent with prior aging studies in humans33 and non-human mammals30–32, we hypothesized no sig-
nificant age group differences during acquisition and extinction of threat conditioning on Day 1. However, we 
expected that, compared to young adults, older adults would show a selective deficit in contextual processing 
of extinction memory on Day 2. The results of the present study should thus yield insights into age-associated 
changes in the extinction of threat memories and the mechanisms that enable context-dependent behaviour.

Methods
Participants.  A total of 48 right-handed healthy adults participated in the study. Participants were divided 
into two age groups: twenty-four young adults (12 female; mean age = 24.79 years, SD = 3.59 years; age range: 
20–30 years; mean education = 14.45 years, SD = 2.32 years), and twenty-four older adults (12 female; mean 
age = 66.12 years, SD = 7.60; age range: 60–70 years; mean education = 13.33 years, SD = 2.41 years). The young 
group was composed of Bologna University students recruited through campus advertisements, whereas the 

Figure 1.  Stimuli and experimental design. Threat acquisition and extinction were established on the first day 
(Day 1). Participants were threat conditioned in the danger context, in which the conditioned stimulus (CS+) 
was associated with a shock pulse on 60% of trials, while the CS− was not associated with any consequence. 
Extinction followed this phase, during which both CSs were presented within the safe context and none of them 
was associated with the shock pulse. Extinction recall and threat renewal were administered on the second day 
(Day 2). The recall of extinction was tested presenting the conditioned stimuli (CSs) within the safe context (in 
which extinction occurred on the first day). Subsequently, renewal of threat was tested presenting CSs within 
the danger context (in which the threat association was learned on the first day). On the second day, all CSs were 
presented in absence of the shock pulse.
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old group was recruited through a referral from the Center for Studies and Research in Cognitive Neuroscience 
of Bologna University, where the study was conducted, or other referral sources. Prior to participation, sub-
jects were screened to ensure that they had no history of neurological, psychiatric, or cardiovascular condi-
tions. None of the participants were taking any medication affecting the central nervous system regularly. All 
participants had normal or corrected-to-normal vision. The two groups were matched for level of education 
(t(1,23) = 1.453; p = 0.159). It is widely known that anxiety and depression may affect SCR in classical condition-
ing42. To account for such variability, levels of anxiety and depression were measured by means of the State-Trait 
Anxiety Inventory43, and the Hospital Anxiety and Depression Scale44. The two groups did not show any signif-
icant difference in terms of anxiety (young group mean = 39.14, SD = 5.32 years; old group mean = 36.83 years, 
SD = 5.83 years; t(1,23) = 1.386; p = 0.179), and depression (young group mean = 4.68, SD = 1.89 years; old group 
mean = 5.37 years, SD = 2.97 years; t(1,23) = −0.939; p = 0.357).

The study was conducted in accordance with the ethical principles of the World Medical Association 
Declaration of Helsinki and was approved by the Ethics Committee of the Department of Psychology of the 
University of Bologna. All participants gave informed written consent to participation after being informed about 
the procedure of the study.

Neuropsychological assessment.  Young and older adults were given a series of standardized neuropsy-
chological tests. The primary objective in performing these tests was to rule out the possibility that any older 
adult participants included in our sample were affected by age-associated cognitive deficits, rather than to assess 
differences between young and old groups.

The battery included tests of abstract reasoning (Raven Progressive Matrices45), verbal short-term and 
long-term memory (Verbal Span with disyllabic words, and Prose Recall45), selective attention (Attentional 
Matrices Test45), and executive function (Weigl’s Sorting Test45). Normative scores derived from a nationally rep-
resentative sample of adults are available for each test. For all tests, participants’ raw scores were converted into 
equivalent scores46, adjusted for age and years of education. Equivalent score is a 5-point scale, ranging from 0 to 
4, with 0 = pathological performance, 1 = borderline performance, 2–4 = normal performance. The neuropsycho-
logical testing session was held one or two days before the experimental session, and only participants who were 
within normal ranges were asked to participate in the experiment. Table 1 shows the means, standard deviations 
of the equivalent score on each test for young and older participants in the study.

Materials.  The experiment was implemented in Matlab R2016 (The MathWorks, Inc., Natick, Massachusetts, 
United States) software, and ran on a Windows-based PC (Lenovo ThinkCentre Desktop Computer). Stimuli 
were created with Blender (Blender Foundation, Amsterdam, Netherlands) and Cinema 4D R17 software 
(MAXON Computer GmbH, Friedrichsdorf, Germany), and were presented on a computer screen (screen size: 
43 inches; resolution: 1920 × 1080; refresh rate: 60 Hz). Context scenes consisted of images of 2 different indoor 
scenes (i.e., a yellow-blue room, and a grey-red room), representing the acquisition (‘danger’) context and the 
extinction (‘safe’) context of threat associations, respectively. For half of the participants in each age group, the 
acquisition context and the extinction context were the yellow-blue room and the grey-red room, respectively. 
Context assignment was reversed for the other half so as to counterbalance across subjects which environment 
was associated with a shock. Conditioned stimuli (CSs) were images of two everyday common objects, a plant and 
a lamp, embedded within the context scenes39,41. For half of the participants in each group, the reinforced CS+ 
and the unreinforced CS− were the plant and the lamp, respectively, and vice versa for the other half. Neutral, 
rather than intrinsically emotional (i.e., spiders, snakes, or angry faces), stimuli were used as CSs, because condi-
tioned responses to very salient CSs can be confounded by the ceiling effects of the respective outcome measures.

