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ABSTRACT
Full ray-tracing maps of gravitational lensing, constructed from N-body simulations, represent
a fundamental tool to interpret present and future weak-lensing data. However, the limitation of
computational resources and storage capabilities severely restricts the number of realizations
that can be performed in order to accurately sample both the cosmic shear models and covari-
ance matrices. In this paper, we present a halo model formalism for weak gravitational lensing
that alleviates these issues by producing weak-lensing mocks at a reduced computational cost.
Our model takes as input the halo population within a desired light cone and the linear power
spectrum of the underlined cosmological model. We examine the contribution given by the
presence of substructures within haloes to the cosmic shear power spectrum and quantify it to
the percent level. Our method allows us to reconstruct high-resolution convergence maps, for
any desired source redshifts, of light cones that realistically trace the matter density distribu-
tion in the universe, account for masked area and sample selections. We compare our analysis
on the same large-scale structures constructed using ray-tracing techniques and find very good
agreements in both the linear and non-linear regimes up to few percent levels. The accuracy and
speed of our method demonstrate the potential of our halo model for weak-lensing statistics
and the possibility to generate a large sample of convergence maps for different cosmological
models as needed for the analysis of large galaxy redshift surveys.

Key words: gravitational lensing: weak – methods: analytic – galaxies: haloes – dark matter –
cosmology: theory.

1 I N T RO D U C T I O N

Cosmological surveys – e.g. VVDS, COSMOS, VIPERS, BOSS,
DES (The Dark Energy Survey Collaboration 2005; Sousbie et al.
2008; Sousbie, Pichon & Kawahara 2011; Guzzo et al. 2014; Per-
cival et al. 2014; Codis, Pichon & Pogosyan 2015; Le Fèvre et al.
2015) – and observations from long-term space missions such as the
Hubble Space Telescope (HST), Chandra and XMM are delivering
to the scientific community a very large quantity of data that seem
to be quite well interpreted by a standard cosmological model in
which two unknown forms of matter and energy – named dark mat-
ter and dark energy – dominate the energy content of our Universe.
However the analyses recently performed by the KiDS collabora-
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tion on the KiDS-450 data set (Hildebrandt et al. 2017) have reached
results in good agreement with other low-redshift probes of large-
scale structure (for example the CFHTLenS data analyses presented
by Hildebrandt et al. 2012; Benjamin et al. 2013; Heymans et al.
2013; Kilbinger et al. 2013; Kitching et al. 2014) and pre-Planck
CMB measurements – like ACT, SPT and WMAP9 (Bennett et al.
2013) – confirming the tension with the 2015 Planck outcomes
(Planck Collaboration XIII 2016). It is interesting to point out that
if the tension between those cosmological probes persists in the
future modification of the current concordance model will become
necessary.

The inhomogeneities and redshift evolution of non-linear struc-
tures in the universe can be evaluated using the statistical measure-
ments of the ellipticity of background galaxies. The determination
of the galaxy shapes and redshifts, in the absence of systematic
errors, can be translated into an unbiased measurement of the shear
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(Melchior et al. 2011; Bartelmann et al. 2012), which can be used to
reconstruct the projected matter density distribution along the line of
sight (Kaiser & Squires 1993; Kaiser, Squires & Broadhurst 1995;
Viola, Melchior & Bartelmann 2011). Tomographic reconstruction
of the matter density field and their statistical properties can be then
employed to constrain standard cosmological parameters (as e.g.
the matter density parameter �m and the initial power spectrum
normalization σ 8; see Fu et al. 2008; Kilbinger et al. 2013; Hilde-
brandt et al. 2017) as well as possible parametrizations of the dark
energy equation of state (Kitching et al. 2014; Kitching, Heavens
& Das 2015; Köhlinger et al. 2016).

For this reason, cosmic shear measurements from weak gravita-
tional lensing effect represent a primary probe for many ongoing and
future wide field surveys (Flaugher 2005; The Dark Energy Survey
Collaboration 2005; Ivezic et al. 2008, 2009; Spergel et al. 2013) and
in particular for the wide field survey covering 15 000 deg2 that will
be performed by Euclid (Laureijs et al. 2011). In this context, it is
very important to have the possibility to construct flexible reference
models of weak-lensing statistics that can account for finite survey
areas, masking and sample selection, as well as probe high-redshift
regimes. In particular, it is imperative to be able to perform a large
sample of independent simulations of weak-lensing statistics for the
need to well sample the covariance matrix to keep systematics and
possible biases that may appear in the measurements under control.
Cosmological numerical simulations of large-scale structures, from
which we can reconstruct realistic past light cones up to a desired
source redshift, represent the natural reference tools to build weak-
lensing models (Jain, Seljak & White 2000; Vale & White 2003;
Hilbert et al. 2009; Sato et al. 2009). They give the possibility not
only to correctly model the structure formation processes as a func-
tion of the cosmic time but also to include self-consistent recipes to
model the baryonic physics: cooling, star formation activities and
the various types of feedback processes (Hirschmann et al. 2014;
Beck et al. 2016). Numerical simulations also allow for exploration
of a large variety of cosmological parameter spaces as well as to
model the structure formation mechanisms in non-standard cosmo-
logical scenarios. None the less, all these interesting phenomena
that can be studied with numerical simulations require tuning the
numerical setup in order to find the best compromise between the
size of the numerical simulation box and the number of snapshots
saved – which set the maximum redshift up to which a statistically
unbiased light cone can be constructed and the largest modes of
the density field that can be probed – and the particle mass that de-
fines the resolution for the modelling of small-scale signals. Typical
analyses performed thus far properly model the statistical properties
of the weak-lensing field up (down) to modes l ≈ 104 (arcminute
scales).

Recently Giocoli et al. (2016a), within the BigMultiDark collab-
oration, have created lensing maps up to redshift zs = 2.3 for the two
VIPERS fields W1 and W4 and computed their associated weak-
lensing covariance matrices for different source redshifts. The res-
olution of the grid on which particles have been placed and through
which the light rays has been shot have been chosen to be equal
to 6 arcsec. This small-scale limit of the simulations is mainly set
by the mass and force resolution of the BigMultiDark simulation
(Prada et al. 2016), which allows for trustworthy the lensing mea-
surements only down to ∼1.5 arcmin. Recently de la Torre et al.
(2016) have used as reference the lensing predictions from the Big-
MultiDark light cones together with the redshift-space distortions
from the final VIPERS redshift survey data set and galaxy–galaxy
lensing from CFHTLenS with the aim of measuring the growth rate
of structure. The resolution of the analysis performed by Harnois-

Déraps, Vafaei & Van Waerbeke (2012) – where the authors have
accurately measured non-Gaussian covariance matrices and set the
stage for systematic studies of secondary effects – is only slightly
higher. In the latter work, a set of 185 high-resolution N-body simu-
lations was performed, and the corresponding past light cones were
constructed through a ray-tracing algorithm using the Born approx-
imation. In a subsequent work, Harnois-Déraps & van Waerbeke
(2015) – and also Angulo & Hilbert (2015) – have investigated
the importance of finite support – related to the limited box size
of the simulation and possible small field of view when construct-
ing the lensing light cones – which may suppress the two-point
weak-lensing statistic on large scales. However such issues may be
circumvented by performing lensing simulations consistently with
the limited size and geometry of the observed lensing survey, but
including large-scale modes using approximated methods from lin-
ear theory (Monaco et al. 2013; Tassev, Zaldarriaga & Eisenstein
2013; Monaco 2016). Recently also Petri, Haiman & May (2016a)
have shown that for weak-lensing statistics the full ray-tracing sim-
ulation is indeed unnecessary and that simply projecting the lensing
planes causes negligible errors compared to this; in particular Petri,
Haiman & May (2016b) have re-cycled a single N-body box as many
as 10 000 times generating statistically independent weak-lensing
maps with sufficient accuracy.

Particularly interesting is also the possibility to perform weak-
lensing simulations in a variety of different cosmological models.
For example, in this case the availability of numerical simulations
of structure formation for those models is a fundamental start-
ing point. In this respect, we mention the analyses performed in
non-standard models with coupling between dark energy and cold
dark matter (CDM) by Giocoli et al. (2015) and Pace et al. (2015)
that showed specific signatures with respect to standard �CDM
mainly when performing a tomographic weak-lensing analyses. In
the same direction goes the work performed by Tessore et al. (2015),
which have produced weak-lensing maps of large-scale structure in
modified gravity cosmologies that exhibit gravitational screening in
the non-linear regime of structure formation. Carbone, Petkova &
Dolag (2016) have presented a cross-correlation analysis of CMB
and weak-lensing signals using ray tracing across the gravitational
potential distribution provided in massive neutrinos simulations.
These authors find an excess of power with respect to the massless
run, due to free streaming neutrinos, roughly at the transition scale
between the linear and non-linear regimes.

