
Logic Programming in Space-Time:
The Case of Situatedness in LPaaS

Roberta Calegari∗, Giovanni Ciatto∗, Stefano Mariani†, Enrico Denti∗, Andrea Omicini∗
∗Department of Computer Science and Engineering (DISI)
ALMA MATER STUDIORUM–Università di Bologna, Italy

Email: roberta.calegari@unibo.it, giovanni.ciatto@unibo.it, enrico.denti@unibo.it, andrea.omicini@unibo.it
†Department of Sciences and Methods for Engineering (DISMI)

Università degli Studi di Modena e Reggio Emilia, Italy
Email: stefano.mariani@unimore.it

Abstract—Situatedness is a fundamental requirement for to-
day’s complex software systems, as well as for the computational
models and programming languages used to build them. Spatial
and temporal situatedness, in particular, are essential features for
AI, enabling actors of the system to take autonomous decisions
contextual to the space-time they live in. To support spatio-
temporal awareness in distributed pervasive systems, we adopt
the standpoint of Logic Programming (LP) by focussing on the
Logic Programming as a Service (LPaaS) approach, promoting
the distribution of situated intelligence. Accordingly, we provide
an interpretation about what it means to make LP span across
space and time, then we extend the LPaaS model and architecture
towards spatio-temporal situatedness, by identifying a set of
suitably-expressive spatio-temporal primitives.

Index Terms—LPaaS, Situatedness, Logic Programming, SOA,
space-time programming

I. INTRODUCTION

The widespread diffusion of mobile and wearable technolo-
gies, along with the pervasiveness of the Internet, opens the
way towards a wide range of distributed, location- and context-
aware applications, where both the system’s goals and its
computational behaviour depend on the users’ position in the
space [1], [2], [3], [4], and on time passing by.

There, one of the main technical challenges is to design and
develop context-aware services that anticipate users’ situation,
proactively serve their information needs, and personalise
suggestions, starting from the agreement that most cognitive
processes are contextual in that they depend on the environ-
ment inside which they are carried on [5], [6]. Contextual in-
formation such as location, time, activity, physical conditions,
and social interaction, in fact, is acknowledged to generate
trustworthy and accurate reasoning and recommendations [7].

Logic Programming (LP) can play a key role by enabling the
widespread diffusion of distributed intelligence. Nevertheless,
although LP languages and technologies represent a natural
candidate for injecting intelligence within computational sys-
tems [8], and despite the many practical applications developed
over the years – see [9], [10] for a survey –, the adoption of
LP in pervasive contexts has been historically hindered by
technological obstacles like efficiency and integration issues,
as well as by some cultural resistance towards LP-based
approaches outside the academy.

However, technology advancements and the emergence of
the Internet of Intelligent Things context [11], [12] are dras-
tically changing such a scenario, eventually enabling LP to
unveil its full potential in real-world applications. Along this
line, in this paper we extend the Logic Programming as a
Service (LPaaS) approach, intended as the natural evolution of
distributed LP in pervasive systems, towards spatio-temporal
awareness, to promote the distribution of situated intelligence.

Accordingly, in Section II we introduce LPaaS focussing
on the most relevant features for context-aware domains, then
(Section III) we discuss spatio-temporal issues for LP and
LPaaS, and (Section IV) we identify a suitably-expressive set
of spatio-temporal primitives. A case study is presented in
Section V, and conclusions are drawn in Section VI.

II. BACKGROUND: LPAAS KEY FEATURES

LPaaS [13], [14] is the evolution of LP in parallel, concur-
rent, distributed scenarios according to the Service-Oriented
Architecture (SOA) paradigm [15], concretising the micro-
intelligence vision in terms of micro-services.

This perspective emphasises the role of situatedness, already
brought along by distribution in itself. The resolution process
[16] remains a staple in LPaaS, yet it is re-contextualised
according to the situated nature of the specific LP service.

Thus, given the precise spatial, temporal, and general con-
text within which the service is operating when the resolution
process starts, the process follows the usual rules of resolution.
At the same time, this context is exactly what can make res-
olution come up with different solutions to the same queries:
indeed, the situatedness of the resolution process (Section IV)
is the first novelty of the LPaaS approach.