A mildly aversive electro-tactile stimulation served as unconditioned stimulus (US). The shock pulse was 
generated by a Digitimer Stimulator (Model DS7, Digitimer Ltd., UK) and delivered to the participants’ left inner 
wrist for 200 ms. The intensity of the stimulation was determined individually by assessing the participant’s sub-
jective evaluation in a standard work up procedure prior to threat acquisition. It was initially set at 0.5 mA and 
increased of 1 mA until participants reported it as a “highly annoying, but not painful” stimulation.

SCR Recording.  The skin conductance response (SCR) was recorded with two Ag/AgCl electrodes 
(TSD203Model; Biopac Systems, USA), filled with isotonic hyposaturated conductant and attached to the distal 

Test

Equivalent Scores

t(23) pYoung Old

Raven Progressive Matrices 3.91 (±0.28) 3.79 (±0.58) 0.9 0.376

Verbal Span 3.12 (±0.94) 2.66 (±0.46) 1.141 0.265

Prose Recall 3.83 (±0.38) 3.70 (±0.46) 1.269 0.216

Attentional Matrices Test 3.33 (±0.70) 3.58 (±0.65) −1.297 0.207

Weigl’s Sorting Test 3.75 (±0.67) 3.45 (±0.77) 1.231 0.231

Table 1.  Neuropsychological assessment. Means, standard deviations (in brackets) and statistical comparison 
(t-test) between old and young participants of the equivalent scores on each test. The battery included tests of 
abstract reasoning (Raven Progressive Matrices), verbal short-term and long-term memory (Verbal Span, and 
Prose Recall), selective visual attention (Attentional Matrices Test), and executive function (Weigl’s Sorting 
Test). No significant differences were found between young and older participants.
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phalanges of the second and the third finger of participants’ left hand. A DC amplifier (Biopac EDA100C) was 
used while recording the SCR. A gain factor was 5 μS/V and the low-pass filter was set at 10 Hz. The analog 
signal was then passed through a Biopac MP-150 digital converter at a 200 Hz rate. The signal was recorded 
with AcqKnowledge 3.9 (BIOPAC Systems, Inc., Goleta, California) and converted to microsiemens for offline 
analysis.

Procedure.  The study was performed at the Center for Studies and Research in Cognitive Neuroscience of 
the University of Bologna, in Cesena, Italy. Participants were tested individually. They were comfortably seated 
in a silent and dimly lit room, and their position was centered relative to the computer screen, at 100 cm viewing 
distance. Electrodes for SCR recording, and for shock pulse administration were attached to the participant. The 
SCR was recorded continuously while participants completed the task and data were stored for offline analysis. 
Participants were asked to remain as quiet and still as possible during the task and to keep their attention at the 
center of the screen. After verifying that SCR was being properly recorded, the intensity of the shock pulse to be 
used as US was adjusted for each participant as described above. Finally, participants were informed that they had 
no effect on shock administration.

The experiment consisted in a modified version of a classical differential threat conditioning and extinction 
procedure39,41,47 (see Fig. 1). During the experiment, each trial consisted in the presentation of a context scene for 
1 s, followed by one of the two CSs presented within the context scene for 4 s, and ending with the context scene 
still visible for 1 more second. The intertrial interval (ITI) was a white fixation cross on a black background, with 
a variable duration ranging from 11 to 16 s. The length of the ISI was chosen to avoid complete masking of condi-
tioned SCRs by preceding unconditioned SCRs to the shock.

The experimental protocol was administered over two separate days. On Day 1, three different phases were 
presented: habituation, threat acquisition and threat extinction.

At the beginning of the session, participants were informed that different images would be presented on the 
screen, and the task of the participant would be to carefully observe the images, as some of them might be paired 
with the electrical stimulation.

The habituation phase included 4 trials, in which the CS+ and CS− (2 for each) were presented in random 
order either within the ‘danger’ context or the ‘safe’ context, to ensure the absence of any baseline differences 
within and between age groups in response to the CSs. Few habituation trials were used to avoid retardation 
of learning due to nonreinforced exposure to CS+ (the latent inhibition effect48). The threat acquisition phase 
consisted of 20 CS+ and 20 CS− trials, all presented within the ‘danger’ context (yellow-blue room or grey-red 
room). One CS (plant or lamp) was associated with the administration of a shock pulse, resulting in the con-
ditioned stimulus (CS+), while the other CS was never paired with any consequence, resulting in the neutral 
stimulus (CS−). In CS + trials, the US (shock) was administered 60% of times (12 out of 20 trials), 3.8 s after 
the CS+ onset, and coterminated with the CS+. In CS− trials, the US was never administered. The trials were 
pseudo-randomly presented to participants such that no more of three identical CSs occurred in a row. During 
the extinction phase, which followed immediately, the CSs were presented within a distinct (‘safe’) context. In 
this phase, participants learned that the CS+ was no longer followed by the US. Both CS+ and CS− stimuli were 
presented 20 times without the US. Characteristics of CSs, trial order, and ITI were as in the acquisition phase.

