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Abstract—High-performance computing systems are moving
towards 2.5D and 3D memory hierarchies, based on High
Bandwidth Memory (HBM) and Hybrid Memory Cube (HMC)
to mitigate the main memory bottlenecks. This trend is also
creating new opportunities to revisit near-memory computation.
In this paper, we propose a flexible processor-in-memory (PIM)
solution for scalable and energy-efficient execution of deep
convolutional networks (ConvNets), one of the fastest-growing
workloads for servers and high-end embedded systems. Our co-
design approach consists of a network of Smart Memory Cubes
(modular extensions to the standard HMC) each augmented with
a many-core PIM platform called NeuroCluster. NeuroClusters
have a modular design based on NeuroStream coprocessors (for
Convolution-intensive computations) and general-purpose RISC-
V cores. In addition, a DRAM-friendly tiling mechanism and
a scalable computation paradigm are presented to efficiently
harness this computational capability with a very low pro-
gramming effort. NeuroCluster occupies only 8% of the total
logic-base (L.oB) die area in a standard HMC and achieves
an average performance of 240 GFLOPS for complete execution
of full-featured state-of-the-art (SoA) ConvNets within a power
budget of 2.5W. Overall 11 W is consumed in a single SMC
device, with 22.5 GFLOPS/W energy-efficiency which is 3.5X
better than the best GPU implementations in similar technologies.
The minor increase in system-level power and the negligible
area increase make our PIM system a cost-effective and energy
efficient solution, easily scalable to 955 GFLOPS with a small
network of just four SMCs.

Index Terms—Hybrid Memory Cube, Convolutional Neural
Networks, Large-scale Deep Learning, Streaming Floating-point

I. INTRODUCTION

Today, brain-inspired computing (BIC) is successfully used
in a wide variety of applications such as surveillance, robotics,
industrial, medical, and entertainment systems. Recently, sev-
eral research programs have been launched by major industrial
players (e.g. Facebook, IBM, Google, Microsoft), pushing
towards deploying services based on brain-inspired machine-
learning (ML) to their customers [1][2][3]]. These companies
are interested in running such algorithms on powerful compute
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Fig. 1. (a) An overview of the SMC network for scalable ConvNet execution,
(b) block diagram of one SMC instance highlighting the NeuroCluster
platform along with the baseline system parameters.

clusters in large data centers. Convolutional neural networks
(ConvNets) are known as the SoA ML algorithms specialized
at BIC [4]. ConvNets process raw data directly, combining
the classical models of feature extraction and classification
into a single algorithm. The key advantages of them over tra-
ditional Multilayer-Perceptrons (MLP) are local connectivity
and weight sharing: Each neuron is connected only to a local
region of the previous layer (or the input volume) called its
receptive field [5]. This is beneficial for dealing with high-
dimensional inputs such as images. Moreover, weight sharing
dramatically reduces the number of parameters that need to
be stored. ConvNets are not limited to image-processing only
and they can be applied to other workloads such as audio
and video [6], and even RFID-based activity recognition [7].
Also, function approximation in scientific workloads [8] is
another important target for ConvNets, motivating the need
for a highly scalable and energy-efficient execution platform
for them. In addition, recurrent networks (RNN) have been
recently utilized for Deep Learning (DL) and implemented



on scalable network-on-chips [9][10]. These networks have a
great potential for solving time-dependent pattern recognition
problems because of their inherent dynamic representations.
All these emerging DL models can be future targets for our
PIM proposal, yet, in this paper, we focus on ConvNets for
image and video.

A diverse range of ConvNet implementations exist today
from standard software libraries running on general-purpose
platforms [11][12] to application-specific FPGA [13[][14][L5],
ASIC [16][17][18][19], and even initial explorations on near
memory computing [20][21][22][23]. Even though Conv-
Nets are computation-intensive workloads and extremely
high energy-efficiencies have been previously reported for
their ASIC implementations [18]][19]][17]], the scalability and
energy-efficiency of modern ConvNets are ultimately bound by
the main memory where their parameters and channels need to
be stored (See [subsection II-B). This makes them interesting
candidates for near memory computation, offering them plenty
of bandwidth at a lower cost and without much buffering
compared to off-chip accelerators due to lower memory access
latency (A consequence of the Little’s lawﬂ [1241]).

Heterogeneous Three-dimensional (3D) integration is help-
ing mitigate the well-known memory-wall problem [25] The
Through-silicon-via (TSV) technology is reaching commercial
maturity by memory manufacturers [26]][27] to build memory
cubes made of vertically stacked thinned memory dies in
packages with smaller footprint and power compared with
traditional multichip modules, achieving higher capacity. On
the other hand, a new opportunity for revisiting near-memory
computation to further close the gap between processors and
memories has been provided in this new context [20][21].
This approach promises significant energy savings by avoiding
energy waste in the path from processors to memories. In
2013, an industrial consortium backed by several major semi-
conductor companies standardized the hybrid memory cube
(HMC) [26] as a modular and abstracted 3D memory stack
of multiple DRAM dies placed over a logic base (LoB) die,
providing a high-speed serial interface to the external world.
More recently, a fully backward compatible extension to the
standard HMC called the smart memory cube (SMC) was
introduced in [25] along with a flexible programming-model
[24], augmenting the LoB die with generic PIM capabilities.