The second novelty concerns interaction with the clients
of the LP service. In classical LP, interactions are necessarily
stateful: users set the logic theory, define the goal, then ask
for solutions, iteratively. This implies that the LP engine is
expected i) to store the logic theory, ii) to memorise the goal
under demonstration, and iii) to track how many solutions have
been already provided: altogether, this information composes
the state of the LP engine.

In LPaaS, instead, interactions are mainly stateless: coher-
ently with the SOA approach, the LP service instance that

63



serves each request may be different each time, e.g. due to the
redundancy of the distributed software components to improve
availability and reliability of the LP service. Each client query
(interaction) should then be self-contained, so that it does not
matter which specific service instance actually responds.

Another key feature is the possibility of choosing between
dynamic or static knowledge bases (KBs): from the client
viewpoint, a static KB is immutable, while a dynamic KB can
evolve during the service lifetime due to assertion/retraction
of clauses. This implies that clauses in a dynamic KB have a
lifetime, representing mutable knowledge about the world.

The last key novelty regards the software engineering pro-
cess: since LPaaS embraces the SOA perspective and its most
recent evolutions, such as the micro-services paradigm and the
Web of Things perspective, LPaaS is both built as a micro-
service and exploits micro-services for its inner architecture.
LPaaS functionalities are made available as a standardised
RESTful web service, exploiting technologies such as JSON,
JWT, and Docker for the sake of interoperability, and a fully
automated continuous integration/delivery pipeline for an agile
development and deployment (details in [17]).

III. LP IN SPACE-TIME: THE LPAAS PERSPECTIVE

A. LP in Space-Time

Making LP aware of space-time essentially means making
the resolution process sensitive i) to the passing of time, and
ii) to the topology of space—that is, aware of the existence of
different points in time/space and of the possibility of moving
between them. Fig. 1 illustrates this idea by representing LP
approaches in a bidimensional time/space chart.

In classical LP, a goal is basically proven against a logic
theory that is considered true independently of space and
time—that is, regardless of when and where the resolution
process takes place. LPaaS promotes a broader vision: the
resolution process becomes sensitive to the time and space
dimension. Hence, a goal is demonstrated against a logic
theory that is considered true within a (possibly open) interval
of time, and within a region of space.

Fig. 1. LPaaS in the space-time.

In principle, the resolution process could also span and
move over time and space. Leaving the full discussion to
Subsection III-B and III-C, intuitively, moving back in time
means to ask the LPaaS service the solution of a given goal
at a certain moment in the past, whereas moving forward in
time either means to ask to “predict” the solutions that could
become available in the future, or to wait until they become
provable. Analogously, moving in space in either direction
means to consider a different region of validity associated to
the logic theory, providing solutions that are situated (hold
true) in a given region of space—and only provable therein.

B. The Temporal Dimension

Being situated in time means that the temporal context when
the LP service is executed may affect its properties, compu-
tations, and interactions with clients. Since reconstructing a
global notion of time in pervasive systems is either unfeasible
or non-trivial, each LP service should be supposed to operate
on its own local time—that is, computing deadlines, leasing
times, and the like according to its local perception of time.
Also, it is worth emphasising that the notion of time assumed
in LPaaS is not bound to a specific definition of time, but
is related to each step of the computation in the resolution
process—which may be unrelated to physical time.

Time can affects both computations, leading to time-
dependant computations, and the temporal validity of logic
theories, thus of all the individual facts and clauses therein,
whose validity can be collectively bound to a given time
horizon—i.e., being true up to a certain instant in time,
and no longer since then. Computation requests may then
arbitrarily restrict the temporal scope of the expected solutions,
specifying the temporal bounds of the logical facts and clauses
to consider as valid while proving a goal.

Subsection IV-A discusses the specific LPaaS API dedicated
to managing temporal aspects, as reported by TABLE I.

C. The Spatial Dimension

Being situated in space means that the spatial context where
the LP service is executing may affect its properties, compu-
tations, and the way it interacts with clients. Intentionally, we
do not focus on the structure of space, such as whether there
is a global coordinate system shared by all LPaaS instances,
or each LPaaS server has its own local one, and which metrics
of distance to adopt, etc.: it only matters that the LPaaS
service has a notion of locality which situates it in space.
The region of validity is then to be considered local to the
service, as represented by the server container. For instance,
in the following we consider the notion of neighbourhood –
intended as the collection of the LPaaS services sufficiently
close to each other – without specifying how such a notion is
technically computed and maintained.