On Day 2, (24 hr after the extinction phase), two additional phases were presented: extinction recall, and 
threat renewal, during which the ability to selectively retrieve extinction memory as a function of context (safe vs. 
dangerous) was tested. Participants were told that the procedure for this second part of the experiment would be 
the same as on the previous day. During extinction recall, 10 CS+ (without the US) and 10 CS− were presented 
within the ‘safe’ context, where extinction learning previously occurred. During threat renewal, 10 CS+ (with-
out the US) and 10 CS− were presented within the danger context, where the original threat conditioning was 
learned. Stimulus and ITI timings were identical on Days 1 and 2.

To assess the acquisition of a conditioned response to CSs, SCR was measured during all the experimental 
phases, and the responses related to CS+ were contrasted against those related to CS−.

It has to be noted that shocks were delivered only in the acquisition phase of the first day and never delivered 
in all other phases of the experiment.

SCR data analysis.  SCR data were offline analyzed using custom-made MATLAB scripts, and all statisti-
cal analyses were performed with STATISTICA (Dell Software, released September 2015, StatSoft STATISTICA 
for Windows, version 13.0, Round Rock, Texas, USA). Assumption of normal distribution of data was verified. 
Mixed-design analyses of variance (ANOVAs) were used to investigate differences within and between age 
groups. Post-hoc analyses were conducted with Newman-Keuls test and the significance threshold was p < 0.05. 
Data were extracted from the continuous signal and calculated for each trial as the peak-to-peak amplitude of 
the largest deflection during the 0.5 to 4.5 s time window after stimulus onset. The minimum response criterion 
was 0.02, and smaller responses were encoded as zero. SCR following the US was analyzed to assess uncondi-
tioned responding, whereas SCR following the CS was analyzed to assess conditioned learning. Regarding SCR 
to the US, stimulus onset was represented by the time of shock administration; regarding SCR to CS, stimulus 
onset referred to the time of CS appearance. Raw SCR scores were square-root transformed to normalize the 
data distribution and scaled to each participant’s mean square-root-transformed US response, to account for 
inter-individual variability49. To reduce interindividual variability, raw scores were range corrected by dividing 
each individual score by the subject’s mean SCR response to US50. This procedure can reduce error variance, thus 
increasing statistical power when comparing groups of participants. In this way, conditioned responses can be 
directly compared across groups without confounding baseline differences in skin conductance levels33. Because 
after range correction the resulting distribution was positively skewed, these data were then square-root trans-
formed prior to statistical analyses51.
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Regarding the response to the US, mean SCRs to the 12 shocks were analyzed. Concerning the response to 
the CS, SCR data were collapsed into “early” and “late” trial blocks of each phase (threat acquisition and threat 
extinction on Day 1; extinction recall and threat renewal on Day 2), as learning typically varies across time within 
each learning phase.

On Day 1, to assess conditioned responses to the CS separated from unconditioned responses to the shocks 
themselves, only non-reinforced CS trials were analyzed. Learning-related changes were hypothesized to be found 
in the ‘late acquisition’ and ‘late extinction’ phases, as reported previously39,41.

Subjective fear ratings and contingency awareness.  Given the importance of controlling for the 
influence of explicit knowledge on conditioned learning to correctly interpret aging effects33, subjective measures 
of threat conditioning and extinction were also acquired. At the end of each phase (habituation, threat acquisi-
tion, extinction, extinction recall, threat renewal), participants were asked to report the level of fear experienced 
at the presentation of CS+ and CS− during the task, rating via an 11-point Likert scale (range 0–10) with anchor 
points “not at all fearful” and “extremely fearful”. The order of questions was counterbalanced across participants.

To ensure explicit awareness of threat conditioning and extinction, at the conclusion of acquisition and extinc-
tion phases (Day 1) participants were asked to explicitly indicate which CS (plant and lamp), and context scene 
(yellow-blue room and grey-red room), was more frequently associated with the electrical stimulation, by using 
a forced-choice recognition procedure (‘Was picture of lamp or picture of plant more often followed by the elec-
trical stimulation?’).