In this paper, we propose a scalable, flexible, and energy-
efficient platform targeting large-scale execution of deep
ConvNets with growing memory footprints and computation
requirements. Our proposal increases the total LoB die area
of a standard HMC only by 8% and achieves 240 GFLOPS
on average for complete execution of full-featured ConvNets
within a power-budget of 2.5 W. 22.5 GFLOPS/W energy effi-
ciency is achieved in the whole 3D stack (consuming 11 W in
total) which is 3.5X better than the best GPU implementations
in similar technologies. We also demonstrate that using a
flexible tiling mechanism along with a scalable computation
paradigm it is possible to efficiently utilize this platform
beyond 90% of its roofline [28] limit, and scale its performance

ILittle’s law (L = AW) states that in a stable memory system, the long-
term average buffer size (L) is equal to the long-term average effective
bandwidth (A) multiplied by the average memory access time (W).

to 955 GFLOPS with a network of four SMCs. We have
adopted the cycle-accurate SMC model previously developed
in [25] along with the generic software stack provided in
[24], and built a Register-Transfer-Level (RTL) model for
our DL framework, along with the required software layers.
Our main contributions can be summarized as follows: I)
Using near memory computation for large-scale acceleration
of deep ConvNets with large memory footprints, requiring the
use of DRAM; II) Proposing the NeuroStream coprocessors
as an alternative to vector-processing, providing a flexible
form of parallel execution without the need for fine-grained
synchronization; III) Presenting a flexible tiling mechanism
and a scalable computation paradigm for ConvNets, achieving
more than 90% roofline utilization; IV) A low-cost and energy-
efficient implementation of this solution based on a standard
HMC device, scalable to a network of multiple HMCs.

This paper is organized as follows. Background and related
work are presented in Our architectural design
methodology, computation paradigm, and programming model
are explained in Sections [section III} [section IV] and [section V]|

respectively. Experimental results are in Conclu-
sions and future directions are explained in |section VIIi

II. BACKGROUND AND RELATED WORK

A brief introduction to ConvNets is presented in
The evolution of modern ConvNets and their
uprising implementation challenges are explained in
The existing implementations for them are compared
with this work in

A. Convolutional Neural Networks

ConvNets are typically built by repeated concatenation
of five classes of layers: convolutional (CONYV), activation
(ACT), pooling (POOL), fully-connected (FC), and classifi-
cation (CLASS) [29]. CONV is the core building block of
the ConvNets doing most of the computational heavy-lifting
for feature extraction. It essentially consists of Multiply-and-
accumulate (MAC) operations as shown below [29]:

Uoli,d) =bo+ > > kbelba)ei(j—b,i—a)
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where o indexes the output channels (C(l)), ¢ indexes the
input channels (Cf), and K denotes the convolution kernels
(ak.a filters). After each CONV layer, a non-linear activation
function (e.g. sigmoid, tanh, or ReLU [29])) is applied to the
output y of each individual neuron. This non-linearity gives
neural networks (NNs) superior classification and learning
capabilities over linear classifiers and allows them to solve
non-trivial problems. Sigmoid and tanh come from the tra-
ditional multilayer perceptrons, and their requirement for the
computation of exponential functions makes them unsuitable
for the main activation function [29]. In modern feed-forward
NNs the common recommendation is to use the rectified linear
unit (ReLU) defined by g(z) = max{0,z}. Applying this
function to the output of a linear transformation yields a
piecewise-linear function. For this reason, it preserves many



TABLE I
STORAGE REQUIREMENT (MB) IN THE SOA CONVNETS.

ConvNet |Max {Neurons/Layer} Max {Coeffs./Layer} Max {: /Layer}|Total Coeffs.|Total (MB)
IAlexNet 2 (mB) 5 6 14 16
ResNet50 4 9 9 79 83
ResNet101 4 9 9 151 155
ResNet152 4 9 9 211 214
VGG16 25 9 25 56 81
IVGG19 25 9 25 76 101
IGoogLeNet 4 4 4 19 23
1250K 19 9 19 228 247
im 76 9 76 245 321
2M 150 9 150 262 411
am 305 9 305 279 584

of the properties that make linear models easy to generalize
and optimize with gradient-based methods [29]. It is common
to periodically insert a POOL layer in-between successive
CONV layers. Its function is to progressively reduce the size
of the volume (e.g. by calculating the maximum value of every
kxk region). This is to reduce the amount of parameters and
computation in the network and to control over-fitting [29].
In the final layers, multiple FC layers and one CLASS layer
perform the final classification and transform the results into
several classes. FC layers have a full connectivity and work
similar to MLPs. The CLASS layer converts the outputs of the
network to categorical distributions. A widely used classifier
is the SoftMax function. Compared to the rest of the network,
its computational complexity is usually small [4]][30]. The
first layer connects the network to the input volume which
can be an image, a video frame, or a signal, depending on
the application (a 3-channel R,G,B image for instance). Each
layer [ transforms the input volume (X, Y;, C;) into an output
volume (X,, Yy, C,). This terminology is used throughout this

paper and will be further elaborated in

B. Implementation Challenges of Modern ConvNets

ConvNets have been rapidly evolving in the past years, from
small networks of only a few layers (e.g. LeNet-5 [29]) to
over hundred [31] and thousand [32] layers, and from having
a few kilobytes of coefficients (a.k.a. weights) to multi-mega
bytes in [L[S][31]. Also, traditional ConvNets were only ap-
plicable to small 32x32 images, while the SoA ConvNets have
224x224 inputs, and this size is expected to grow [29].
shows an estimation for the storage requirements (in MB) of
top-performing ConvNets, assuming layer-by-layer execution.
AlexNet [29] is the 2012 winner of the ILSVRC challenge
[33]. VGG networks [5] and GoogLeNet [1]] were the winners
of different categories in 2014, and ResNet [31] was the most
recent winner of this challenge in 2015. ResNet1K with 1001
layers [32] is omitted from our study because its training
loss and validation error (for the ImageNet database [33])
are not yet lower than its previous versions. Instead in this
paper, ResNet-152 is extended to larger networks (accepting
250K/1M/2M/4M-pixel images shown in to further
investigate the scalability of our approach and its applicability
to beyond High-Definition (HD) image resolutions. ResNet
is chosen for this purpose because it is more challenging to
accelerate than the other networks (See [subsection VI-A).

It can be clearly seen that the typical on-chip (L1, L2)
storages in the memory hierarchy (caches or SRAM-based
scratchpad memories) cannot accommodate even a single layer
of these ConvNets, as the required storages per layer range
from 6 MB to over 300 MB. In addition, the assumption that

all coefficients can be stored on-chip ([16]][17][34]]) is not valid
anymore, since an additional storage of 14 ~280MB is re-
quired to accommodate the coefficients. Overall, 16~580 MB
is needed for layer-by-layer execution, demonstrating that
DRAM is necessary as the main storage for deep ConvNets
and also motivating computation near main memory. A similar
observation was recently made in [21]].