The production of a large number of independent light-cone real-
izations for different cosmological models is an essential tool for the
interpretation of the large wealth of weak-lensing data, which will
become available in the next decades. It is also crucial to go beyond
the Gaussian assumption in the characterization of the weak-lensing
error bars, in both the linear and non-linear regimes to correctly
assess the sensitivity of the weak-lensing signal to cosmological
parameters.

In this context, it is important to stress that weak-lensing sim-
ulations have to be made consistent with the survey properties;
simulated light cones in first analysis should mimic the geometry
as well as the masking of the survey area. Usually many light-cone
realizations are needed in order to obtain a precise estimate of the
covariance matrices over a wide range of scales and for sources at
different redshifts, and all such realizations need to be extended to
the various cosmological models we would like to sample. A com-
prehensive programme of weak-lensing analyses performed based
on full N-body simulations then requires enormous computational
resources and huge storage capabilities, which are difficult to access
even at the largest computing centres.
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On the other hand, approximate methods are much faster, and less
memory demanding, hence opening the possibility to test various
cosmological scenarios at a highly reduced computational cost. In
this regard, it is interesting to mention the work by Yu et al. (2016),
who have presented a fast method to generate weak-lensing maps
based on the assumption that a lensing convergence field can be
Gaussianized to excellent accuracy by a local transformation. Even
if their constructed maps have a good representation of the large-
scale normalization of the cosmic shear power spectrum, they have
larger power at intermediate scales than the simulated reference
fields and vice versa at small scales. These effects are probably due
to the imperfection of the Gaussian Copula Hypothesis on which
their method is based.

Producing a large sample of realistic weak-lensing simulations
is becoming a challenging but necessary task for interpreting the
outcomes of future wide field surveys. Importantly those allow (1)
to mimic the survey geometry and masked regions, (2) to consis-
tently sample the expected weak-lensing signals from the matter
density distribution along the line of sight and (3) to construct ref-
erence models using the observed source redshift distribution from
a given survey. A large number of light cones plus weak-lensing
measurements are needed to ensure a good sampling of the non-
linear properties of structure formation and to have under control
the Gaussian and non-Gaussian terms and the cosmic variance in es-
timating the covariance matrices (Harnois-Déraps & van Waerbeke
2015; Harnois-Déraps et al. 2015).

In this paper, we use the halo model formalism for weak gravi-
tational lensing, to quickly and accurately generate high-resolution
convergence maps for any desired field of view and source redshift
distribution in the context of a standard �CDM cosmological sce-
nario. Similarly Li & Ostriker (2002) and Giocoli et al. (2012a,
2016b) have used the lensing halo model formalism for strong-
lensing studies while Kainulainen & Marra (2011), Lin & Kilbinger
(2015a,b) and Zorrilla Matilla et al. (2016) have used it for weak-
lensing predictions. The simulated maps can then be masked and
cut to reproduce the geometry of the observed survey. The weak-
lensing statistical properties of the light cones can also be sampled
according to a realistic source sample, their redshift distribution and
clustering. The extension of our method to a variety of non-standard
cosmological models will be investigated in a forthcoming paper.

Our paper is organized as follows: in Section 2 we present the ref-
erence numerical simulated light cones with which we compare our
model and describe the idea of the method, in Section 3 we present
our halo model for weak gravitational lensing and in Section 4 we
define the statistical estimators that we apply to our simulated light
cones to characterize their properties. In Section 5, we summarize
and discuss our results.

2 MO D EL

In this work, we present a fast method to produce weak-lensing sim-
ulations using a halo model approach. In our analysis, we use the
halo catalogues corresponding to the particle light cones extracted
from a reference cosmological simulation. The light cones have
been produced by remapping the simulated snapshots into cuboids
and projecting the particles into lens planes up to a given source
redshift. In this work, we will make use of the halo and subhalo cat-
alogues to reconstruct the weak-lensing field, using the halo model,
in a desired field of view and compare it with the prediction obtained
using the particles as tracers of the projected density. In this way,
we statistically reconstruct the matter density distribution along the
line of sight (Giocoli et al. 2015, 2016a), avoiding replicating the

same structures and producing gaps. The convergence maps have
been computed from the projected lens planes using the ray-tracing
GLAMER pipeline (Metcalf & Petkova 2014) as described in Petkova,
Metcalf & Giocoli (2014).

2.1 The numerical simulation

In this section, we present the reference numerical simulation we
adopt and stress that our method is very general and ready to be
applied to any halo – and subhalo – catalogue.

The cosmological parameters of our reference simulation have
been set according to the WMAP7 results. In particular, the nu-
merical simulation used here is the �CDM run extracted from the
CODECS suite (Baldi 2012), where the initial conditions are generated
using the N-GENIC code1 by displacing particles from a homogeneous
‘glass’ distribution in order to set up a random-phase realization of
the linear matter power spectrum of the cosmological model ac-
cording to the Zel’Dovich approximation (Zel’Dovich 1970). The
particle displacements are then rescaled to the desired amplitude
of the density perturbation field at some high redshift (zi = 99),
when all perturbation modes included in the simulation box are still
evolving linearly. This redshift is then taken as the starting redshift
of the simulation, and the corresponding particle distribution as the
initial conditions for the N-body run. In setting the initial conditions
for the simulation, we have chosen �CDM = 0.226, �b = 0.0451,
�� = 0.729, h = 0.703 and ns = 0.966, the initial amplitude of the
power spectrum at CMB time (zCMB ≈ 1100) As(zCMB) = 2.42 ×
10−9, which correspond at z = 0 to σ 8 = 0.809.

The simulation has a box size of 1 comoving Gpc h−1 aside and
includes 10243 for both the components CDM and baryon for a total
particle number of approximately 2 × 109. The mass resolution is
mCDM = 5.84 × 1010 M� h−1 for the cold dark matter component
and mb = 1.17 × 1010 M� h−1 for baryons, while the gravitational
softening was set to εg = 20 kpc h−1. Despite the presence of bary-
onic particles, this simulation does not include hydrodynamics and
is therefore a purely collisionless N-body run.

We stored about 30 snapshots between z = 10 and z = 0 at each
simulation snapshot, haloes have been identified using Friends-of-
Friends (FoF) algorithm adopting a linking length parameter b =
0.2 times the mean inter-particle separation of the CDM particles
as primary tracers of the local mass density, and then attaching the
baryonic particles to the FoF group of their nearest neighbours.
Then, running SUBFIND (Springel et al. 2001b) – on each simulation
snapshot, for each FoF group we compute M200 as the mass enclos-
ing a sphere with density 200 times the critical density ρc(z) at that
redshift and assuming the particle with the minimum gravitational
potential as the halo centre. SUBFIND also searches for overdense
regions within an FoF group using a local smoothed particle hy-
drodynamics density estimate, identifying substructure candidates
as regions bounded by an isodensity surface that crosses a saddle
point of the density field. This algorithm is also testing that these
possible substructures are physically bounded with an iterative un-
binding procedure. In what follows, we will indicate with MFoF the
mass of the FoF group, with M200 the mass of the sphere enclos-
ing 200 times the critical density of the universe and with msub the
self-bound mass of substructures.

1 http://www.mpa-garching.mpg.de/gadget
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2.2 Building the past light cone with MAPSIM

To build the lensing maps of the light cone, we piled together dif-
ferent slices of the simulation snapshots up to zs = 4. The size
of the light cone we consider has an angular aperture of 5 deg,
which, combined with the comoving size of the simulation box of
1 Gpc h−1, ensures to uniformly construct the mass density distri-
bution in redshift without gaps. For this purpose, we use the MAPSIM