Analogously to Subsection III-B, the notion of space and its
properties, such as topology, may be exploited to design space-
dependant computations, and affect LPaaS properties such as
logic theories, individual facts, and clauses—whose validity
can be collectively bound to a given region in space. Requests

64



may then arbitrarily restrict the spatial scope of the expected
solutions—that is, explicitly specify the spatial bounds to be
considered as valid while proving a given goal.

In this perspective, LPaaS is capable of interacting with
its surroundings to contact the other LPaaS services in the
neighbourhood, that can represent the same knowledge but
with a different local truth—depending on their location.

Subsection IV-B discusses the specific LPaaS API dedicated
to managing these aspects, as reported by TABLE I.

IV. SPATIO-TEMPORAL SITUATEDNESS IN LPAAS

LPaaS provides an application-level API to exploit the built-
in situatedness of both the service and clients as discussed in
Section III, enabled and supported by the service container.

A. The Temporal Dimension

Of all the issues described in Subsection III-B, some affect
the resolution process, other pertain only to the way clients
interact with the service.

Client-Server Interaction: Temporal situatedness is basi-
cally implied by distribution per se: moving information in
a network takes time, thus aspects such as expiration of
requests, obsolescence of logic theories, and timeliness of
replies need to be taken into account when designing a dis-
tributed LP service. To this end, LPaaS introduces a family of
solve predicates with a specific within(Time) argument
(intended as server-side local time) for the resolution, thus
preventing the server from being indefinitely busy: if the
resolution process does not complete within the given time,
the request is cancelled, and a failure response is returned to
the client.

The client could also ask for a stream of solutions, as it
is likely the case in IoT scenarios when exploiting sensors or
monitoring processes: this is why solve can also take an
every(Time) argument, meaning that each new solution
should be returned not faster than every Time milliseconds.

Note that, w.r.t. Fig. 1, here we are not “moving the dot”
along the time dimension: rather, we are simply letting clients
configure their interactions with the LPaaS service along the
temporal dimension—namely, when they want a solution.

Resolution process: To capture the time-bounded validity of
theories, each axiom in the LPaaS knowledge base is decorated
with a time interval. When a new resolution process starts, the
logic theory used for the resolution includes only the axioms
valid at the Timestamp provided in the client query.

This timestamp can span both in the past and in the future.
The first means to ask for solutions that were valid in the
past, while the second opens intriguing possibilities about
“reasoning on the future”. An appealing perspective could
be to postpone the resolution process until future information
becomes available, or to ask for some sort of prediction to
some intelligent “oracle”. This may imply the ability to track
the history of modifications to the logic theory, in order to
guess its future state. This fascinating perspective would make
the LPaaS service ultimately behave as a prediction model
trained on the evolution of the logic theory.

Here, w.r.t. Fig. 1, we actually are moving the dot along
the time dimension, affecting the resolution process, thus its
outcomes. Furthermore, the query to the server could specify
not a timestamp, that is an instant in time, but rather a temporal
interval. With respect to Fig. 1, each instant in the interval
would be considered by the resolution process, adding the
corresponding solutions to the solution list. This possibility
is left as a future work and not included in the current version
of LPaaS API—TABLE I.

B. The Spatial Dimension

Yet again, some of the issues described in Subsection III-C
affect the resolution process, while some other pertain only to
the way clients interact with the service.

Client-Server Interaction: Since the service container is
physically located somewhere, the LPaaS server inherently has
a notion of its own location: so, specifying its surroundings
amounts basically at specifying the “width” of such a region,
according to some (custom) metric. Alternatively, we might
be interested in specifying a region from another, different
position—i.e., the client’s own one.

The key point is that LPaaS can explore its surroundings
to discover other LPaaS instances, representing different lo-
cal knowledge, and forward to them the query looking for
expanding the solutions it found by itself. The primitive
solveNeighborhood/2:

solveNeighborhood(-SList, region(?Pos, +Distance))

associates the inference process to a region centred in Pos –
if omitted, the server position is considered – and distance
specified by Distance; the resulting list of solutions is
returned in SList.