Another point is that the straightforward topology of the
traditional ConvNets such as LeNet-5 has recently evolved to
more complex topologies such as Deep Residual Learning in
ResNet [31] and the Inception Model (Network in Network) in
GoogLeNet [1]. This makes application specific implementa-
tions less practical and highlights the need for flexible and
programmable platforms. Also, unlike traditional ConvNets
with very large and efficient convolution filters (a.k.a. feature
maps) of over 10x10 inputs, modern ConvNets tend to have
very small filters (e.g. 3x3 in VGG and 1x1 in GoogLeNet
and ResNet). It can be easily verified that the Operational
Intensity (OI decreases as the convolution filters shrink. This
can negatively impact computation, energy, and bandwidth
efficiency (See[section VI). In this paper, we design a scalable
PIM platform capable of running very deep networks with
large input volumes and arbitrary filter sizes.

Lastly, different tiling methods for ConvNets have been
previously proposed [13][[15] for FPGA implementations, in
[17] for a neuromorphic accelerator, and in [35] for a Very
Long Instruction Word (VLIW) architecture. In [35] a tile-
strip mechanism is proposed to improve locality and inter-tile
data reuse for ConvNets with large filters. In [15] a row-
major data layout has been proposed to improve DRAM’s
bandwidth efficiency and reduce bank conflicts in FPGA’s
BRAM banks. Also, tile-aware memory layouts have been
previously proven effective for multi-core [36] and GPU
implementations [37] of linear algebra algorithms, directly
affecting their cache performance, bandwidth efficiency, and
the degree of parallelism. In this paper, we introduce a general
and flexible form called 4D-tiling allowing
for optimization of performance and energy efficiency under
given constraints such as on-die SPM and DRAM bandwidth
usage. Our proposed mechanism reduces the communication
overheads among the clusters and uses the DRAM interface
more efficiently by merging DMA transfers into larger chunks.

Throughout this paper, we use single-precision floating-
point (FP32) arithmetic to be able to flexibly target large-
scale DL in the high-performance computing domain. The
wide dynamic range offered by this representation improves
programmability and allows for implementing a wider range
of algorithms, as well as, training and backpropagation, since
they usually require higher precision and dynamic range [29].
We use the notion of GFLOPS (Giga-FLOPS per second)
to demonstrate the achieved FP32 performance, along with
GOPS (Giga-operations per second) to show integer/fixed-

point performance in [subsection II-C

2Operational Intensity (OI), a.k.a. Computation to Communication Ratio,
is a measure of computational efficiency defined in the roofline-model [28]]
as the number of computations divided by the total transferred data (bytes).



C. SoA ConvNet Implementations

A glance at the SoA highlights two main directions:
(D) Application-specific architectures based on ASIC/FPGAs
[B34][L8][L7][L3][LS][L6][38]; (II) Software implementations
on programmable general-purpose platforms such as CPUs
and GPUs [30][39][13][40]. ASIC ConvNet implementations
achieve impressive energy efficiency and performance: Dian-
Nao [17] obtains 450 GOPS at 0.5W with a neuromorphic
architecture using 16b fixed-point arithmetic in 65nm tech-
nology. Later, it has been extended to 1250 GOPS within a
similar power budget in [[19]. The limiting assumption in this
work is that the whole ConvNet (coefficients + the largest
intermediate layer of LeNet-5) fits inside the on-chip SRAM
(~256kB). As we showed above, this assumption is not valid
anymore for modern ConvNets. Also, they use a small input
image size (32x32) with very large convolution filters (e.g.
18x18, 7x7), which is unrealistic for modern ConvNets, as
explained before. In EIE [16] coefficients are compressed by
pruning and weight-sharing, achieving 100 GOPS at 625 mW
in 45nm technology, with the main drawback of storing 84M
coefficients on-chip, resulting in an area of over 40mm?.
Eyeriss [38] presents a reconfigurable ConvNet accelerator
mainly focusing on reducing data movement by an approach
called “row-stationary” computation, in which kernel coef-
ficients are loaded once and reused several times. Eyeriss
achieves around 70 GOPS at 278 mW for AlexNet, but when
scaling to VGG16, their performance drops to 20 GOPS within
the same power budget. In [23] it is shown that memory is
the main bottleneck of Eyeriss, limiting its scalability and
energy efficiency when used with larger networks and images.
Origami [18] achieves 145 GOPS at 0.5 W, using 12b fixed-
point implementation (65nm-UMC technology at 1.2V, with
40kB of storage), being scalable to 800 GOPS/W at 0.8V. The
main issue with these works is their lack of flexibility and
scalability to large inputs and modern ConvNets. Also, the
assumption that a significant part of the ConvNet can be stored
on-chip is not valid anymore, and shrinking filter dimensions
can significantly hurt their reported performance and efficiency
numbers with 18x18 filters in [17], 10x10 in [34], 7x7 in
[21], and 6x6 in [18]], due to the significantly reduced OI. In
this paper, we propose a flexible solution supporting a wide
range of ConvNets with different network, kernel, and image
dimensions.

FPGA platforms provide higher flexibility compared to
ASIC implementations but lower energy/area efficiency due
to the usage of reconfigurable routing switches and logic
blocks. In [13], ConvNet models are synthesized to Xil-
inx Virtex7-485T using high-level synthesis. 61 GFLOPS is
achieved (FP32) at 18 W (3.4 GFLOPS/W). In [34] the Neu-
Flow data-flow vision processor has been prototyped on Xilinx
Virtex-6 VLX240T and 147 GOPS @ 10 W (14.7 GOPS/W) is
achieved. Caffeine [15] presents a flexible hardware/software
co-design library to efficiently accelerate ConvNets on FPGAs.
It achieves 166 GOPS @ 25W (6.6 GOPS/W) on Xilinx
KUO060 and 8.5 GOPSW on Xilinx VX690T with 16b fixed-
point arithmetic. In comparison with CPU/GPU platforms,
low-cost FPGAs have limited memory bandwidth which is
also highly sensitive to memory access burst lengths, requiring

a more careful design for efficient bandwidth usage. High-
end FPGAs offer larger bandwidths thanks to their larger
number of high-speed IOs. The problem is that these 1Os are
very general (because of the reconfigurability requirements)
and therefore they are very expensive in area and power
[L5]. Our proposal achieves higher energy-efficiency thanks
to near memory computation and having optimized DMA
interfaces to DRAM with a novel tiling scheme. In addition,
the higher bandwidth available to our solution translates into
lower programming effort (according to the roofline model
[28]) and reasonable performance, even for applications not
super-optimized to use the available bandwidth efficiently.