code (Giocoli et al. 2015; Tessore et al. 2015) that extracts the parti-
cles from the simulation’s snapshot files and assembles them into a
light cone. The code initializes the memory and the grid size of the
maps reading an input parameter file. This file contains information
about the desired field of view (chosen to be 5 deg on a side), the
highest source redshift (in this case zs = 4) and the locations of the
snapshot files. The number of required lens planes is decided ahead
of time in order to avoid gaps in the constructed light cones and the
available stored simulation snapshots. We emphasize that in order
to properly statistically sample the evolution of the matter density
distribution as a function of the cosmic time within the light cone,
we collapse in each lens plane the closest snapshot in redshift. The
code, reading each snapshot file at a time from low to high redshift,
extracts only the particle positions within the desired field of view
and is not much memory consuming since it needs to allocate only
a single snapshot file. The lens planes are built by mapping the
particle positions to the nearest pre-determined plane, maintaining
angular positions, and then pixelizing the surface density using the
triangular shaped cloud method (Hockney & Eastwood 1988). In
constructing the lens planes, we try to preserve as much as possi-
ble the cosmological evolution of the structures by projecting into
planes the snapshot with the closest redshift. The grid pixels are cho-
sen to have the same angular size on all planes, equals to 2048 ×
2048, which allows to resolve approximately 8.8 arcsec pixel−1.
The lens planes have been constructed each time a piece of sim-
ulation is taken from the stored particle snapshots; their number
and recurrence depend on the number of snapshots stored while
running the simulation. In particular, in running our simulation, we
have stored 17 snapshots from z ∼ 4 to z = 0 reasonably enough
to construct a complete light cone up to zs = 4 with 22 lens planes.
The selection and the randomization of each snapshot are done as
in Roncarelli et al. (2007) and discussed in more details in Giocoli
et al. (2015). If the light cone reaches the border of a simulation box
before it reaches the redshift limit where the next snapshot will be
used, the box is re-randomized and the light cone extended through
it again. Once the lens planes are created, the lensing calculation
itself is done using the GLAMER pipeline (Metcalf & Petkova 2014;
Petkova et al. 2014). Considering that at low redshifts, where many
massive haloes are present, we have saved many snapshots – for
example we use 12 snapshots up to redshift z = 1.2 from which
we produce 14 lens planes – when projecting particles into sepa-
rate lens planes, we do not account for particle clumps in haloes
that are located on the slice boundaries with particles on either
side. As discussed by Hilbert et al. (2009), this effect can eventu-
ally produce an overcounting of particles that may bring a relative
difference to the convergence power spectrum of approximately
0.1 per cent.

Defining θ the angular position on the sky and β the position on
the source plane (the unlensed position), then a distortion matrix A
can be defined as

A ≡ ∂βββ

∂θ
=

(
1 − κ − γ1 γ2

γ2 1 − κ + γ1

)
, (1)

where κ represents the convergence and the pseudo-vector γ ≡
γ1 + iγ2 the shear. In the case of a single lens plane, the convergence
can be written as

κ(θ ) ≡ �(θ )

�crit
, (2)

where �(θ) represents the surface mass density and �crit the critical
surface density as

�crit ≡ c2

4πG

Dl

DsDls
, (3)

where c indicates the speed of light, G Newton’s constant and Dl,
Ds and Dls the angular diameter distances between observer lens,
observer source and source–lens, respectively. In the case of multi-
ple lens planes, the situation is slightly different. After the deflection
and shear maps on each plane are calculated, the light rays are traced
from the observers through the lens planes up to the desired source
redshift. The shear and convergence are also propagated through
the planes as detailed in Petkova et al. (2014). GLAMER performs a
complete ray-tracing calculation that takes into account non-linear
coupling terms between the planes as well as correlations between
the deflection and the shear. However, for this work when running
the ray-tracing pipeline we have adopted the Born approximation,
that is following the light rays along unperturbed paths. As dis-
cussed in Giocoli et al. (2016a) – by performing a full ray-tracing
comparison – and in Schäfer et al. (2012) – by computing an analytic
perturbative expansion – the Born approximation is an excellent ap-
proximation for weak cosmic lensing down to very small scales (l ≥
104). We underline that the physical modelling at these very small
scales is far from the purpose of this work and we are aware that
it may eventually need a correct and self-consistent treatment of
the baryonic components (Mohammed et al. 2014; Harnois-Déraps
et al. 2015).

In the left-hand panel of Fig. 1, we show the convergence map of
the first light-cone realization assuming a source redshift zs = 4. In
order to have various statistical samples, we have created 25 light-
cone realizations. They can be treated as independent since they do
not contain the same structures along the line of sight, considering
the size of the simulation box 1 Gpc h−1 and the field of view of
5 deg on a side.

Within the MAPSIM code we have recently implemented also the
possibility to construct a corresponding light cone of haloes and
subhaloes that resemble the underlying randomization of the asso-
ciated matter density distribution along the line of sight. FoF groups,
M200 haloes and subhaloes are subdivided according to the various
constructed planes; for each of them we compute the correspond-
ing redshift from their comoving distance from the observer and
their angular position in the sky with respect to the assumed field
of view. In order to avoid edge effects when re-constructing the
lensing properties from virialized structures, we extracted haloes
and subhaloes from a field of view 2.5 deg larger on each side. This
means that haloes and subhaloes are extracted from a region of 10 ×
10 deg2, centred in the same sky position as the cone from which
we extract the particles. Halo and subhalo catalogues are saved in
complementary files with respect to the corresponding lens planes.
We highlight that in order not to double count the mass in haloes we
do not consider the main subhalo within the SUBFIND catalogues that
typically account for the smooth halo component. As an example in
the right-hand panel of Fig. 1, we plot on top the convergence map,
the positions of the FoF groups more massive than 5 × 1013 M� h−1

within the light cone from z = 0 to zs = 4. The various size coloured
circles refer to different masses as indicated in the label.

MNRAS 470, 3574–3590 (2017)



3578 C. Giocoli et al.

Figure 1. Left-hand panel: convergence map (5 × 5 deg2) of a light-cone realization up to zs = 4 constructed using the multiplane ray-tracing GLAMER pipeline.
Right-hand panel: convergence map with overplotted haloes present within the light cone more massive than 5 × 1013 M� h−1. The various size coloured
circles indicate haloes with different masses, as labelled in the plot. The masses refer to the FoF group definition.

3 A W E A K - L E N S I N G H A L O M O D E L
APPROACH: W L-M O K A

The different statistical analyses performed in the last 20 yr on the
post-processing data of various numerical simulations have given
the possibility to reconstruct in good details the dark matter halo
structural properties over a wide range of masses (Springel et al.
2001b; Gao et al. 2004; Giocoli, Tormen & van den Bosch 2008). In
particular, many works seem to converge towards the idea that viri-
alized haloes tend to possess a well-defined density profile (Navarro,
Frenk & White 1996; Moore et al. 1998; Rasia, Tormen & Moscar-
dini 2004). Following the Navarro et al. (1996) (hereafter NFW)
prescription, we assume the density profile of haloes to follow the
relation:

ρ(r|Mh) = ρs

(r/rs)(1 + r/rs)2
, (4)

where rs is the scale radius, defining the concentration ch ≡ Rh/rs

and ρs the dark matter density at the scale radius:

ρs = Mh

4πr3
s

[
ln(1 + ch) − ch

1 + ch

]−1

, (5)

Rh is the radius of the halo that may varies depending on the halo
overdensity definition. In this analysis, we will adopt (i) the mass
inside the Virial radius for the FoF groups:

Mvir = 4π

3
R3

vir

vir

�m(z)
�0ρc , (6)

and (ii) the mass inside a sphere enclosing 200 times the critical
matter density ρc(z) of the Universe:

M200 = 4π

3
R3

200200
�0

�m(z)
ρc , (7)

where �0 ≡ �m(0) represents the matter density parameter at the
present time and vir is the virial overdensity (Eke, Cole & Frenk
1996; Bryan & Norman 1998), Rvir and R200 symbolize the virial
and the 200 critical radius of the halo, that is the distance from the

halo centre that encloses the desired density contrast; ρc represents
the critical density at the present time.

The halo concentration ch is a decreasing function of the host
halo mass. This relation is explained in terms of hierarchical clus-
tering within CDM universes and of different halo-formation his-
tories (van den Bosch 2002; De Boni et al. 2016). Small haloes
form first in a denser universe and then merge together forming the
more massive ones: galaxy clusters sit at the peak of the hierarchi-
cal pyramid being the more recent structures to form (Bond et al.
1991; Lacey & Cole 1993; Sheth & Tormen 2004a; Giocoli et al.
2007). This trend is reflected in the mass–concentration relation: at
a given redshift, smaller haloes are more concentrated than larger
ones. Different fitting functions for numerical mass–concentration
relations have been presented by various authors (Bullock et al.
2001; Neto et al. 2007; Duffy et al. 2008; Gao et al. 2008). In this
work, we adopt the relation proposed by Zhao et al. (2009), which
links the concentration of a given halo with the time t0.04 at which its
main progenitor assembles 4 per cent of its mass. Giocoli, Tormen
& Sheth (2012b) have found that this relation works very well for
virialized masses Mvir while the parameters of the model need to
be slightly modified for the M200 definition (Giocoli et al. 2013).
We want to underline that the model by Zhao et al. (2009) also fits
numerical simulations with different cosmologies; it seems to be of
reasonably general validity within few per cent of accuracy. For the
mass–accretion history model of the two mass overdensity defini-
tions (Mvir or M200), we adopt the relations by Giocoli et al. (2012b,
2013). Those models are quite universals and give the possibility
to generalize the relations eventually also to non-standard models
(Giocoli et al. 2013). In particular, the concentration–mass relation
mainly impacts on the behaviour of the power spectrum at scales
below 1 h−1 Mpc as discussed in details by Giocoli et al. (2010).