Intentionally, the precise syntax of the region terms (Pos
and Distance) is left unspecified, so that it can be general
enough to cover the widest range of possible interpretations:
Distance, in particular, could be a physical distance in
meters, leading to a circular region, or the maximum number
of hops in a network, leading to a region of virtually any
shape, etc. Indeed, the specific language to be used for the
space description is an open research aspect, hence outside
the scope of this paper.

Similarly to the time case, the client could also open a
stream of solutions across space: this could be interpreted, for
instance, as widening/narrowing the region to be considered
at each cycle of the resolution process (Fig. 2). Syntax

solveNeighborhood(-SList,region(?Pos,+Distance,+Span))

fits the purpose: the extra Span argument specifies how much
to widen/narrow the considered range at each cycle. As above,
the precise syntax of Span is left intentionally unspecified.
Last but not least, in dynamic KBs time and space could inter-
vene together, leading to a family of solveNeighborhood
primitives (TABLE I).

Along this line, fascinating possibilities come from con-
sidering moving regions as streams of solutions bound to
spatial constraints, possibly evolving over time. This implies
that time and space are considered together, as inseparable

65



dimensions—in fact, moving in space takes time, and the
notion of stream implies some notion of time. (This is not
part of the current LPaaS API in TABLE I.)

Resolution process: Distribution per se constitutes a
premise to spatial situatedness: each LP instance runs on a
different device, on a different network host, accessing the
different computational and network resources that are locally
available. Moreover, since LP services encapsulate their logic
theory, the locally-gathered knowledge affects the result.

C. Infrastructural Aspects: Mobility

Besides the kind of mobility shown in Fig. 1, where the LP
engine conceptually moves in time and space, another kind
of mobility stems from use cases in mobile computing and
pervasive systems.

Generally speaking, mobile computing deals with systems
in which either software or devices need to move to ac-
complish their tasks, whereas pervasive computing deals with
application scenarios in which computing devices are densely
scattered in the physical world—and, possibly, moving. Start-
ing from this consideration, LPaaS aims at dealing with both
physical (mobile hosts) and logical (code migration) mobility,
so as to support distributed location-aware computation.

As a first step towards a full-fledged perception of the
time/space dimensions, mobility captures the idea that both
the LPaaS server and clients could move over the network:
time and space are perceived to maintain the client/server
connections, i.e. somehow to “reroute” the server solutions to
the clients despite their movement, but have no impact on the
resolution process itself—that is, on the provided solutions.

Accordingly, mobile clients may request LP services from
different locations at each request, possibly while moving,
which means that the LP service should be able to identify
and track clients to reply to the correct network address. The
issue must be resolved at the infrastructural level, via some
middleware layer that possibly supports some notion of com-
munication session enabling users to consistently interact with
the LPaaS service regardless of their mobility—there including
possible disconnections, reconnections, or IP changes.

Fig. 2. The solveNeighborhood primitive spanning over time and space.

V. CASE STUDY

As a scenario to conceptually validate the LPaaS approach
to spatial awareness here proposed, let us consider the case
of a user looking for a parking spot in proximity of a metro
station in London (Fig. 3).

The standard, non-spatial query (Fig. 3, (a)) would be just to
ask the nearest LPaaS metro service if there is a free parking
slot at the region covered by the logic theory of that station.
In the case of a negative answer, one could just proceed to
another metro service and re-ask the same query there.

Spatial queries, instead, make it possible to expand the
query to a region of space. Since the domain refers to metro
stations, it seems reasonable to assume as “distance” the
number of stations between the LPaaS server station and
the parking station, possibly restricted to a single metro
line (i.e. black line only). For instance, distance(1,_)
includes the stations adjacent to the server on any line, while
distance(1,black) includes the adjacent stations on the
black line only.