General-purpose GPU platforms, on the other hand, are able
to flexibly execute different deep NNs [39][30][13] without the
limitations of application specific architectures. Fast and user-
friendly frameworks such as CAFFE [11] and cuDNN [12] are
publicly available which also provide facilities to efficiently
train deep NNs. In [39] over 500 GFLOPS has been reported
for execution of the CAFFE models based on cuDNN on
NVIDIA Tesla K40 with default settings. By turning off error-
correction and boosting the clock speed they have been able
to reach 1092 GFLOPS @235 W (4.6 GFLOPS/W). Geforce
GTX 770 achieves 2.6 GFLOPS/W using the same framework
[39]. Mobile GPUs achieve similar energy efficiencies at lower
power budgets. 54 GFLOPS for less than 30 W is reported in
[34] for NVIDIA GT335M, and in [30] 84 GFLOPS for 11 W
is reported for NVIDIA Tegra K1. More recently NVIDIA [41]]
has reported promising energy and performance improvement
for its high-end GPU accelerator Tesla P100 in 16nm technol-
ogy and with a new framework called TensorRT which is 1.5X
more efficient than CAFFE. For inference with GoogleNet,
ResNet-50, and AlexNet, 20, 23.9, and 35 GFLOPS/W are
reported, respectively. We would like to remind here that Tesla
P100 is an expensive high-end accelerator costing more than
$9K, while our PIM solution can be integrated within existing
systems with HMC devices at almost no additional cost, in the
same package structure, and within the same power budget.
Plus, an HMC module itself costs less than $1.4K, which is
expected to reduce as its market size grows.

CPU implementations achieve lower energy efficiency for
execution of ConvNets with standard frameworks. In [13]],
12.8 GFLOPS at 95 W has been reported for Intel Xeon CPU
E5-2430 (@2.20GHz) with 15MB cache and 16 threads.
In [30], 35 GFLOPS at 230 W has been reported for Intel
Xeon E5-1620v2. In [40] a domain-specific instruction set
architecture (ISA) is designed for the widely used NN models
by identifying the common operations in them. They show
higher flexibility compared to [17] by being able to model 9
classes of NNs. The size of the studied networks, however, is
extremely small compared to the ones studied in our paper.
Another common approach is to augment a RISC processor
with Single-Instruction-on-Multiple-Data (SIMD) extensions.
Commercial platforms such as TI AccelerationPAC, CEVA-
XM4, Synopsys DesignWare EV5x, and Movidius Fathom fol-
low this trend. Performance and efficiency characterization of
these platforms is not publicly available, nevertheless, SIMD
extensions require more programming effort to be efficiently
utilized, and their register-file bottleneck limits their scalability



[40]. In this paper, we follow a different approach based on
many scalar coprocessors working in parallel on a shared
memory. This is described in On the other hand,
Google’s TensorFlow platform [42] maps large-scale ML prob-
lems to several machines and computation devices, including
multi-core CPUs, general-purpose GPUs, and custom designed
ASICs known as Tensor Processing Units (TPUs). Nervana,
also, has built a scalable ML platform [43] with their own
implementation of TPUs, and a library called Neon to support
cloud computation with different back-ends. Apache Spark
features a library called MLIib [44] targeting scalable practical
ML. No performance or efficiency data is publicly available
for these platforms. Lastly, HCL2 [45] motivates designing a
heterogeneous programming system based on map-reduce for
ML applications supporting CAFFE [11]] representations.

The study of the ConvNets in a near-memory context has
been done in [20]][21][22]{23]]. In [20] the authors assume that
the whole internal bandwidth of the HMC (320 GB/s) is avail-
able to PIM. They reach a performance of 160 GFLOPS (lower
compared to our solution) for AlexNet and VGG inside each
cube, and the details of their PIM design are not exposed in
their work. Plus, instead of performance efficiency, normalized
execution time is reported only, and the analysis of power and
area are left as future works. In [21] a data-driven computing
model is proposed using finite-state-machines (FSM) near each
HMC vault controller, preprogrammed to generate DRAM
addresses for the ConvNet under execution (16b fixed-point).
Their study, however, is limited to a small ConvNet with 6
layers and scaling their approach to modern ConvNets seems
difficult. They achieve 132GOPS @ 13 W with an energy
efficiency lower compared to our work (10 GOPS/W). The
LoB die in NeuroCube consumes 3.4 W, mainly due to the
presence of data caches, on-chip storage for weights, and
network-on-chip routers with packet encapsulation in their
accelerator design.

Tetris [23]] is a scalable NN accelerator based on HMC. It
uses the “row-stationary” computation paradigm proposed in
[38]] with fixed-point computation and scales it to multiple NN
engines each associated with a DRAM vault. Tetris requires an
area of 3.5mm? per vault in the 45nm technology, which can
be scaled to 21mm? in 28nm technology. From the relative
results reported in [23]] its performance can be estimated as
159 GOPS with an average power consumption of 6.9 W. Both
energy and area efficiency of Tetris are lower than our work.

Finally, in [22]], ConvNet execution in Re-RAM based non-
volatile memory is investigated with different design decisions
due to the drastically different memory technology used. Rel-
ative performance and energy numbers reported in this work
make it difficult to compare directly, nevertheless, a throughout
survey on the techniques to use these memories in comparison
with DRAM is presented in [46]. In this paper, we have
observed that for modern ConvNets with shrinking kernels,
coefficient reuse is becoming less practical and approaches
such as row-stationary are not that beneficial anymore. For
this reason, we use a completely different approach focusing
on parallelism rather than coefficient reuse.