Results
US intensity and unconditioned responding.  One-way ANOVAs were used to evaluate differences in US 
intensity and mean SCR to the US. Results showed no difference in the intensity of shock pulses (F(1,46) = 0.08, 
p = 0.928) between young (mean = 7.49 mA, SD = 2.21 mA) and older (mean = 7.56 mA, SD = 2.62 mA) adults. 
Likewise, no difference between young (mean = 1.02 μS, SD = 0.16) and old (mean = 0.97 μS, SD = 0.14) group 
was found in the mean SCR in responses to US (F(1,46) = 0.781, p = 0.381). On average, therefore, the intensity 
of the electrical stimulation received by participants, the subjective quality of perception (“highly annoying, but 
not painful), as well as the physiological response to it (i.e., arousability) did not differ significantly between age 
groups.

Habituation (Day 1).  To analyze habituation, a 2 × 2 repeated measure ANOVA was performed on SCR, 
with Group (young/old) as a between-subject factor, and Stimulus (CS+/CS−), as a within-subject factor.

Analysis showed no significant main effect of Group (F(1,46) = 0.23, p = 0.632, partial η2 = 0.02), Stimulus 
(F(1, 46) = 0.304, p = 0.58, partial η2 = 0.01), or Group by Stimulus interaction (F(1, 46) = 1.22, p = 0.277, partial 
η2 = 0.01), thus revealing that at baseline there were neither within group nor between group differences in ori-
enting responses to the CS+ and CS−.

Threat acquisition and extinction (Day 1).  To analyze SCR data recorded in Day 1, a 2 × 2 × 2 repeated 
measure ANOVA with Group (young/old) as a between-subject factor, and Stimulus (CS+/CS−), and Block 
(early/late) as within-subject factors was carried out separately for each phase (threat acquisition and extinction; 
see Fig. 2).

During threat acquisition, results showed a main effect of Stimulus (F(1,46) = 65.901, p < 0.001, η2 = 0.58), 
reflecting stronger responding to the CS+ (young group mean = 0.52 μS, SD = 0.17 μS; old group mean = 0.59 μS, 
SD = 0.14 μS) than to the CS− (young group mean = 0.43 μS, SD = 0.14 μS; old group mean = 0.47 μS, 
SD = 0.12 μS), and a main effect of Block (F(1,46) = 17.467, p < 0.001, η2 = 0.27), which reflected higher SCRs 
overall during late than early acquisition block. This result implies that that differential threat learning to the CS+ 
took place overall during the acquisition phase. Importantly, the analysis revealed neither a significant main effect 
of Group, nor interaction of Group with Stimulus or Block (all ps > 0.23), thereby suggesting that conditioned 
learning took place equivalently in young and older participants.

During extinction, analysis revealed a significant Stimulus by Block interaction (F(1,46) = 7.17, p = 0.010, 
η2 = 0.13), but no significant main effect or interactions with the factor Group (all ps > 0.08). Post-hoc anal-
yses showed that participants had significantly stronger responses to CS+ than to CS− during early extinc-
tion (CS+: young group mean = 0.36 μS, SD = 0.22 μS; old group mean = 0.44 μS, SD = 0.16 μS; CS−: young 
group mean = 0.33 μS, SD = 0.18 μS; old group mean = 0.39 μS, SD = 0.15 μS), but SCR differences between CS+ 
(young group mean = 0.27 μS, SD = 0.17 μS; old group mean = 0.38 μS, SD = 0.17 μS) and CS− (young group 
mean = 0.27 μS, SD = 0.15 μS; old group mean = 0.38 μS, SD = 0.14 μS) disappeared for both groups during late 
extinction.

Thus, overall results showed equivalent responding of the two experimental groups across all three phases 
(i.e., habituation, threat acquisition, and extinction) of Day 1, prior to the extinction recall and threat renewal 
manipulations of Day 2.

Extinction recall and threat renewal (Day 2).  To analyze SCR data collected in Day 2, a 2 × 2 × 2 
repeated measure ANOVA with Group (young/old) as a between-subject factor, and Stimulus (CS+/CS−), and 
Block (early/late) as within-subject factors, was carried out separately for each phase (extinction recall and threat 
renewal; see Fig. 2).

During extinction recall, analysis showed a main effect of Stimulus (F(1,46) = 13.512, p = 0.001, 
η2 = 0.22), which reflects elevated responses to the CS+ (young group mean = 0.44 μS, SD = 0.24 μS; old 
group mean = 0.54 μS, SD = 0.21 μS) relative to CS− (young group mean = 0.41 μS, SD = 0.22 μS; old group 
mean = 0.46 μS, SD = 0.16 μS), and a main effect of Block (F(1,46) = 14.368, p = 0.001, η2 = 0.23), due to 
a progressive decrease of conditioned SCRs during the extinction recall phase in both groups. Crucially, the 
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analysis revealed a significant Group by Stimulus interaction (F(1,46) = 4.401, p = 0.04, η2 = 0.087). Follow-up 
Newman-Keuls tests showed different pattern of SCRs between groups. Specifically, no difference in SCR was 
found during extinction recall in the young group (p = 0.27). In the old group, however, the SCR to CS+ was 
significantly higher than SCR to CS− (p < 0.001), demonstrating a return of threat response to previously extin-
guished CS+. Other comparisons were not statistically significant (ps > 0.31). Importantly, to control for the 
influence of depression and anxiety on extinction recall, we repeated the significant Group x Stimulus x Block 
analysis using ANCOVA with levels of depression and anxiety as additional covariates. The Group by Stimulus 
interaction remained statistically significant even after controlling for depression (F(1,45) = 3.981, p = 0.05, 
η2 = 0.082), and anxiety (F(1,45) = 4.798, p = 0.03, η2 = 0.096). Thus, aging was associated with impaired recall of 
extinction memory, both in the early and late portion of the phase.