Due to different assembly histories, haloes with same mass at
the same redshift may have different concentrations (Navarro et al.
1996; Jing 2000; Wechsler et al. 2002; Zhao et al. 2003a,b). At fixed
host halo mass, the distribution in concentration is well described
by a lognormal distribution function with an rms σ ln c between 0.1
and 0.25 (Jing 2000; Dolag et al. 2004; Sheth & Tormen 2004b;
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Table 1. Summary of the halo and subhalo properties considered in our
models when building the effective convergence maps.

Case c–M relation Profile

FoF Zhao et al. (2009) NFW
M200 Giocoli et al. (2013) NFW
FoF+Subs Zhao et al. (2009) NFW (haloes)+ tSIS (subhaloes)

Neto et al. 2007). In this work, we adopt a lognormal distribution
with σ ln c = 0.25.

In our numerical simulation, subhaloes have been identified us-
ing the SUBFIND algorithm. For the mass density distribution in sub-
haloes, we adopt the truncated Singular Isothermal Sphere (here-
after tSIS) profile. This model accounts for the fact that the subhalo
density profiles are modified by tidal stripping due to close interac-
tions with the main halo smooth component and to close encounters
with other clumps, gravitational heating and dynamical friction.
Such events can cause the subhaloes to lose mass, and may eventu-
ally result in their complete disruption (Hayashi et al. 2003; Choi,
Weinberg & Katz 2007). We model the dark matter density profile
in subhaloes as (Keeton 2003),

ρsub(r) =

⎧⎪⎨
⎪⎩

σ 2
v

2πGr2
r ≤ Rsub,

0 r > Rsub

(8)

with velocity dispersion σ v, and Rsub defined as

msub =
∫ Rsub

0
4πr2ρsub(r) dr ⇒

Rsub = G msub

2 σ 2
v

. (9)

To compute the velocity dispersion, we use the same implementa-
tion described in the MOKA code by Giocoli et al. (2012a). The tSIS
profile well represent galaxy density profiles on scales relevant for
strong lensing. Previously, different authors have used this model
to characterize the lensing signal by substructures after stripping
(Metcalf & Madau 2001).

In Table 1, we summarize the halo model properties that we use
to construct the convergence maps using our algorithm.

Assuming spherical symmetry for the matter density profile in
haloes, we can compute the surface mass density �(x1, x2) associ-
ated with a density profile ρ(r) extending up to the virial radius Rvir

as

�(x1, x2) = 2
∫ Rvir

0
ρ(x1, x2, ζ ) dζ, (10)

where x1, x2 and ζ represent the three-dimensional coordinates
and r2 = x2

1 + y2
2 + ζ 2; this quantity is then used to define the

convergence as in equation (2).
As described by Bartelmann (1996) the Navarro–Frank–White

density profile has a well-defined primitive for the integral in equa-
tion (10) and its convergence can be derived analytically, as well as
for the tSIS profile.

In Fig. 2, we show four convergence maps of the same light-cone
realization extending up to redshift zs = 4. In the top left panel
(in black scale), we created the convergence map using ray tracing
in the light cone constructed from the particles extracted from the
simulation snapshots. In the top right (in red scale) and bottom left
(in blue scale), we present the convergence maps constructed using
the MFoF and the M200 halo catalogues, respectively. By eye, it is
possible to spot that using the halo catalogues the overall surface

mass density distribution is quite well traced. However, it is notice-
able with more careful analysis that the map constructed using the
FoF catalogue presents much more clustering of low-mass haloes.
This is due (i) to numerical resolution of the simulation: FoF haloes
with fewer than 10 particles within 200 times the critical density
are not well resolved and not stored in the corresponding M200 cat-
alogue and (ii) to the possible non-universality of the mass function
defined with M200 haloes (Tinker et al. 2008; Despali et al. 2016).
In general it is interesting to notice that MFoF and M200 contain typ-
ically a different fraction of the total mass in the simulation. Using
the relations calibrated from numerical simulations by Despali et al.
(2016), we notice assuming the same mass resolution – down to 10
dark matter particles – and box size of our reference run, at z =
0. The mass contained in MFoF haloes is approximately 30 per cent
of the total mass in the simulation, while in M200 haloes it is less
than 25 per cent; at z = 1 the two fractions become 15 per cent and
12 per cent, respectively, while at z = 3 they are both approximately
1.5 per cent, since the two mass overdensity definitions get closer
and closer at high redshifts (Eke et al. 1996; Bryan & Norman
1998).

Convergence maps constructed by summing the surface mass
density contribution of all haloes present within the halo catalogues,
and weighting them with the critical surface density as in equation
(2), are effective convergence maps and are forced to have an av-

erage value of the convergence κ̄ =
∑Npix

i=1 κi

Npix
= 0. This implies that

conservatively each convergence map describes the perturbed mat-
ter density distribution with respect to an average background value.
We underline also that this point is important when we construct the
effective convergence maps using only haloes or using both haloes
and subhaloes; in order not to overcount the masses in both cases
the average value of the convergence in each constructed plane is set
to be zero. This kind of approach has also been used in constructing
the convergence map implying the full ray-tracing technique – as
in the top left panel of the figure: since the rays are propagated
between planes using the standard distances in a Robertson–Walker
metric that assumes a uniform distribution of matter, the addition of
matter on each of the planes will, in a sense, overcount the mass in
the universe. Without correcting for this, the average convergence
from the planes will be positive and will cause the average distance
for a fixed redshift to be smaller than it should be. To compensate
for the contained density between the planes, the ensemble aver-
age density on each plane is subtracted. Each plane then has zero
convergence on average and the average redshift–distance relation
is as it would be in a perfectly homogeneous universe. Finally, the
bottom right panel of Fig. 2 (in green scale) presents the conver-
gence map constructed using the FoF haloes plus the subhaloes. In
this case comparing this map with respect to the one in red scale,
where we use only the FoF haloes, we notice an increase in small-
scale perturbations. In Fig. 3, we display the statistical difference
between the maps computed using particles and FoF haloes plus
subhaloes. In the left-hand panel, we show the absolute difference
map between the two cases. The central panel exhibits the pixel-by-
pixel correlation between the two maps, while the left-hand panel
presents the probability distribution function (PDF) of the differ-
ence κ = κparticles − κMFoF+msub . From the figures, what is mainly
appearing is that the effective convergence map computed using
haloes and subhaloes mainly traces the matter density distribution
on small scales where non-linear structures and clumps are present,
however still differences appear mainly due to projection effects,
filamentary structures – as better displayed in the small panel in the
left figure – and sheets.
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Figure 2. Convergence maps of a light cone extending up to zs = 4. Top left panel: convergence maps created using ray tracing in the light cone constructed
from the particles extracted from the simulation snapshots. Top right, bottom left and bottom right panels: convergence maps constructed using the halo model
formalism based on MFoF, M200 and MFoF + msub catalogues in the light cone, respectively.

Figure 3. Left-hand panel: absolute difference between the convergence map computed using particles and the one using FoF haloes plus subhaloes. Central
panel: pixel-by-pixel correlation between the two maps. Right-hand panel: probability distribution function of the difference between the two maps.

3.1 Probability distribution function of the convergence fields

To quantify the previous discussion, in Fig. 4 we display the PDF
of the convergence maps presented in Fig. 2. Left-hand, central and
right-hand panels show the PDF of the convergence constructed
for sources at zs = 0.5, 1.4 and 4, respectively. Black, red, blue
and green coloured histograms show the four corresponding cases
used to construct the convergence map: particles, FoF groups, M200

haloes and FoF groups with subhaloes. From the panels in the
figure, we notice that for zs = 0.5 the four histograms are very
similar and that the inclusion of substructures creates some pixels

with larger convergence values which may correspond to the core
of clumps. In the central and right-hand panels, we notice that the
PDF of the convergence map constructed using the particles does
not present pixels with convergence κ � 0.75, this is probably due
to the numerical and force resolution of the simulation which does
not permit to resolve with a reasonable number of particles the cores
of haloes and subhaloes. In addition, the black histograms display
distinct tails with negative convergence. This is probably due to
the sampling of the matter density distribution that is not bound to
haloes – and that we are missing in our halo modelling formalism.
We will discuss more about that in the next sections.
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Figure 4. PDFs of the convergence maps presented in Fig. 2. Left-hand, central and right-hand panels show the PDFs for three different source redshifts: zs =
0.5, 1.4 and 4, respectively. The black histograms show the PDF for the convergence map constructed using the GLAMER ray-tracing pipeline, while the blue
and red are the ones computed from the M200 and MFoF halo catalogues. The green histograms show the distribution function of the convergence map where
the FoF haloes also contain substructures.