In Fig. 3, (b) we assume that the user is close to the Elephant
and Castle station. In the spatial solve:

solveAllNeighborhood ((station_with_parking(X),
n_free_place(X,N)), S, region(_, distance(1,_)).

goal
station_with_parking(X), n_free_places(X,N)

looks for possible parkings in a region defined as at most one
station away (region(_, distance(1,_))), retrieving
the number N of free places. The service replies with a
parking near the X=’London Bridge’ station, with N=5
free places, reachable in one step on the black line.

If the distance is restricted to a given line, i.e. brown as in
Fig. 3 (c), the answer is different—in this case, no solution.

Conversely, if the region is expanded to two stations of
distance (Fig. 3 (d)), three parking spots will be found:

X/‘London Bridge’, N/5, distance(1,black)
X/‘Canada Water’, N/2, distance(2,’black - grey’)
X/‘Charing Cross’, N/0, distance(2,brown)

the latter, unfortunately, with no free places.
More complex scenarios could be envisioned—for instance,

a user could ask the service the number of expected free
places, possibly based on some prediction algorithm or
analysing the history of the knowledge in each parking.

VI. CONCLUSION

Pervasive and situated systems of any sort are increas-
ingly demanding intelligence to be scattered throughout the
computational devices populating the physical environment—
as clearly demonstrated by IoT scenarios like smart homes,
personal healthcare assistants, energy grids, etc.

The LPaaS approach aims at fitting such a challenging
context by introducing a standard interface that is general
enough to account for both stateful and stateless services, with
both static and dynamic knowledge bases, in a configurable
and customisable way. The distinguishing feature of LPaaS is
to support the spatio-temporal awareness, thus allowing for the
distribution of situated intelligence where and when needed.

66



Fig. 3. Examples of LPaaS queries exploiting spatial situatedness.

The paper provides an interpretation of what it means to
let LP span across space and time, and discusses the LPaaS
model and architecture extensions towards spatio-temporal
situatedness, by identifying a suitably-expressive set of spatio-
temporal primitives. A real application scenario is discussed,
highlighting the potential of such an approach, and showing
how taking the space around either the client or the server
into account opens the chance to opportunistically federate LP
engines by need as a form of dynamic service composition.

Of course, this is not the end of the story: many im-
provements can be devised in several directions, starting from
building a specialised logic-oriented middleware, dealing with
heterogeneous platforms, as well as with distribution, life-
cycle, interoperation, and coordination of multiple, situated
Prolog engines is a goal for our future research, aimed at
exploring the full potential of logic-based technologies in the
context of IoT scenarios and applications.

REFERENCES

[1] J. Beal, D. Pianini, and M. Viroli, “Aggregate programming for the
Internet of Things,” IEEE Computer, vol. 48, no. 9, pp. 22–30, Sep.
2015. [Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?arnumber=7274429

[2] M. Hazas, J. Scott, and J. Krumm, “Location-aware computing comes
of age,” Computer, vol. 37, no. 2, pp. 95–97, Feb. 2004. [Online].
Available: http://ieeexplore.ieee.org/document/1266301/

[3] T. E. Starner, “Wearable computers: no longer science fiction,” IEEE
Pervasive Computing, vol. 1, no. 1, pp. 86–88, Jan. 2002. [Online].
Available: http://ieeexplore.ieee.org/document/993148/

[4] R. Scoble and S. Israel, The Age of Context. Patrick Brewster Press,
Apr. 2014.

[5] F. Giunchiglia, “Contextual reasoning,” Epistemologia, special issue on
I Linguaggi e le Macchine, vol. 16, pp. 345–364, 1993.

[6] I. Uddin, A. Rakib, H. M. U. Haque, and P. C. Vinh, “Modeling and
reasoning about preference-based context-aware agents over heteroge-
neous knowledge sources,” Mobile Networks and Applications, vol. 23,
no. 1, pp. 13–26, 2018.

[7] N. Y. Asabere, “Towards a viewpoint of context-aware recommender
systems (cars) and services,” International Journal of Computer Science
and Telecommunications, vol. 4, no. 1, pp. 10–29, 2013.

[8] J. Brownlee, Clever algorithms: nature-inspired programming recipes.
Jason Brownlee, 2011.