During threat renewal, an ANOVA showed a significant main effect of Stimulus (F(1,46) = 38.551, p < 0.001, 
η2 = 0.456), indicating significantly greater SCRs associated to CS+ (young group mean = 0.53 μS, SD = 0.29 μS; 
old group mean = 0.57 μS, SD = 0.25 μS) than to CS− (young group mean = 0.40 μS, SD = 0.24 μS; old group 
mean = 0.45 μS, SD = 0.18 μS), in both groups. A main effect of Block (F(1,46) = 37.989, p < 0.001, η2 = 0.452), 
and a Group by Block interaction (F(1,46) = 21.535, p < 0.001, η2 = 0.318) were also found. This result reflected 
reduced SCRs overall during late than during early threat renewal in young (p < 0.001), but not in older 
(p = 0.287), adults. Importantly, neither a significant main effect of Group nor interaction of Group with Stimulus 
was found (all ps > 0.51). Therefore, both groups showed differential SCR to CS+ compared to CS− during 
renewal.

To directly assess context-dependent modulation of extinction memory in young and older participants, 
the differential threat response (ΔSCR) was calculated by subtracting SCR to CS− from the SCR to CS+, both 
during early extinction recall and early threat renewal. Extinction recall analysis focused on the first block of 

Figure 2.  Skin conductance responses. Graphs illustrate mean skin conductance responses (SCRs) to the 
conditioned (CS+) and neutral (CS−) stimuli during early and late blocks, in young (A) and older (B) 
participants on Day 1 (threat acquisition and extinction phase) and Day 2 (extinction recall and threat renewal 
phase). Data demonstrate no effect of aging on threat acquisition and extinction on Day 1. In contrast, only 
older participants failed to recall the previous extinction in the safe context on Day 2, while young participants 
specifically adapted their conditioned responses according to the context. Error bars represent standard error.
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trials (‘early extinction recall’) in order to avoid confounding extinction memory with new extinction learn-
ing taking place during the extinction recall phase itself52. For the same reason and to be consistent, threat 
renewal also focused on the first block of trials (‘early threat renewal’). An ANOVA, with Group (young/old) 
as a between-subject factor, and Phase (extinction recall/threat renewal) as within-subject factors, showed a 
main effect of Phase (F(1,46) = 22.108, p = 0.001, η2 = 0.47) and, more critically, a Phase by Group interaction 
(F(1,46) = 5.975, p = 0.018, η2 = 0.11). Follow-up Newman-Keuls tests revealed that the young adults showed 
normal context-sensitivity during extinction recall, with significantly lower ΔSCR in the extinction (safe) com-
pared with the acquisition (danger) context (p = 0.012). In contrast, older adults did not demonstrate a significant 
effect of context on ΔSCR on Day 2 (p = 0.12). The Phase by Group interaction remained significant (p < 0.05) 
even after adjusting for the influence of depression and anxiety levels as additional covariates, suggesting that 
impaired context-dependent modulation of threat and extinction memories were mediated by aging, and not 
by depression or anxiety. These results (Fig. 3) suggest that on Day 2 young participants adapted their responses 
to threat based on the context in which the stimuli were presented. Differently, older participants did not recall 
extinction memory, responding specifically to CS+ regardless the context in which it was presented.

Subjective fear ratings and contingency awareness.  A 2 × 2 × 5 repeated measure ANOVA with 
Group (young/old) as between-subject factor, Stimulus (CS+/CS−) and Phase (habituation/acquisition/
extinction/extinction recall/threat renewal) as within-subject factors, was used to assess participants’ fear rat-
ings of conditioned stimuli in each experimental phase (Fig. 4). A significant Stimulus by Phase interaction 
(F(1,184) = 40.439, p < 0.001, η2 = 0.49) was found, indicating that self-report level of fear to CS+ and CS− 
differed depending on experimental phases. The Stimulus by Phase by Group interaction was not significant 
(F(1,184) = 1.081, p = 0.367, η2 = 0.02), indicating that the old group did not differ from the young group in the 
level of self-report fear to the conditioned stimuli during the experimental phases. Newman-Keuls test for the 
significant interaction showed that, in the habituation phase, self-report fear to CS+ (young group mean = 2.58, 
SD = 0.92; old group mean = 2.66, SD = 1.27) and CS− (young group mean = 2.87, SD = 1.22; old group 
mean = 2.79, SD = 1.41) were not significantly different (p = 0.846). Instead, in the acquisition phase, self-report 
fear to the CS+ (young group mean = 6.87, SD = 1.39; old group mean = 5.75, SD = 1.42) was significant higher 
than fear to the CS− (young group mean = 2.54, SD = 1.17; old group mean = 2.62, SD = 1.46; p < 0.001). During 
extinction, self-report fear to the CS+ (young group mean = 3, SD = 1.17; old group mean = 2.29, SD = 1.04) 
and CS− (young group mean = 3.33, SD = 1.30; old group mean = 2.87, SD = 1.19) were not significantly differ-
ent (p = 0.967), as well as in the extinction recall phase (CS+, young group mean = 2.70, SD = 1.26; old group 
mean = 2.79, SD = 0.93; CS−, young group mean = 2.12, SD = 1.19; old group mean = 2.45, SD = 0.88; p = 0.506). 
Finally, during threat renewal, self-report fear to the CS+ (young group mean = 5.125, SD = 0.99; old group 
mean = 4.41, SD = 1.61) was significant higher compared to the CS− (young group mean = 3.04, SD = 0.90; old 
group mean = 3.08, SD = 1.24; p < 0.001).