To summarize, three main assumptions motivate our pro-
posed computation paradigm and tiling mechanism: a) Focus-

ing on synchronization-free parallelism rather than coefficient
reuse; b) Limiting the on-chip storage available to the PIM
cluster; ¢) Supporting very large input images (up to 32Mega-
pixels). We will demonstrate that our scalable and flexible
ConvNet acceleration platform provides higher energy effi-
ciency compared to the best FPGA and GPU implementations
in similar technologies at a fraction of their system cost.

III. SYSTEM ARCHITECTURE

ConvNets, by nature, are computation demanding algo-
rithms. One forward pass of VGG19, for example, requires
around 20 billion MAC operations with over 100K operations
per pixel. Maintaining even a frame-rate of 10 frames per
second will require over 200 GFLOPS. In theory, ConvNets
can reach extremely high OI ratios (discussed in
tion TI-B), as they reuse data efficiently. However, due to
the very large memory footprints of deep ConvNets, their
performance and energy efficiency is ultimately constrained
by the main DRAM storage and off-chip communication.
As we will show throughout this paper, in a near-memory
context some of these constraints can be relaxed, providing the
possibility to improve energy efficiency and programmability.

subsection III-A| describes the design of our many-core PIM

platform.

A. NeuroCluster

NeuroCluster (Illustrated in [Figure Ip) is a flexible gen-
eral purpose clustered many-core platform, designed based
on energy-efficient RISC-V processing-elements (PEs) [47]]
and NeuroStream (NST) coprocessors (described in
[tion TIT-B}), all grouped in tightly-coupled clusters. Each cluster
consists of four PEs and eight NSTs, with each PE being
responsible for programming and coordinating two of the
NSTs. This configuration is found to be optimal in the explo-
rations presented in The PEs are augmented with a
light-weight Memory Management Unit (MMU) along with a
small sized Translation Look-aside Buffer (TLB) providing
zero-copy virtual pointer sharing from the host to Neuro-
Cluster (More information in [section V). Instead of caches
and prefetchers which provide a higher level of abstraction
without much control, and they are more suitable for host-
side accelerators [24]], scratchpad memories (SPMs) and DMA
engines are used with a simple and efficient computation
paradigm to boost energy efficiency [48]][24]][35]]. Also, caches
introduce several coherence and consistency concerns and are
less area and energy-efficient in comparison with SPMs [24].
Each cluster features a DMA engine capable of performing
bulk data transfers between the DRAM vaults and the SPM
inside that cluster. It supports up to 32 outstanding transactions
and accepts virtual address ranges without any alignment or
size restrictions. The NST coprocessors, on the other hand,
have limited visibility only to the cluster’s SPM with no
concerns about address translations and DMA transfers. This
mechanism allows for simple and efficient computation while
maintaining the benefits of virtual memory support [24].

Each PE is a light-weight RISC-V based processor with 4
pipeline stages and in-order execution (without branch predic-
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Fig. 2. Architecture of the NeuroStream (NST) floating-point coprocessors.

tion, predication, or multiple issue) for energy-efficient opera-
tion [47]. RTL models of these cores have been adopted from
[49]. 1kB of private instruction-cache (4-way set associative)
is available to each core. An in-depth exploration of different
instruction cache choices (including size, associativity, and
shared/private organizations) are previously performed in [S0],
demonstrating that this organization not only supports larger
data-sets (e.g. ConvNets), but also larger codes, as long as their
main computing loops (kernels) fit in the caches. The SPM in-
side each cluster is word-level-interleaved (WLI) with multiple
banks accessible through the cluster-interconnect. The cluster-
interconnect has been designed based on the logarithmic-
interconnect proposed in [51] to provide low-latency all-to-
all connectivity inside the clusters. Also, the AXI-4 based
global-interconnect, connecting the clusters, follows the same
architecture as the SMC-Interconnect [25] to achieve a very
high bandwidth.

B. NeuroStream

NeuroStream (NST) is a streaming coprocessor designed
based on two observations: (I) Modern ConvNets tend to
have very small convolution filters, making coefficient reuse
less practical (previously discussed in [subsection II-B). (II)
The most demanding operation in ConvNets is MAC [30].
Therefore, unlike conventional SIMD coprocessors (e.g. ARM
NEON), NST works directly on the shared multi-bank SPM
without having many internal registers (just one accumulator).
This feature along with its dedicated hardware address genera-
tors allows it to perform arbitrary computations efficiently and
directly on the SPM. This removes the register-file bottleneck
which is present in SIMD architectures and allows it to achieve
a performance close to 1 MAC/cycle. Moreover, each NST
can be treated as a scalar coprocessor working independently.
Yet, it is possible to instantiate several NSTs inside a cluster to
achieve a scalable parallelism without the need for fine-grained
synchronization among them. This way, NSTs are easier
to program compared to SIMD units, and they offer more
flexibility in terms of the size/shape/stride of the computations.
In total, 128 instances of NST, clocked at a moderate speed
of 1 GHz, sum up to 256 GFLOPS of raw performance in the
NeuroCluster.

illustrates the block diagram of NST, composed
of the main controller, three hardware-loops (HWL), two
Address Generation Units (AGUs), and an FP32 datapath
(FPU) compatible with the IEEE-754 standard. The main-
controller is responsible for receiving the commands from
the processor and issuing them to the datapath. A parametric-
depth first-in-first-out (FIFO) command-queue is implemented
to hide the programming latencies. Also, the control interface
is memory-mapped, making it possible for the NSTs to easily
communicate with other processor micro-architectures (e.g.
ARM). NSTs follow a nonblocking data-flow computation
paradigm, and information flows in them as tokens. The
main controller is, therefore, responsible for issuing enough
transactions (2 in each cycle in case of MAC) towards the SPM
and filling up the operand FIFOs to keep the FPU busy almost
every cycle. The hardware-loops are programmable FSMs
capable of modeling up to three nested-loops in hardware.
The AGUs can be programmed to generate complex strided
SPM access patterns (See [subsection V-A). By having two
direct ports to the cluster-interconnect, each NST can fetch
two operands (typically one coefficient and one data) in a
single-cycle and perform an operation on them.