[9] A. D. Palù and P. Torroni, “25 years of applications of logic
programming in Italy,” in A 25-year Perspective on Logic Programming,
A. Dovier and E. Pontelli, Eds. Springer, 2010, pp. 300–328. [Online].
Available: http://link.springer.com/10.1007/978-3-642-14309-0 14

[10] M. Martelli, “Constraint logic programming: Theory and applications,”
in 1985-1995: Ten years of Logic Programming in Italy, M. Sessa, Ed.,
1995, pp. 137–166.

[11] Y. Leng and L. Zhao, “Novel design of intelligent internet-of-vehicles
management system based on cloud-computing and internet-of-things,”
in Electronic and Mechanical Engineering and Information Technology
(EMEIT), 2011 International Conference on, vol. 6. IEEE, 2011, pp.
3190–3193.

[12] Y. Chen and H. Hu, “Internet of intelligent things and robot as a service,”
Simulation Modelling Practice and Theory, vol. 34, pp. 159–171, 2013.

[13] R. Calegari, E. Denti, S. Mariani, and A. Omicini, “Logic program-
ming as a service in multi-agent systems for the Internet of Things,”
International Journal of Grid and Utility Computing, In press.

[14] ——, “Logic Programming as a Service (LPaaS): Intelligence for the
IoT,” in 2017 IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC 2017), G. Fortino, M. Zhou, Z. Lukszo,
A. V. Vasilakos, F. Basile, C. Palau, A. Liotta, M. P. Fanti, A. Guerrieri,
and A. Vinci, Eds. IEEE, May 2017, pp. 72–77. [Online]. Available:
http://ieeexplore.ieee.org/document/8000070/

[15] T. Erl, Service-Oriented Architecture: Concepts, Technology,
and Design. Upper Saddle River, NJ, USA: Prentice
Hall / Pearson Education International, 2005. [Online].
Available: http://www.pearson.com/us/higher-education/program/
Erl-Service-Oriented-Architecture-Concepts-Technology-and-Design/
PGM137253.html

[16] J. A. Robinson, “A machine-oriented logic based on the resolution
principle,” Journal of the ACM, vol. 12, no. 1, pp. 23–41, Jan. 1965.
[Online]. Available: http://dl.acm.org/citation.cfm?id=321253

[17] R. Calegari, G. Ciatto, S. Mariani, E. Denti, and A. Omicini, “Micro-
intelligence for the IoT: SE challenges and practice in LPaaS,” in
2018 IEEE International Conference on Cloud Engineering (IC2E 208).
IEEE Computer Society, 17–20 Apr. 2018, pp. 292–297.

67

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7274429
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7274429
http://ieeexplore.ieee.org/document/1266301/
http://ieeexplore.ieee.org/document/993148/
http://link.springer.com/10.1007/978-3-642-14309-0_14
http://ieeexplore.ieee.org/document/8000070/
http://www.pearson.com/us/higher-education/program/Erl-Service-Oriented-Architecture-Concepts-Technology-and-Design/PGM137253.html
http://www.pearson.com/us/higher-education/program/Erl-Service-Oriented-Architecture-Concepts-Technology-and-Design/PGM137253.html
http://www.pearson.com/us/higher-education/program/Erl-Service-Oriented-Architecture-Concepts-Technology-and-Design/PGM137253.html
http://dl.acm.org/citation.cfm?id=321253


TA
B

L
E

I
L

PA
A

S
C

L
IE

N
T

IN
T

E
R

FA
C

E
.

D
Y

N
A

M
IC

K
N

O
W

L
E

D
G

E
BA

SE
St

at
el

es
s

St
at

ef
ul

g
e
t
S
e
r
v
i
c
e
C
o
n
f
i
g
u
r
a
t
i
o
n
(
-
C
o
n
f
i
g
L
i
s
t
)

g
e
t
T
h
e
o
r
y
(
-
T
h
e
o
r
y
,

?
T
i
m
e
s
t
a
m
p
)

g
e
t
G
o
a
l
s
(
-
G
o
a
l
L
i
s
t
)

i
s
G
o
a
l
(
+
G
o
a
l
)

s
e
t
G
o
a
l
(
t
e
m
p
l
a
t
e
(
+
T
e
m
p
l
a
t
e
)
)

s
e
t
G
o
a
l
(
i
n
d
e
x
(
+
I
n
d
e
x
)
)

s
o
l
v
e
(
+
G
o
a
l
,

-
S
o
l
u
t
i
o
n
,

?
T
i
m
e
s
t
a
m
p
)

s
o
l
v
e
(
-
S
o
l
u
t
i
o
n
,

?
T
i
m
e
s
t
a
m
p
)

s
o
l
v
e
N
(
+
G
o
a
l
,

+
N
S
o
l
,

-
S
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
N
(
+
N
,

-
S
o
l
u
t
i
o
n
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
(
+
G
o
a
l
,