Irrespective of the group, all participants correctly associated the context scenes with the administration of 
the electrical stimulation; moreover, 91% of young participants and 88% of older participants correctly paired the 
CSs with the corresponding outcome (p = 0.574). Thus, both young and older participants were able to verbally 
express CS-US, as well as context-US, contingencies.

Neuropsychological assessment.  Equivalent scores on each neuropsychological test were compared 
between young and older participants in the study and no significant differences were found (Table 1).

To further test the impact of neuropsychological variables, four separate stepwise regression analysis (forward 
selection) were performed on each task phase (threat acquisition/extinction/extinction recall/threat renewal). 
The raw scores of all neuropsychological tests were used as regressors (namely, Raven Progressive Matrices, 
Verbal Span, Prose Recall, Attentional Matrices Test, and Weigl’s Sorting Test) and the differential conditioned 
response (ΔSCR) was used as a dependent variable.

Figure 3.  ΔSCR (calculated by subtracting SCR to CS− from SCR to CS+) during early extinction recall and 
threat renewal (Day 2). While young participants adjusted their psychophysiological response based on the 
context, old participants show a similar activation regardless of the contextual information. Error bars represent 
standard error.
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For the extinction phase (Day 1), the best model (F(1,46) = 15.93, p < 0.001, R2 = 0.14) reported a significant 
effect only of Weigl’s Sorting Test (β = −0.37, t = −2.68, p = 0.01). For the extinction recall phase (Day 2), the 
best model (F(1,46) = 5.19, p = 0.03, R2 = 0.11) reported a significant effect only of the Attentional Matrices Test 
(β = −0.32, t = −2.27, p = 0.03) (Fig. 5). No significant effects were found for acquisition and threat renewal 
phases.

Influences between acquisition and recall of threat and extinction.  To test for a possible relation 
between the conditioned responses (ΔSCR) at threat learning and retrieval, a correlation between threat acquisi-
tion (Day 1) and threat renewal (Day 2), and a correlation between extinction (Day 1) and extinction recall (Day 
2), were calculated separately within each group. Furthermore, to test for a possible relation between the condi-
tioned response (ΔSCR) within each testing session, a correlation between threat acquisition and extinction (Day 
1) and a correlation between threat renewal and extinction recall (Day 2), were calculated separately within each 
group. Pearson’s correlation coefficient and one-tailed, Bonferroni-corrected p-value are reported.

Figure 4.  Subjective fear ratings. Graphs illustrate the level of self-reported fear to the conditioned stimuli 
during the experimental phases in young (A) and older (B) participants. Error bars represent standard error.

Figure 5.  Impact of neuropsychological variables. Regression analysis reported a significant influence of 
selective visual attention, as assessed by the Attentional Matrices Test, on ΔSCR measured during early 
extinction recall phase.
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Young participants showed a trend in the correlation between threat acquisition and threat renewal, but this 
resulted non-significant when Bonferroni-corrected (r = 0.40, p > 1). No significant correlations were found 
between extinction and extinction recall (r = −0.02, p > 1), between threat acquisition and extinction (r = 0.09, 
p > 1), and between extinction recall and threat renewal (r = 0.006, p > 1) in this group.

Older participants showed a significant positive correlation between threat acquisition and threat renewal 
(r = 0.48, p = 0.024), and a significant positive correlation between extinction recall and threat renewal (r = 0.67, 
p < 0.01). No significant correlations were found between extinction and extinction recall (r = 0.25, p = 0.42), and 
between threat acquisition and extinction (r = 0.2, p = 0.32) in this group.

Taken together, these results seem to indicate that similar processes may be involved in the acquisition and 
renewal of a threat in older and, possibly, in young participants. This second interpretation, however, has to be 
taken cautiously, as this trend is visible, but not significant when applying a Bonferroni correction. However, 
extinction recall and threat renewal clearly seem to involve similar processes in old, but not in young participants.