NST supports strided convolution, max-pooling, ReLU-
activation, along with some basic utilities for backpropagation
and training. Apart from these tasks, it can also be used for
generic computations such as dot product, matrix multiplica-
tion, linear transformations, and weighted sum/average. Even
single FP32 operations (e.g. add, multiply) are supported for
generality. More than 14 commands in three categories are im-
plemented: streaming (e.g. STREAM_MAC, STREAM_SUM,
STREAM_MAX), single (e.g. SINGLE_ADD, SINGLE_MUL),
and memory commands (for configuration and memory trans-
fers to/from the accumulator). describes how

NSTs can be programmed to do various computations.

IV. COMPUTATION MODEL

When a ConvNet such as GoogLeNet is selected for ex-
ecution over our PIM system, first it is tiled using the 4D-
tiling mechanism described in This proce-
dure prepares it for parallel execution over the clusters, and
optimally partitions it to achieve the highest efficiency under
given constraints such as on-die SPM and DRAM bandwidth
usage. Next, all coefficients are loaded in SMC’s DRAM
and an additional space is reserved there for the intermediate
results of the largest layer (shown previously in [Table I).
The input volume (e.g. the image or video frame) is loaded
into this area before each run. The actual execution takes
place layer-by-layer, each layer being parallelized over 16
clusters. Each cluster executes one 4D-tile at a time with all
its NSTs working cooperatively to compute its final result
inside the cluster’s SPM. Only at the end of each layer, the
clusters are synchronized. A more detailed description follows

in [subsection IV-Al and [subsection IV-Bl

A. 4D-Tiling Mechanism
A 4D-tile (illustrated in [Figure 3p,b) is a subset of the

input volume (called Input-tile) and output volume (Output-
tile) of a convolutional layer (/) identified by the (T)((lg, T)(,ll)
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Fig. 3. (a) Illustration of a general ConvNet, (b) a 4D-tile, (c) row-major
data layout and tile-overlapping, (d) partial computation of tiles, and (e,f) the
underlying DRAM storage of one augmented-tile.

T, 7D tuple. T{) and T are the tile width and height
of the input volume of layer [, and Tg? and Tgi are the
numbers of input and output channels to the tile. The output
dimensions of each tile are calculated directly from input
width and height, filter dimensions, striding, and zero-padding
parameters. 4D-tiles have three main features essential for
near-memory acceleration of deep ConvNets:

Row-major data layout: With the conventional tile-
oblivious layout, data is fragmented in DRAM, so several
DMA transfers are required to fetch one tile. Even a DMA
engine with striding capabilities does not help with the inef-
ficiency caused by opening a DRAM row with closed policy
[26] and partially reading from it in strides. To address this
problem, we modify the underlying storage of the intermediate
layers in DRAM to a row-major form (illustrated in
[ure 3k.e). This way with a single large DMA transfer request,
the whole tile can be fetched by the processing cluster. This
improves DRAM'’s read performance which can be exploited
as described below. The implications of this mechanism on
DMA write and its overheads will be explained later in this
section.

Tile overlapping: When the convolution filters are larger
than 1x1, borders of the adjacent tiles of each tile should be
fetched from DRAM, as well. Assuming that the bandwidth
overhead of these overlapping regions can be tolerated by
proper choice of tile dimensions, still, the storage impact
on the row-major data placement in DRAM is not trivial,
and fragmented DMA transfers will be required to fetch the
overlaps. This problem can be solved by storing the overlap-
ping regions in the DRAM once per each tile. This means

storing the “augmented-tiles™ (shown in [Figure 3f) instead of

“raw-tiles” inside DRAM in a row-major form, at the cost of
increased DRAM storage and bandwidth. When reading from
DRAM, a complete tile (including all overlapping regions
required to compute the convolution in its borders) can be
fetched using a single DMA transfer request. But, when
writing the results back to the DRAM some care should be
taken to convert the raw output tile to an augmented-tile for the
next layer (explained below). The average increases in DRAM
bandwidth and storage incurred by this mechanism were found
to be less than 10% and 3%, respectively. Also, on the average
around 200 MB of DRAM was used with maximum usage of
580 MB for ResNet with 4M-pixel images.

Partial Computations: Tiling of channels (Té‘lz') and Tg()))
requires maintaining partial computations, as more than one
input tile contributes to the result of each output tile. Assuming
that one input tile and one output tile can fit in each cluster’s
SPM, we perform the following steps to compute each output
tile: Tile M (See [Figure 3[) and the related filter coefficients
(K ) are fetched from the DRAM. Then, Q = Q+M+K
is computed inside the SPM (@) containing partial sums of the
output channels). Next, Tile N and Ky¢ are fetched from
the DRAM, and Q = @ + N * Kyg is computed, and so
forth. After all input tiles have been read once, activation and
pooling are directly performed on the output tile ¢ (again
inside the SPM) and then () is written back to the DRAM
by the associated PE. This mechanism reduces DRAM’s write
bandwidth and puts more pressure on read bandwidth given
that data is only written back once after several DRAM reads
(as described), after reduction operations (pooling, strided
convolution) which further reduce the number of DRAM
writes in comparison with DRAM reads. In all experiments
of this paper, DRAM’s write bandwidth was found to be less
than 4% of the read bandwidth. This suits our row-major data
layout, requiring DRAM writes to be off the execution critical
path.