3.2 Building up the convergence power spectra

Following the halo model formalism, the matter density distribution
in the universe is assumed to be associated with virialized haloes
(Cooray & Sheth 2002). The mean density within the Universe can
so be computed from the relation

ρ̄ =
∫

m n(m) dm, (11)

where n(m) represents the halo mass function. The three-
dimensional matter power spectrum can be then decomposed in

Pδ(k, z) = P1h(k, z) + P2h(k, z), (12)

where P1h(k) represents the power spectrum of the matter density
distribution within one halo, while P2h(k) describes the power spec-
trum of the matter density distribution between two distant haloes.
The two terms can be read as

P1h(k, z) =
∫ (

m

ρ̄

)2

n(m, z)u2(k|m) dm (13)

P2h(k, z) =
∫ (

m1

ρ̄

)
n(m1, z)u(k|m1) dm1

∫ (
m2

ρ̄

)
n(m2, z)u(k|m2) dm2Phh(k|m1, m2), (14)

where u(k|m) represents the Fourier transform of the dark matter
density profile and Phh(k|m1, m2) describes the halo–halo power
spectrum that can be expressed in terms of the halo matter bias
parameter b(m) and the linear matter power spectrum Pδ,lin(k):

Phh(k|m1, m2) = b(m1)b(m2)Pδ,lin(k). (15)

Including the presence of substructures within haloes adds more
equations to the halo model that can be trivially solved considering
the correlation between the smooth and the clump components both
within the one-halo and two-halo terms (Sheth & Jain 2003; Giocoli
et al. 2010).

The convergence power spectrum, to first order, can be expressed
as an integral of the three-dimensional matter power spectrum com-
puted from the observer looking at the past light cone from the
present epoch up to a given source redshift (Bartelmann & Schnei-
der 2001). In this approximation, it is assumed that the light rays
travel along unperturbed paths and all terms higher than first order
in convergence and shear can be ignored. Defining f(w) as the angu-
lar radial function that depends on the comoving radial coordinate

w given the curvature of the universe, we can write the convergence
power spectrum at a given source redshift zs – with a corresponding
radial coordinate ws – as

Pκ (l) = 9H 4
0 �2

m

4c4

∫ ws(zs)

0

f 2(ws − w)

f 2(ws)a2(w)
Pδ

(
l

f (w)
, w

)
dw. (16)

Analogously from the constructed effective convergence maps, we
can compute the corresponding power spectrum as

〈κ̂(l)k̂∗(l ′)〉 = 4π2 δD(l − l ′)Pκ (l), (17)

where δ
(2)
D represents the Delta Dirac in two dimensions.

In Fig. 5, we present the average power spectrum of 25 different
light-cone realizations for three different source redshifts: zs = 0.5,
zs = 1.4 and zs = 4, from left to right, respectively. In each panel,
the black curves display the spectra computed using the ray-tracing
pipeline on the particle distribution and the grey curves show the
associated particle shot-noise (Vale & White 2003; Giocoli et al.
2016a). The shaded grey area marks the region where the shot-noise
term of the particles starts to dominate the cosmic shear measure-
ments, while the yellow shaded region indicates the part below the
angular Nyquist mode sampled by our field of view. Red dashed
and blue dot–dashed curves show the power spectra computed us-
ing the FoF and the M200 haloes present within the light cones. The
orange curves describe the contribution of the subhaloes while the
green solid curves exhibit the total contribution of the FoF haloes
and their associated subhaloes. From the figure, we can observe that
the large-scale behaviour of our halo model power spectra mani-
fests less power than expected from linear theory (dotted light blue
curves). The magenta dashed curves display the one-halo term con-
tribution of the analytical halo model as in equation (13) where
we have integrated the theoretical mass function (Sheth & Tormen
1999) from the minimum halo mass that we have in the simulation
Mmin ≈ 2.07 × 1012 M� h−1 for consistency. From the figure, we
notice that our halo model for weak lensing captures quite well the
one-halo term plus the one related to the matter between haloes, but
misses the linear contribution of matter distributed among haloes;
that is matter density fluctuations that are not attached to non-linear
structures, and possibly tracing sheets and filaments.

The relative contribution of subhaloes to the power spectrum with
respect to the smooth component is displayed in Fig. 6. The green,
blue and red curves represent the subhalo contribution for three
different source redshifts. From the figure, we notice that typically
subhaloes contribute to approximately 3 per cent to the convergence
power spectrum and that their contribution becomes significant
for scales below 5 arcmin, which correspond to approximately is
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Figure 5. Convergence power spectra averaged over 25 different realizations of the light cones considering sources at three fixed source redshifts, from left
to right we have zs = 0.5, zs = 1.4 and zs = 4. The black curves show the power spectra computed from the ray-tracing pipeline including all the particles in
the light cone extracted from the numerical simulation [as described in Giocoli et al. (2015)]. The red dashed and blue dot–dashed curves show the results of
the two considered halo catalogues MFoF and M200, while the solid orange lines present the contribution of the substructures. The solid green curves display
the total convergence power spectra of FoF haloes and subhaloes. The grey curves describe the shot-noise contribution to the power spectra computed from the
ray-tracing simulations using particles.

Figure 6. Relative contribution to the cosmic shear power spectrum of the
subhaloes with respect to the FoF haloes for three different source redshifts:
zs = 0.5 (green), zs = 1.4 (blue) and zs = 4 (red).

l ≈ 104. In particular, those scales are not well resolved within the
numerical simulation due to particle and force limitations while
well described by our halo model formalism. We remind the reader
that in those regimes, a consistent treatment of the baryonic contri-
bution is very critical (Harnois-Déraps et al. 2015), and this will be
addressed in an upcoming paper (Giocoli et al. in preparation).

3.3 Effective linear contribution to the weak-lensing halo
model

As discussed in the previous section, the halo model formalism we
have implemented so far is missing the effective contribution of
the linear matter density distribution presents among the haloes,
which may be tracing sheets and filaments. Recently van Daalen &
Schaye (2015), using a set of cosmological numerical simulations,
discussed how much non-virialized matter contributes to the total
matter power spectrum. In particular, they showed that the larger the
region around the virialized haloes that is included, the larger the
halo contribution to the matter power spectrum will be. The matter
power spectrum of haloes for 3 h Mpc−1 < k < 100 h Mpc−1 en-
closing 200 times the critical density is smaller than that enclosing

200 times the background and, in turn, of that of the mass resid-
ing within the FoF groups. Going from three to two dimensions, it
can be noticed from the panels present in Fig. 5, our model prop-
erly reconstructs the one-halo term plus a two-halo-like term but
has less power at large scales with respect to the ray-tracing power
spectrum as computed using particles. Consistent with the results of
van Daalen & Schaye (2015), we notice that the convergence power
spectra of the matter in M200 is smaller than that of the matter within
the FoF groups. However, the relative difference between the two de-
pends on the considered source redshift: M200 has a pseudo-redshift
evolution, as discussed by Diemer, More & Kravtsov (2013), that
depends on the evolution of the Hubble function with the cosmic
time. To better clarify and understand the contribution of the matter
in virialized haloes, in Fig. 7 we display the convergence power
spectrum for sources at redshift zs = 4. The black curve represents
the power spectrum from the ray-tracing simulation using particles
for one light-cone realization, while the green curve displays our
halo model contribution from haloes and subhaloes. The cyan dot-
ted line shows the convergence power spectrum Pκ,lin(l) computed
from the linear theory assuming zs = 4, while the blue curve dis-
plays the power spectrum of a random Gaussian realization κ lin, r

of the theoretical linear cosmic shear power spectrum Pκ,lin(l) in
amplitude with a random phase – the subscript r stands for random
in phase. The dashed orange curve – almost overlapping the red one
– presents the convergence power spectrum of a map computed by
summing our halo model convergence map κhm – halo and subhalo
contribution – with κ lin, r calculated for zs = 4. Computing its power
spectrum, because the cross-terms are zero, we can read

〈κ̂(l)k̂∗(l ′)〉 = 〈 ̂(κhm + κlin,r)(l) ̂(κhm + κlin,r)∗(l)〉
= 4π2δD(l − l ′)

(
Pκhm (l) + Pκlin,r (l)