Discussion
Learning to disregard a stimulus that no longer predicts an aversive outcome, i.e., extinction, is critical for adap-
tive behaviour in a changing environment. Contextual information is particularly important in regulating the 
expression of responses to threat after these responses have been extinguished3. Declines in the ability to process 
contextual information may represent a fundamental mechanism of age-related cognitive changes24. The pres-
ent study was the first to examine the influence of normal aging on context-dependent recall of extinction of 
responses to threat. Healthy young and old adults were tested in a multi-phase study over two days39,52. During 
the first day, participants were threat conditioned to two visual stimuli (CS+ and CS−) within a specific (danger) 
visual context, and then underwent threat extinction within a different (safe) context. On the second day, the 
ability to selectively recall extinction memory within these two different contexts (danger and fear) was assessed.

Results showed that young participants were able to use contextual information to flexibly guide their 
learned responses to threat (as expressed by SCR), whereas older participants showed impaired modulation of 
the responses by contextual information. More specifically, on the first day, all participants were equally able to 
acquire and completely extinguish a threat conditioned response (i.e., higher SCR to CS+ as compared to CS− 
during threat acquisition, and equal SCR to CS+ and CS− during extinction). On the second day, young partici-
pants showed a context-dependent modulation of the autonomic responses, as higher SCR to CS+, compared to 
CS−, was observed in the danger context, but not in the safe context53. In stark contrast, older adults showed an 
impaired context-guided recall of extinction, with higher SCR to CS+, as compared to CS− in both danger and 
safe context (Fig. 2).

These results are consistent with the presence of either a specific extinction recall deficit, or a more general 
context-processing deficit. Our finding that differential responding to the CS+ versus the CS− increased from the 
safe (extinction) to the danger (renewal) context in the young but not in the older participants strongly suggests 
that aging is associated with a more general loss of context sensitivity in memory expression (Fig. 3). Moreover, 
on Day 2, there was a significant positive correlation between differential threat responses in the safe (extinction 
recall) and danger (threat renewal) context in the older, but not in the young, adult group. This further suggests 
that aging is associated with loss of contextual control of extinction, causing extinguished threat memories to 
inappropriately renew in any context. Interestingly, all participants were equally able to learn and explicitly report 
the association between conditioned stimuli, context scenes, and aversive US (i.e. contingency awareness), as well 
as rate how fearful each stimulus was in each context (i.e., affect ratings), thus revealing that aging specifically 
precludes recall of extinction memories as indexed by physiological responses (Fig. 4).

The present findings were not related to differences in global autonomic responsivity, as unconditioned 
responses to the shock were the same across both groups. Likewise, results were unlikely due to changes in trait 
anxiety, or depressive conditions, since we did not find differences in these control variables between young and 
old participants. Regarding neuropsychological performance, it is important to note that all participants performed 
within the normal range compared with age and education-adjusted norms, and that the groups did not differ on 
age and education adjusted scores (Table 1). Therefore, the impairment in context-dependent extinction recall in 
older participants was not related to age-related cognitive decline (American Psychiatric Association, 1994).

Taken together, these findings indicate that older adults were less able to use contextual information to recall 
extinction memory and modulate the expression of the defensive responses to threat in a context-dependent 
manner, despite their preserved ability to acquire and extinguish a threat conditioned response.

Evidence of age-related changes in threat conditioning from non-human studies tend to report normal acqui-
sition of simple forms of threat learning, but deficits in more complex aspects, such as acquisition and retention of 
contextual conditioning31,54–57. In line with the present findings, during tone threat conditioning, old mice exhibit 
a deficit in the use of context to modulate responses to threatening cues32. In particular, compared to young mice, 
aged mice showed low levels of threat responses regardless of the context, whereas young mice demonstrated 
context-dependent expression of renewal of responses32. Remarkably, both threat conditioning and immediate 
extinction were similar in the two groups.

In humans, LaBar and colleagues33 suggested an age-related impairment in threat conditioning as secondary 
to poor CS-US contingency awareness. More specifically, they found an age-related impairment in the expression 
of both threat conditioned responses and discriminative conditioning accounted for by a lack of awareness of 
the CS-US contingencies. Although awareness is neither necessary nor sufficient for normal conditioning learn-
ing58,59, it may play an important role in complex learning paradigms. Age effects may be at least partially due to a 
higher number of unaware subjects in old populations60, and it seems likely that old participants have more prob-
lems in recognizing the rule predicting US presentation during acquisition59. The present results show that older 
participants had threat acquisition and explicit awareness of CS-US and context-US contingencies comparable 
to those of young participants. As such, results of the present study are in line with LaBar33 findings in showing 
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no age-related reductions of threat learning and extinction when contingency awareness is controlled. Thus, the 
failure in context-dependent extinction recall we observed in older participants does not seem to be due to a 
general learning deficit, or to a lack of contingency awareness and explicit knowledge acquired during the task.