It is important to explain how the raw output tile of one
layer (1) is converted to an augmented tile for the next layer
(I + 1), given that data cannot be “magically” reorganized in
the DRAM. Looking at T; in[Figure 3g, we can see that it has
4 regions (raw, A, B, C). The raw region of Té“ is written
to DRAM using multiple fragmented DMA writes when T}, is
computed in SPM. This is shown in [Figure 3f. The A, B, and
C regions of T4 ™" are written to DRAM after T}, T%, and T}
are computed, respectively, using small DMA chunks shown in
[Figure 3f. Zero-padding is also properly handled at this stage
for the corner tiles. Since DRAM writes are off the critical
path, we can afford to perform these conversions, without
incurring significant overheads. Another key point is that the
raw-tile width and height of the consecutive layers must be
equal (for consistent row-major data layout) unless there has
been a strided convolution [29] or pooling stage between
them, for which the tile dimensions will shrink. This way,
as we move forward through the ConvNet layers, tile width
and height (T}, T{")) tend to shrink. To avoid this having
a negative impact on computation and SPM usage efficiency,
we need to increase Tg()) or ng) This completely modifies
the shape and number of the tiles in each layer and impacts
everything from synchronization overheads to the efficiency of
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Fig. 4. (a) A convolution kernel to be performed on a 4D-tile, (b) a typical
memory access pattern generated by this kernel.

the computing loops and DRAM bandwidth. This highlights
the need for a flexible computing cluster to support a wide
range of tile dimensions.

B. Mapping Tiles to Clusters

Since there is no data overlap among augmented-tiles (ex-
cept possibly for some filter coefficients), each cluster can
execute one tile at a time. This minimizes communication
among the clusters. Also, tiling information is prepared off-
line (only once) and is stored in a list accessible by all clusters
in DRAM. The master PE (the first PE in each cluster) consults
this list to obtain the required information (e.g. address in
DRAM, size, and filter coefficients) for the next tile. Then
it issues a DMA read to fetch the new tile. Each cluster
works based on ping-pong buffering to hide the setup and
DMA transfer latencies. While one tile is being computed by
the NSTs in the cluster, another tile is fetched by the master
PE and tiling information is prepared for it. This procedure
continues until all tiles in a layer are finished. At this point,
all clusters are synchronized before proceeding with the next
layer.

Inside each cluster the master PE partitions the tile among
the NSTs in the order of T)(Q), T}(,lg, and T((Jlg dimensions
first. This is to ensure that each output is written exactly
by one NST, and to remove synchronization requirements
among the NSTs. If still more NSTs are remaining (e.g.
for small corner tiles), ng) is used for tile partitioning,
posing some synchronization overheads to the PEs. Therefore,
corner tiles (with smaller dimensions) and arbitrarily sized-
tiles are properly handled in this scheme. Thanks to this tile-
mapping mechanism, NSTs can work independently without
worrying about getting synchronized with each other. Any
required synchronization is handled by the RISC-V PEs,
through hardware primitives devised for this purpose. Given
that (X, x Y, x K; x K, x C; x C,) MAC operations need to be
done in each layer, 4D-tiling can be viewed as a schedule (in
time and space) of this computation to the available resources
in NeuroCluster. Overall, the computation inside each SMC
is done in a self-contained manner, without synchronizing
with the host processors. The user only offloads a ConvNet
task to the SMC, and the rest of the computation happens
completely inside the cube. The serial-links are turned-off
when not required to save energy. The performance and energy

advantages of this scheme are studied in

V. PROGRAMMING MODEL

Previously in [24]], a complete software stack (API, Device
Driver) had been developed for a single-processor PIM device
residing on the SMC, exposing it to the user-level applications.
This software stack is available online for reuse and mod-
ification [52]. An optimized memory virtualization scheme
was developed in [24]], as well, for zero-copy data sharing
between host and PIM, allowing PIM to directly access user-
space virtual memory without costly memory copies. In this
paper, we have adopted this software stack and extended it
to support NeuroCluster, a parallel-processing platform rather
than a single core. It has been, also, amended to support
DL primitives and offloading of ConvNet tasks. The memory
virtualization scheme has been adopted from [24], as well.

As a demonstrative example, suppose that the user applica-
tion wants to execute GoogLeNet on PIM for an image already
stored in DRAM. After initializing PIM’s API, it uses this API
to offload the precompiled computation kernels, including the
computing loops for the ConvNet layers (e.g CONV, ACT, and
POOL), to NeuroCluster. This procedure is done only once.
Next, the pointer to the image is passed to the APIL, and a
special table called slice-table (a generalized form of page-
table) is built for the data structures, by the driver, and stored
in DRAM. The user then triggers the actual execution through
the API and waits for the task to complete. The RISC-V cores
work directly on the virtual memory and consult the slice-
table whenever a miss occurs in their TLB. The offloading
overheads have been previously shown to be negligible in
[24]. Also, in case of having several video frames instead
of images, the same pointers can be reused in double/multi-
buffering modes to avoid the need for rebuilding the slice-
table upon every execution. More details on the software stack
and the memory virtualization scheme can be found in [24].
describes how NSTs are programmed by the
PEs to perform the tasks related to inference in ConvNets.
presents the implications of supporting train-

ing.

A. Inference with NSTs

illustrates a convolution kernel to be performed
on a 4D-tile. The data-structure tileinfo contains the required
partitioning information for the given tile among the NSTs.
When the number of total jobs (Tx, X Ty, X T,) is more
than Nygr, the jobs will be broken into several batches
(NUM_BATCHES). The flexibility provided by tileinfo allows
us to reduce the number of convolution loops down to 4
instead of 6. filters and tile_in are the two data structures
accessed in every iteration of the inner-loop. Typical memory
access patterns for this kernel are plotted in [Figure 4p. These
patterns seem fairly regular, therefore, NSTs should be easily
able to generate them, as well. It is enough to program the
configurations registers of an NST with the starting address
and the three step values illustrated in (Sp, S1, and
S5), and then issue a STREAM_MAC command to it. This
way, the three inner loops of can be replaced by
execution in hardware. This is illustrated in [Figure 5h. The
latency overheads of these commands are hidden by having
multiple NSTs and by filling up their command queues with



// Once per each CONV layer 9
ISSUE_CMD(MEM_LDC, AGUO_SO0, 1);
ISSUE_CMD(MEM_LDC, AGUO_S1, TCI*(Sx-1));
ISSUE_CMD(MEM_LDC, AGUO_S2, TCI*(TXI*Sy-Sx*KX+1));
ISSUE_CMD(MEM_LDC, AGU1_S0, 1);

For k=0; k<E2; k++: (b)
For j=0; j<E1; j++:
For i=0; i<EQ; i++:
ACC +=
TCDM[AGUO] x TCDM[AGU1]
AGUO += S0,
AGU1 +=S1,