)
, (18)

where l ≡ (l1, l2), Pκhm (l) represents the power spectrum using
our halo model formalism and Pκlin,r (l) is the power spectrum
of the Gaussian realization of the theoretical linear prediction
with random phase. Finally, the light blue dashed curve shows
the convergence power spectrum of a map computed summing
to κhm the map of a Gaussian realization of Pκ,lin(l) random
in amplitude but with a phase coherent (indicated with co. in
the figure) with the structures present within κhm. In order to
construct a map that is coherent in phase with the convergence
map built from haloes and subhaloes, we define the Fourier
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Figure 7. Convergence power spectrum for sources at zs = 4. The dotted
cyan curve shows the predictions using the linear matter power spectrum
while the blue line shows the power spectrum of a random Gaussian realiza-
tion. The green curve displays the contribution to the power spectrum arising
from the haloes Pκhm (l) and the dashed orange displays Pκhm (l) + Pκlin (l),
the sum of the halo contribution and the linear Gaussian realization power
spectra. The black solid line shows the power spectrum of the ray-tracing
pipeline using particles from the simulation, while the light-blue dotted line
displays the power spectrum of the convergence map calculated summing
κhm and κ lin, a map that is coherent (co.) in phase with the halo population.
The solid red curve shows the effective total map where the amplitude of
κ lin is rescaled according to equation (21) – see the text for more details.

transform of κhm as κ̂hm(l1, l2) ≡ Re [κ̃hm(l1, l2)] +
i Im [κ̃hm(l1, l2)] ≡ κ̃hm(l1, l2) cos[φ(l1, l2)] +
i κ̃hm(l1, l2) sin[φ(l1, l2)]; we then generate a Gaussian real-
ization of the linear power spectrum with amplitude ˜κlin(l1, l2) and
phase

φ = arctan

(
Im [κ̃hm(l1, l2)]

Re [κ̃hm(l1, l2)]

)
. (19)

This case is considered because we aim to ensure that the matter
present among virialized haloes is consistent with the non-linear
matter density distribution in a way to resemble sheets, filaments and

knots; moreover, our aim is to develop a model that is independent
of the bias between halo and matter. We stress also that we are aware
that adding together two fields that are coherent and computing the
power spectrum as in equation (17) we obtain

〈κ̂(l)k̂∗(l ′)〉 = 〈 ̂(κhm + κlin)(l) ̂(κhm + κlin)∗(l)〉
= 4π2δD(l − l ′)

(
Pκhm (l) + Pκlin (l) + Phm⊗lin

)
, (20)

where Pκhm+κlin (l) = Pκhm (l) + Pκlin (l) + Phm⊗lin. Phm⊗lin indicates
the cross-spectrum term between the two fields and that by def-
inition Pκlin (l) = Pκlin,r (l). From the figure, we can notice that the
normalization of Pκhm+κlin (l) is much higher than expected due to
the cross-spectrum term between the two convergence maps that are
in phase with each other where non-linear structures are present.
In order to renormalize the computed power spectrum according
to the expectation from linear theory, we define an effective lin-
ear power spectrum Pκeff,lin (l), with a phase coherent with the halo
population, but with an amplitude renormalized according to the
following relation:

A(l) = Pκ,lin(l)

Pκhm+κlin (l)
. (21)

The magenta dot–dashed curve in Fig. 7 shows the power spectrum
of the effective linear map κeff, lin that added to κhm gives our final
result that is the total effective power spectrum displayed in red –
not far from the black curve as we will discuss in the next section.

As an example, in the left-hand panels of Fig. 8 we show nine
effective linear convergence maps κeff, lin for the same light-cone re-
alization as presented in Fig. 2. The amplitude of the corresponding
power spectra has been sampled using a Gaussian random num-
ber generator and adopting Pκ , lin(l) as theoretical reference model
and renormalized according to the relation in equation (21). In real
space, each effective linear map is in phase with the non-linear
structures present in the field of view and statistically consistent
with the matter density distribution in sheets, filaments and knots.
The right-hand panels of the figure show the total effective maps
summing the maps in the left-hand panels with the convergence
maps constructed from haloes and subhaloes as in Fig. 2.

Figure 8. Left-hand panels: nine reconstructed effective linear convergence maps built from the theoretical linear predictions rescaled in amplitude as in
equation (21). Their phase is consistent with the non-linear structures present in the field. Right-hand panels: total effective convergence maps: κhm + κ lin.
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Figure 9. PDF of the convergence maps constructed at three source redshifts. As in Fig. 4, the black histograms present the distribution of the convergence
maps built from the ray-tracing pipeline. The green and red histograms refer to the effective convergence maps build from the FoF groups and the FoF plus
subhaloes including also the effective Gaussian linear contribution. Here, we show the same light-cone realization as in Fig. 2 for which we have created 64
different realizations of the Gaussian linear power spectrum – as an example we have displayed nine of them in Fig. 8.

4 STATISTICAL PROPERTIES OF THE
W L-M O K A_HALO-MODEL

The effective total maps reconstructed using our halo model repro-
duce quite well the properties of the maps computed using all the
particles in the simulation that are present within the light cones up
to a given source redshift zs. The halo and subhalo catalogues are
used to compute the contributions from non-linear structures while
the linear power spectrum is used to characterize matter not located
in haloes.

In Fig. 9, we display the PDF of the convergence maps for the first
light-cone realization comparing the effective total maps (haloes –
and subhaloes – plus the effective linear term) with the maps com-
puted from particles – as in Fig. 4. For the maps constructed using
our WL-MOKA_HALO-MODEL (where MOKA stands for Matter density
distributiOn Kode for gravitationAl lenses), we have generated 64
random realizations of the amplitude of the effective linear contri-
bution. Left-hand, central and right-hand panels show the results
for zs = 0.5, 1.4 and 4, respectively. Again we notice that the PDF
of the maps constructed using FoF haloes and subhaloes has a
more extended tail towards larger values of the convergence with
respect to the maps from simulation: this is due to the fact that they
resolve much better the centre of haloes and subhaloes that may
suffer from finite mass and force resolution when using particles.
Our halo model runs are only limited by the size of the κ map
we set equal to 2048 × 2048. This corresponds to approximately
8.8 arcsec pixel−1. Comparing the green and red histograms, we can
notice that including subhaloes the maps present pixels with larger
values of the convergence which correspond to the clump cores
within FoF groups. From the figure, we can also see that the distri-
butions for κ < 0 present a different sampling of the convergence
field: the black histograms are well described by a lognormal tail.
In Fig. 10, we show the corresponding convergence power spectra
of the same light-cone realization and source redshifts. Black lines
are the measured quantities from the convergence maps computed
using particles while green, blue and red curves are the correspond-
ing predictions using FoF and subhaloes plus effective Gaussian
linear term. As it can be seen in the bottom panel, convergence
power spectra agree within 5 per cent for angular modes between
the Nyquist frequency and l ≈ 104. It is interesting to notice that for
zs = 0.5, the particle shot-noise term starts to dominate already at
l ≈ 2 × 103.

A more detailed comparison between our WL-MOKA_HALO-MODEL

and the ray-tracing analysis can be observed in Fig. 11, where we
show the convergence power spectra at three different source red-

Figure 10. Top panel: convergence power spectra at three different source
redshifts of a single light-cone realization. The black curves show the mea-
surement computed from the ray tracing using particles while the green,
red and blue curves display the prediction from our halo model algorithm –
including FoF haloes and subhaloes – plus the effective linear contribution
to resemble the matter density distribution not present in haloes. For the
effective linear contribution, we have generated 64 different random Gaus-
sian maps in amplitude all with the same phase and measured the average.
Bottom panel: relative difference of the power spectra, the corresponding
shaded regions enclose the variance of the power spectra on 64 different
random Gaussian realization of the effective linear contribution.

shifts, from top to bottom zs = 4, 1.4 and 0.5, respectively. The
black solid curves show the average results of 25 light-cone re-
alizations from the ray-tracing simulations, the dashed red lines
the average cosmic shear power spectrum of our halo model us-
ing only the FoF groups while the green curves show the average
using FoF with subhaloes. The light green shaded regions display
the rms corresponding to the average measurement of the WL-MOKA

MNRAS 470, 3574–3590 (2017)



Fast weak-lensing simulations 3585

Figure 11. Reconstructed non-linear convergence power spectrum at three
different source redshifts: zs = 4, zs = 1.4 and zs = 0.5, from top to bottom,
respectively. The black solid lines represent the prediction using the ray-
tracing pipeline on the particles within the light cones. Red dashed lines
show the results using FoF haloes, while the green solid lines show the case
of FoF haloes plus subhaloes. Shaded green regions enclose the rms of the
25 light-cone realizations, for each we created 64 different realizations of
the effective linear Gaussian contribution. The cyan curves exhibit the non-
linear predictions obtained from CAMB (Lewis, Challinor & Lasenby 2000),
which implements the Takahashi et al. (2012) version of HALOFIT (Smith
et al. 2003).

_HALO-MODEL including haloes and subhaloes. The cyan curves are
the predictions from CAMB using the prescription of Takahashi et al.
(2012) for the non-linear modelling. We would like to underline that
possible small departures at small angular modes between our WL-
MOKA_HALO-MODEL predictions and the results from the ray-tracing
simulation may be due to the fact that while we generally produce
a large sample of Gaussian random realizations of the linear the-
oretical predictions, in the simulation we have only one random
realization of the initial density field as computed at zi = 99.