In Pavlovian conditioning, the context is often referred to as an “occasion setter”, that is a modulating stimulus 
whose role is to disambiguate the current meaning of the conditioned stimulus4,61. Thus, in extinction proce-
dures, context serves as an occasion setter that favours retrieval of the ‘safe’ CS–no US memory in the extinction 
context, and the ‘fearful’ CS–US memory in the acquisition (or any other) context62,63, which in turn inhibits and 
excites, respectively, the conditioned response64. In older adults, the persistence of conditioned responses in the 
extinction context indicates an inability to correctly use contextual information to modulate responses to threat. 
In other words, in older participants, the context appears not able to operate as a gate that disambiguates the CS’s 
current relation with the US stimulus61,65. Current theorizing in cognitive aging offers a wide variety of accounts 
for performance decline in context processing and its utilization as occasion setter, including poor distribution 
of attentional resources24,66, reduction in working-memory capacity67,68, and failure of inhibitory processes69. 
These represent distinct but highly interdependent mechanisms that may influence each other70. Importantly, 
the present study found that the magnitude of the psychophysiological index of extinction recall was positively 
correlated with accuracy in the attentive matrices test (Fig. 5), a visual search task thought to index selective visual 
attention45,71. That is, individual and age-related differences in selective attention performance predicted subse-
quent context-dependent recall of extinction memory. Thus, we tentatively suggest that age-related declines in the 
efficiency of selective attention, possible due to a age-related reduction in available processing resources72, may 
lead to weak representation of contextual information and reduced ability to encode the appropriate CS-context 
relationship, thus promoting overgeneralization of threat responses to many contexts in older adults. These results 
are consistent with emerging theories that age-related declines in processing contextual information are attrib-
utable to poorer selective attention and/or greater inhibitory deficits in older adults73. Additional research is 
certainly still warranted, however, that directly examines the relationship between selective attention and context 
dependency of extinction in young and older adults.

Although the present study did not directly investigate the neural substrates of threat conditioning and extinc-
tion in aging, deficit of context-guided recall of extinction may be linked to age-related changes in the neural 
structures underpinning context-dependent behaviour74. Studies in animals support the view that a neural cir-
cuit that involves the hippocampus and medial prefrontal cortex is essential for contextual retrieval of threat 
and extinction memories20,75. Consistent with this view, brain imaging studies in humans10,39 reported that the 
ventromedial prefrontal–hippocampal network is selectively involved in context-dependent regulation of extinc-
tion and threat memories. More specifically, during recall of extinction memory, the medial prefrontal cortex 
would act to inhibit the amygdala, preventing a response to threat, based on contextual information provided 
by the hippocampus9,10,76. There is substantial evidence that a number of structural and physiological alterations 
preferentially influence the prefrontal cortex and medial temporal lobe in advanced aging, even in the absence of 
disease22,77,78. These disruptive brain changes may underlie impairments in context-dependent extinction recall, 
as well as cause the decreased efficiency with which older adults use contextual information to determine when 
and where it is appropriate to express fear. Additional research will be needed to clarify the underlying neuroana-
tomical mechanisms of extinction recall and context processing deficits in aging, providing important clues to the 
pathophysiology of these disorders. Moreover, such data could help to advance our understanding of the neural 
mechanisms underlying behavioural therapy, such as exposure therapy79,80, aimed at limiting pathological fear.

The results of this study are tempered by a number of limitations. First, the present study used mildly aversive 
electro-tactile stimulation as US. Since differences in threat learning and extinction may derive from differences 
in US reactivity, there is the need to replicate these results with a different type of US, for instance, aversive audi-
tory stimuli, such loud noise or complex human scream. Second, extinction recall and threat renewal were both 
tested at a single time-point after extinction learning (24 hr later, on Day 2). Future studies should also vary the 
interval between extinction training and recall/renewal testing, to determine whether aging may interfere with, or 
simply delay, the consolidation process of extinction memories. Third, we obtained one set of subjective measures 
following each phase of the study rather than continuous assessment. Online (i.e., trial-by-trial) measures could 
be used in future studies to provide a more accurate assessment of US expectancy and CS valence during learning 
and extinction. Note, however, that in older individuals the value of including ratings during the experimental 
learning phases should be carefully balanced against the possible impact of rating procedures on attention and 
executive resources, which in turn may affect the time course and strength of threat conditioning81.

In conclusion, the present study documented the influence of normal aging on context-dependent recall of con-
ditoned emotional respones. Contextual processing is especially vulnerable to advanced aging70,82,83. In line with 
this, the present data showed that (a) young and older participants were equally able to acquire and extinguish an 
autonomic conditioned response to threat, and that (b) older participants failed to modulate such response based 
on a context-driven retrieval of threat memories, raising the possibility that their extinction recall deficit is a conse-
quence of a more general impairment in using contextual information. This lack of flexible adaptation to contextual 
cues may play a role in the development of late-onset anxiety disorders84, due to neural alterations that normally 
accompany healthy aging, particularly in the frontal and medial temporal lobes85. However, there is still a need for 
studies directly linking together the use of contextual information for flexible responses to threat, and age-related 
alterations of relevant neural structures underpinning aversive learning and memory processes.
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