ISSUE_CMD(MEM_LDC, AGU1_S1, 0);
ISSUE_CMD(MEM_LDC, AGU1_S2, 0);
ISSUE_CMD(NSTO, MEM_LDC, HWL_EO, TCI);
ISSUE_CMD(NSTO, MEM_LDC, HWL_E1, KX);
ISSUE_CMD(NSTO, MEM_LDC, HWL_E2, KY);
for ( b=0; b<NUM_BATCHES; b++) { AGUO += 50,
// tco, tyo, txo = tileinfo[...] // Once per batch AGU1L += 511
ISSUE_CMD(NSTO, MEM_LDC, AGUO_A, &kernels[tco][01[0][0]); AGUO += SO
ISSUE_CMD(NSTO, MEM_LDC, AGU1_A, &tile_in[tyo][txo][0]); 2
ISSUE_CMD(NSTO, STREAM_MAC, 0, 0); AGU1 +=51,
}

Fig. 5. (a) Using NSTs to accelerate the loop shown in [Figure 4h, (b) the
pseudo-code for implementation of STREAM_MAC inside the NSTs.
multiple commands. The implementation of STREAM_MAC
inside the NSTs is depicted in [Figure 5p. This is hard-coded
in the main controller of the NSTs and is executed efficiently,
without losing any cycles (See for results).
Similarly, each NST is able to perform ReLU activation
on arbitrary tiles using STREAM_MAX command devised
for this purpose on the same set of state machines and
hardware blocks. For the sake of generality, STREAM_SUM,
STREAM_SCALE, STREAM_SHIFT, and STREAM_MIN are
implemented, as well. Another widely used operation in Conv-
Nets is pooling [4]. NST supports max-pooling [53] through
the STREAM_MAXPL command. Thanks to the flexibility of
the AGUs and HWLs, arbitrary tiles with different strides are
supported. Finally, FC layers can also be implemented using
a set of STREAM_MAC commands, similar to the CONV
layers. The CLASS layer, however, is executed on the PEs in
the current implementation using the SoftFloat library [54].

B. Implications of Training

Backpropagation is the prevalent method for training NNs
including ConvNets [29]. Given a set of training sample inputs,
first a forward propagation is executed layer-by-layer, then
using an optimization algorithm, such as gradient descent
(GD) [4], the coefficients (weights) are updated backwards
so that the network learns that sample. A modern training
algorithm based on GD has three phases [29]: (1) Forward
Pass, (2) Gradient calculation and routing, and (3) Weight
update. In step (1), the selected input (e.g. an image) is fed
to the network and the outputs of all layers including the
value of the loss function are calculated. This is similar to
a normal inference pass, except that additional information
about the current operating point (e.g., max-pool decisions)
in all layers has to be stored, such that it can be retrieved
later on for gradient calculation. This can be easily handled
by our platform because plenty of DRAM is available to
the NeuroClusters through a high-bandwidth and low-latency
3D interface. For example, ResNet-152 requires 211 MB for
its coefficient and a total of 161 MB for all its layers. This
aggregates to a total of 372 MB of DRAM storage. Another
difference with inference is that the POOL layer should
keep track of the inputs which were maximal in the pooling
operation. This is called argmax and since just comparison
with zero is involved, in this implementation we use the RISC-
V cores for it.

In step (2), starting from the final stage of the network
(classification layer), the gradients of the loss function are
calculated with respect to the inputs (Dx) and to the weights
(Dyw) and propagated backwards towards the input layers. For

the FC layers Dx = WT.Dy and Dy = Dx.X7, and for
the CONV layers Dy = Dy « WT and Dy = X « Dy T
can be completely calculated on the NSTs using a series of
STREAM_MAC operations (Y is the output gradient of each
layer which is propagated backward to the input X, and T
stands for matrix transpose). ACT layer only propagates back
the gradients (Dx; = X4 > 07 Dy; : 0). This operation is
not currently supported by NSTs. But since only comparisons
with the zero are involved, the integer datapath of RISC-V
cores is used. POOL layer, similarly, propagates back the
gradients with a matrix scatter operation [29], populating a
sparse matrix without performing any actual computation.
Again, this operation is implemented on the RISC-V cores in
the current version. SoftMax (CLASS) is calculated similarly
to the forward-pass on the RISC-V cores. Finally, in step (3),
the weights are updated either with fixed or adaptive step sizes
(o or «, respectively): W; = W, — a(dW; + AW;). This
procedure is repeated in an iterative manner for all variations
of GD algorithms (e.g. Stochastic GD, Batch GD) [29]]. A fixed
step implementation of this formula is currently supported
by the NSTs, while adaptive steps need to be calculated
by the PEs, once per each backward pass. An estimation
for the performance of training on SMC is presented in

VI. EXPERIMENTAL RESULTS

Our baseline system is composed of a memory-centric
network [53]] of four SMC devices based on a mesh topology.
Each SMC hosts a NeuroCluster with 16 clusters on its LoB
die, with each cluster having 4 RISC-V cores (with 1kB private
instruction cache each), 8 NSTs, a DMA engine, and 128kB
of SPM. This configuration is found to achieve reasonable
performance and efficiency through several simulations. Total
available DRAM is 1GB in 4 stacked dies with DRAM banks
of 32MB and a closed-page policy [25]. Low-interleaved-
addressing is implemented as the HMC’s default addressing
scheme [26]]. A summary of these parameters is also listed on
page|[I] A fully functional and cycle-accurate (CA) RTL model
of the NeuroCluster has been modeled in SystemVerilog, with
the components adopted and reconfigured from [49]. This
model along with a previously developed cycle-accurate model
of the SMC [25] allows us to analyze the performance of
tiled execution over a single SMC device considering the
programming overheads.

Silicon area and power consumption are also extracted from
these models using topographical logic synthesis (See
[tion VI-B). In addition, an epoch-based in-house simulator is
developed (modeling the SMC network shown on page [I) to
estimate the performance and power consumption of executing
full ConvNets on large images, b