Using cosmic shear measurements to estimate cosmological pa-
rameters requires a good knowledge of the covariance matrix, this
means information about the correlation and cross-correlation of the
lensing measurements between different angular scales, or modes.
Typically, to have a good sampling of the covariance matrix, we need
thousands of independent light-cone realizations of the same field
of view and for different initial conditions for the same cosmologi-
cal model (Taylor & Joachimi 2014). Using numerical simulations
and full ray-tracing analyses, the production of these light cones
requires an enormous amount of computational time and huge stor-
age disc spaces. On the other hand our approximated halo model
approach is much faster, not too much demanding in terms of CPU
time and little memory consuming, and only requires as input the
halo and subhalo catalogues present within the field of view up to
the required source redshift plus the linear power spectrum.

From the different light-cone realizations, we can write the co-
variance matrix in Fourier space as

M(l, l′) = 〈Pκ (l) − P̄κ (l)〉〈Pκ (l′) − P̄κ (l′)〉, (22)

where 〈P̄κ (l)〉 represents the best estimate of the power spectrum
at the mode l obtained from the average of all the corresponding
light-cone realizations and Pκ (l) represents the measurement of one

realization. The matrix can be then normalized as follows to obtain
the correlation matrix:

m(l, l′) = M(l, l′)√
M(l, l)M(l′, l′)

. (23)

For comparison with the 25 independent light cones generated from
the ray-tracing simulation using particles in the top panels of Fig. 12,
we show the correlation matrices of the cosmic shear power spec-
trum of those different realizations assuming zs = 0.5, 1.4 and
4, from left to right, respectively. We remind the reader that this
is presented here only for comparison. On the second row of the
figure (in green scale), the three panels show the correlation matri-
ces computed using our WL-MOKA_HALO-MODEL formalism. We have
computed the halo and subhalo contributions from the 25 different
light-cone realizations and for each of them we have generated 64
effective linear term contribution to represent the matter density
distribution that is not in haloes. From the figure, we notice that
our halo model reconstructs with very good accuracy the halo sam-
pling properties of the non-linear structures and the contribution
from linear theory typically dominant for small values of l within
the field-of-view realization. This sets the basis for the capability
of our approach to create self-consistent covariance matrices that
can be easily extended to much larger field of view, accounting for
a uniform or masked fields of view and considering different ge-
ometries and determining how these properties propagate into the
lensing measurements and subsequently into the covariance matri-
ces (Harnois-Déraps & van Waerbeke 2015).

Before concluding this section, we would like to discuss the per-
formance of our halo model-based weak-lensing methods in com-
parison to the full ray-tracing simulation using particles. The first
bottleneck in making convergence maps using particles is the con-
struction of the lensing planes and reading the simulation snapshot
files. Typically for a 10243 dark matter particle simulation, the con-
struction of a plane resolving a field of view of 5 × 5 deg2 with
20482 pixels takes 2.5 min that for 22 lens planes up to redshift z = 4
translates in approximately 60 min. However, the construction of the
corresponding halo and subhalo catalogues, reading and projecting
the SUBFIND catalogues within the same field of view, takes slightly
less than 1.5 min. The full ray-tracing simulation with GLAMER on
22, 14 and 8 lens planes, which are needed to construct the con-
vergence maps and measure the convergence power spectrum at
zs = 4, zs = 1.4 and zs = 0.5, consumes 70, 65 and 62 min (eight
threads process), respectively while our halo model code (single
thread process) takes 75 min on haloes in a 5 × 5 deg2. This time
almost doubles when we want to account also for a buffer region of
2.5 deg on a side. On a single light-cone simulation, our fast halo
model method is approximately 90 per cent faster than the full ray-
tracing simulation using particles. However, it should be stressed
that a N-body run from z = 99 to the present time using the GADGET2
code (Springel 2005) takes around 50 000 CPU hours, while a run
with an approximate method like PINOCCHIO2 (Monaco et al. 2013)
takes approximately 750 h to generate also the past light cone up to
the desired maximum redshift z = 4 with our same aperture using
a 5123 grid – on which we can run our fast weak-lensing method –
while it spends 1550 CPU hours for the same simulation but using
a finer grid of 10243.3 To summarize, we notice that our fast weak-
lensing simulation plus an approximate N-body method for the halo

2 In particular, a run at galileo@cineca (32 core) 10243 takes 15 min.
3 All the CPU times given here have been computed and tested in a 2.3 GHz
workstation.
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Figure 12. Correlation matrices at three different source redshifts. From left to right zs = 0.5, zs = 1.4 and zs = 4. On the first row, the panels show the
correlation matrices of 25 different light-cone realizations of the ray-tracing pipeline while in the second row are displayed the matrices from the FoF haloes
populated with subhaloes plus the effective Gaussian linear contribution. In this case for each light cone created using the halo model realization, we have
generated 64 random Gaussian effective maps to account for the matter density distribution that is not in haloes.

catalogue are much faster than the full ray-tracing simulation plus
an N-body solver, but still reaching the same level of accuracy in
the convergence power spectrum.

5 SU M M A RY A N D C O N C L U S I O N S

In this paper, we have presented a self-consistent halo model for-
malism to construct convergence maps with statistical properties
compatible with those derived from the full ray-tracing pipeline.

From the �CDM run of the CoDECS suite, we have produced
catalogues of haloes and subhaloes present within the constructed
matter density light cones of a field of view of 5 × 5 deg2 up to
zs = 4. To avoid border effects, we stored the information about
the haloes and the subhaloes present in a field of view of 10 × 10
deg2. In the following points, we summarize the main ingredients
and results of our analyses:

(i) the mass density distribution in haloes is modelled using the
NFW profile. For concentration, we adopt the model by Zhao et al.
(2009) for the FoF groups while the Giocoli et al. (2013) function
for the M200 mass definition;

(ii) the positive part of the one point statistic of the convergence
field is quite well reconstructed using the halo model formalism;
however using only the matter present in haloes and subhaloes we
are missing the linear matter density field not attached to virialized
structures – this means in particular filaments and sheets of the
cosmic web;

(iii) the power spectrum of the density field reconstructed with
haloes reflects the absence of matter outside haloes, and present less
power at large scale than as expected from linear theory;

(iv) the subhalo contribution, using truncated singular isother-
mal sphere profile, enhances the convergence power spectrum by

approximately 3 per cent up to l ≈ 104. At smaller scales, this con-
tribution increases dramatically;

(v) the effective linear contribution on large scales is included by
creating a Gaussian field from the theoretical linear cosmic shear
power spectrum coherent in phase with the distribution of haloes
present in the simulated field of view, renormalizing it in amplitude
in order to match the linear prediction at large scales;

(vi) the total effective maps are statistically similar to the ray-
tracing ones constructed using the particle density field.

To summarize, our WL-MOKA_HALO-MODEL formalism self-
consistently reconstructs the statistical properties of matter den-
sity distribution within light cones only using the halo and subhalo
properties plus the linear power spectrum of the considered cosmo-
logical model. When compared with a full ray-tracing simulation
using particles for each single realization, we find an agreement on
average within 5 per cent with the reconstructed convergence power
spectra for different source redshifts. This highlights the capability
of our halo model pipeline in reconstructing the non-linear prop-
erties of weak-lensing fields in a much faster way than ray-tracing
simulations. Future tests will be dedicated to the capability to extend
our method to non-standard cosmologies (Giocoli et al. in prepara-
tion) in the light of the recent results presented by Narikawa et al.
(2011), Zhang et al. (2013), Massara, Villaescusa-Navarro & Viel
(2014), Lombriser, Simpson & Mead (2015) and Mead et al. (2016),
and also to the possibility to self-consistently develop general mod-
els for the cross-correlation between clustering and weak-lensing
signals (de la Torre et al. 2016).

Our formalism opens the capacity to create coherent covari-
ance matrices for a given cosmological model and any field-of-
view geometry and masking, allowing a more complete and self-
consistent cosmological inspection of realistic lensing data over a
wider range of cosmological parameters (The Dark Energy Survey
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Collaboration 2005; LSST Science Collaboration 2009; Laureijs
et al. 2011; de Jong et al. 2013).
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Harnois-Déraps J., Vafaei S., Van Waerbeke L., 2012, MNRAS, 426, 1262
Harnois-Déraps J., van Waerbeke L., Viola M., Heymans C., 2015, MNRAS,

450, 1212
Hayashi E., Navarro J. F., Taylor J. E., Stadel J., Quinn T., 2003, ApJ, 584,

541
Heymans C. et al., 2013, MNRAS, 432, 2433
Hilbert S., Hartlap J., White S. D. M., Schneider P., 2009, A&A, 499, 31
Hilbert S., Hartlap J., Schneider P., 2011, A&A, 536, A85
Hildebrandt H. et al., 2012, MNRAS, 421, 2355
Hildebrandt H. et al., 2017, MNRAS, 465, 1454
Hirschmann M., Dolag K., Saro A., Bachmann L., Borgani S., Burkert A.,

2014, MNRAS, 442, 2304
Hockney R. W., Eastwood J. W., 1988, Computer Simulation Using Particles.