-
S
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
(
-
S
o
l
u
t
i
o
n
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
(
+
G
o
a
l
,

-
S
o
l
u
t
i
o
n
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
(
-
S
o
l
u
t
i
o
n
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
N
(
+
G
o
a
l
,

+
N
S
o
l
,

-
S
L
i
s
t
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
N
(
+
N
S
o
l
,

-
S
L
i
s
t
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
(
+
G
o
a
l
,

-
S
L
i
s
t
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
(
-
S
L
i
s
t
,

w
i
t
h
i
n
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
f
t
e
r
(
+
G
o
a
l
,

+
A
f
t
e
r
N
,

-
S
o
l
u
t
i
o
n
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
N
A
f
t
e
r
(
+
G
o
a
l
,

+
A
f
t
e
r
N
,

+
N
S
o
l
,

-
S
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
A
f
t
e
r
(
+
G
o
a
l
,

+
A
f
t
e
r
N
,

-
S
L
i
s
t
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
(
-
S
o
l
u
t
i
o
n
,

e
v
e
r
y
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
N
(
+
N
,

-
S
L
i
s
t
,

e
v
e
r
y
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

s
o
l
v
e
A
l
l
(
-
S
L
i
s
t
,

e
v
e
r
y
(
+
T
i
m
e
)
,

?
T
i
m
e
S
t
a
m
p
)

p
a
u
s
e
(
)

r
e
s
u
m
e
(
)

s
o
l
v
e
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

-
S
o
l
u
t
i
o
n
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
e
i
g
h
b
o
r
h
o
o
d
(
-
S
o
l
u
t
i
o
n
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

+
N
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
N
e
i
g
h
b
o
r
h
o
o
d
(
+
N
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
A
l
l
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
A
l
l
N
e
i
g
h
b
o
r
h
o
o
d
(
-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

-
S
o
l
u
t
i
o
n
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
e
i
g
h
b
o
r
h
o
o
d
(
-
S
o
l
u
t
i
o
n
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

+
N
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

s
o
l
v
e
N
N
e
i
g
h
b
o
r
h
o
o
d
(
+
N
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

s
o
l
v
e
A
l
l
N
e
i
g
h
b
o
r
h
o
o
d
(
+
G
o
a
l
,

-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

s
o
l
v
e
A
l
l
N
e
i
g
h
b
o
r
h
o
o
d
(
-
S
L
i
s
t
,

r
e
g
i
o
n
(
?
P
,

+
S
p
a
c
e
,

+
S
p
a
n
)
,

?
T
i
m
e
S
)

r
e
s
e
t
(
)

c
l
o
s
e
(
)

T
he

ta
bl

e
re

po
rt

s
on

ly
m

et
ho

ds
op

er
at

in
g

on
a

dy
na

m
ic

K
B

th
at

ta
ke

an
ad

di
tio

na
l
T
i
m
e
s
t
a
m
p

ar
gu

m
en

t,
ex

pr
es

si
ng

th
e

re
qu

ir
ed

tim
e

va
lid

ity
;

st
at

ic
K

B
m

et
ho

ds
ar

e
an

al
og

ou
s

w
ith

ou
t

th
e
T
i
m
e
s
t
a
m
p

pa
ra

m
et

er
.

68


	Introduction
	Background: LPaaS key features
	LP in Space-Time: the LPaaS Perspective
	LP in Space-Time
	The Temporal Dimension
	The Spatial Dimension

	Spatio-Temporal Situatedness in LPaaS
	The Temporal Dimension
	The Spatial Dimension
	Infrastructural Aspects: Mobility

	Case study
	Conclusion
	References