Hilger, Bristol
Ivezic Z. et al., 2008, preprint (arXiv:0805.2366)
Ivezic Z. et al., 2009, in Am. Astron. Soc. Meeting Abstr. #213, Vol. 41,

Bulletin of the American Astronomical Society, LSST: From Science
Drivers To Reference Design And Anticipated Data Products. p. 366

Jain B., Seljak U., White S., 2000, ApJ, 530, 547
Jing Y. P., 2000, ApJ, 535, 30
Kainulainen K., Marra V., 2011, Phys. Rev. D, 84, 063004
Kaiser N., Squires G., 1993, ApJ, 404, 441
Kaiser N., Squires G., Broadhurst T., 1995, ApJ, 449, 460
Keeton C. R., 2003, ApJ, 584, 664
Kilbinger M. et al., 2013, MNRAS, 430, 2200
Kitching T. D. et al., 2014, MNRAS, 442, 1326
Kitching T. D., Heavens A. F., Das S., 2015, MNRAS, 449, 2205
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Schäfer B. M., Heisenberg L., Kalovidouris A. F., Bacon D. J., 2012,

MNRAS, 420, 455
Sheth R. K., Jain B., 2003, MNRAS, 345, 529
Sheth R. K., Tormen G., 1999, MNRAS, 308, 119
Sheth R. K., Tormen G., 2004a, MNRAS, 349, 1464
Sheth R. K., Tormen G., 2004b, MNRAS, 350, 1385
Smith R. E. et al., 2003, MNRAS, 341, 1311
Sousbie T., Pichon C., Colombi S., Novikov D., Pogosyan D., 2008,

MNRAS, 383, 1655
Sousbie T., Pichon C., Kawahara H., 2011, MNRAS, 414, 384
Spergel D. et al., 2013, preprint (arXiv:1305.5422)
Springel V., 2005, MNRAS, 364, 1105
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001b, MNRAS,

328, 726
Takahashi R., Sato M., Nishimichi T., Taruya A., Oguri M., 2012, ApJ, 761,

152
Taruya A., Takada M., Hamana T., Kayo I., Futamase T., 2002, ApJ, 571,

638
Tassev S., Zaldarriaga M., Eisenstein D. J., 2013, J. Cosmol. Astropart.

Phys., 6, 36
Taylor A., Joachimi B., 2014, MNRAS, 442, 2728
Tessore N., Winther H. A., Metcalf R. B., Ferreira P. G., Giocoli C., 2015,

J. Cosmol. Astropart. Phys., 10, 036
The Dark Energy Survey Collaboration 2005, preprint

(arXiv:astro-ph/0510346)

Tinker J., Kravtsov A. V., Klypin A., Abazajian K., Warren M., Yepes G.,
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APPENDI X A: PROBABI LI TY DI STRI BUTIO N
F U N C T I O N O F T H E C O N V E R G E N C E M A P S

As discussed in the text, and more in particular displayed in Fig. 9,
the comparison of PDF between our WL-MOKA_HALO-MODEL predic-
tions and those using ray tracing with particles shows some differ-
ence that varies as a function of the source redshift. In the discussion,
we have stressed that this may be due to numerical resolution limits
in both force and particle mass that do not allow for resolving well
the central part of the haloes and clumps where typically high con-
vergence values appear. However, different authors (Taruya et al.
2002; Hilbert, Hartlap & Schneider 2011; Clerkin et al. 2017; Patton
et al. 2016; Xavier, Abdalla & Joachimi 2016) have discussed that
the properties of the convergence one point statistic may be char-
acterized by a Gaussian or lognormal distribution. Das & Ostriker
(2006) have discussed that small perturbations with resolution of
θ ∼ 10 arcsec and zs = 1 account for most of the strong-lensing
cases and that the PDF is far superior to the Gaussian or the lognor-
mal. They also emphasize that for zs = 4 about 12 per cent of the
strong-lensing cases will result from the contribution of a secondary
clump of matter along the line of sight, introducing a systematic er-
ror in the determination of the surface density of clusters, typically
overestimating it by about some per cents.

In this appendix, we discuss the properties of the PDF of the con-
vergence resampling the characteristics of the reconstructed fields

Figure A1. Convergence maps of the light cone constructed considering sources located at zs = 4. While the left-hand panel displays the convergence map
produced using our WL-MOKA_HALO-MODEL algorithm, central and right-hand panel show the same realization of the structures with equal phases but forced to
have the modulus of the convergence field in the Fourier space κ̃ randomly drawn from a Gaussian (central orange framed) and a lognormal (right blue framed)
distribution with an identical power spectrum.
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Figure A2. PDF of the convergence field for the three considered source redshifts, zs = 0.5, 1.4 and 4 from left to right, respectively. Top and bottom panels
show the PDF of the map resolved with 2048 and 64 pixels by side, respectively. In the top panel, the pixel size has a resolution of 8.8 arcsec while in the
bottom 281 arcsec, which correspond to an angular mode of approximately 1.5 × 105 and 4.6 × 103, respectively.

in order to have a well-defined distribution for the amplitude in
the Fourier space κ̃ and conserving both the power spectra and the
phases to be consistent with non-linear structures. In the left-hand
panel of Fig. A1, we display the convergence map reconstructed up
to source redshift zs = 4 using our WL-MOKA_HALO-MODEL algorithm,
the map contains the contributions from haloes, subhaloes and ef-
fective linear power spectrum. The central and right-hand panels
show two maps that possess the same power spectra and coherent in
phase with the left one. However, while in the first (orange framed,
termed resampled1) the amplitude of the convergence in the Fourier
space κ̃(l) is drawn from a Gaussian distribution with rms σ (l),
in the second (blue framed, termed resampled2) the amplitude of
ln(κ̃ + 1) is drawn from a Gaussian distribution with the rms that
can be read as

σ 2
ln(l) = ln(σ 2(l) + 1), (A1)

where σ 2(l) = Pκ (l) and Pκ (l) the convergence power spectrum of
the map on the left-hand panel. We then convert the logarithm of

the convergence plus one ˜ln(κ + 1) field in the real space and obtain
the convergence as

κ = exp [ln(κ + 1)] − 1 . (A2)

We emphasize that this transformation does generate by construct-
ing a lognormal field in real space (Hilbert et al. 2011; Xavier et al.
2016), and we present this case since it produces a map in real space
whose PDF is close to that of the case MFoF + msub.

In the three top panels of Fig. A2, we exhibit the PDF of the
convergence fields for three different source redshifts, as labelled in
the panels. The black histograms show the PDF of the convergence
field computed using particles and the GLAMER pipeline while the
green ones the PDF of 64 realization of the same field using WL-
MOKA_HALO-MODEL: haloes, subhaloes and effective linear power
spectrum contributions. The orange and blue histograms show the
PDF of the convergence maps resampled in amplitude in the Fourier

space as described above. From the figures, we notice that while
for low-source redshifts the predictions from numerical simulation
are quite close to the blue histograms for zs = 4 the black shaded
histogram is very well described by the orange one.

In the three bottom panels, we degrade the resolution of the maps
to 64 × 64 pixels which correspond to approximately 281 arcsec
(l ≈ 4.6 × 103) in order to remove the particle noise contributions. In
all panels, the red dashed curves show a lognormal distribution with
amplitude equal to half of the first quartile of the black histograms.
In those low-resolution maps, the one point distribution function

Figure A3. Convergence power spectra for sources at three different red-
shifts, zs = 0.5, 1.4 and 4 from bottom to top, respectively. Black curves show
the power spectrum of the convergence map computed using particles, the
green ones using our model which includes FoF haloes and subhaloes, the
dashed orange and blue curves display the power spectra of the resampled
maps as discussed in the text.

MNRAS 470, 3574–3590 (2017)



3590 C. Giocoli et al.

of the convergence is quite well sampled by the orange histogram,
the field is characterized in the Fourier space to have a Gaussian
distribution with average zero and variance at a given scale given
by the square root of the predicted convergence power spectrum by
our model.

In Fig. A3, we display the power spectra of the resampled maps
normal and lognormal as discussed above in the text, the orange and
the blue curves display the two cases, respectively. From the figure,

we can notice that since the power spectrum is small compared to
unity the differences between the normal and the one that ensures
the correct power spectrum for lognormal field is negligible. The
curves from top to bottom display the power spectra considering
sources at zs = 4, zs = 1.4 and zs = 0.5, respectively.
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