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This work describes a network of low power/low-cost microelectromechanical- (MEMS-) based three-axial acceleration sensors
with local data processing and data-to-cloud capabilities. In particular, the developed sensor nodes are capable to acquire
acceleration time series and extract their frequency spectrum peaks, which are autonomously sent through an ad hoc developed
gateway device to an online database using a dedicated transfer protocol. The developed network minimizes the power
consumption to monitor remotely and in real time the acceleration spectra peaks at each sensor node. An experimental setup in
which a network of 5 sensor nodes is used to monitor a simply supported steel beam in free vibration conditions is considered
to test the performance of the implemented circuitry. The total weight and energy consumption of the entire network are,
respectively, less than 50 g and 300mW in continuous monitoring conditions. Results show a very good agreement between the
measured natural vibration frequencies of the beam and the theoretical values estimated according to the classical closed
formula. As such, the proposed monitoring network can be considered ideal for the SHM of civil structures like long-span bridges.

1. Introduction

Real-time structural health monitoring (SHM) of civil and
industrial buildings requires a network of smart sensors
which are capable to simultaneously acquire signals coming
from a plurality of transducers [1]. Meaningful information
should then be conveyed to the final user either in a raw or
in a processed form by means of easy-to-deploy communica-
tion infrastructures and stored in scalable and highly avail-
able database without compromising the performance.

Among the variety of monitoring approaches, techniques
based on the changes of structural natural frequencies and
modes shapes have been largely investigated and adopted
in the civil engineering field spanning from historical
buildings [2–5] to more modern long-span bridges [6–9].
The continuous analysis of vibration features, in fact, can
provide extremely useful information about possible changes

in the structural properties and in turn on the overall state of
the structure.

As such, advanced sensing networks capable to be per-
manently installed on the structure to be monitored are
currently under investigation. In particular, research devel-
opments strive to reduce (i) the weight and cost of the
sensing elements, (ii) the sensor network power consump-
tion, and (iii) the cost for the deployment of centralized
data acquisition systems, as well as (iv) the amount of
cables [10–13] whereas, in the other end, aimed at (v)
handling and sharing large amount of collected data.

In this scenario, the use of microelectromechanical
(MEMS) accelerometers, thanks to their low cost and
low power features, allows to cope with drivers (i) and
(ii) [14–17]. However, wireless sensors can neither store/
process all raw data locally nor reliably forward the data:
wireless technologies are in fact typically incompatible with
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high-rate and high-resolution data collection and long-term
monitoring tasks [18, 19].

Recent advancements in information technologies made
possible to integrate SHMwith Internet to track sensible data
anytime and anywhere: the concepts of Internet of Things
(IoT) [20–23] and its most recent evolution, the Social Web
of Intelligent Things (SWIT) [24], can be fruitfully applied
to SHM to provide almost real-time comprehensive informa-
tion about monitored structures to all the involved figures,
thus allowing to tackle drivers (iii) to (v). At the same time,
due to the amount and criticality of the collected data, prob-
lems in data collection quickly arise. These problems can be
addressed by adopting database management systems
designed to handle large amounts of data capable to provide
high availability with no single point of failure. These systems
are often decentralized, in order to be fault tolerant at a geo-
graphic level, scalable, and support replication to ensure data
preservation under harsh conditions [25, 26].

In this work, a network of small footprint, low power,
and lightweight MEMS-based sensor nodes for modal
shape and natural frequency analysis is presented. Net-
work components are an upgraded and repurposed version
of a previous work [27] aimed at guided wave detection.
The network was designed to be, at the same time, low
cost, scalable, and easily reconfigurable to be suitable both
for short-term and long-term monitoring tasks. Weight
and size reduction in the presented network are crucial
to reduce cabling complexity, ease deployment, and dem-
onstrate that a functional SHM system comprehensive of
data collection and signal processing can be permanently
embedded in structures without negatively impinging on
their weight and size.

To achieve this goal, the proposed network replaces the
traditional point-to-point connection between sensors and
acquisition unit with the sensor area network (SAN) bus
based on data-over-power (DoP) communication. To opti-
mize this shared communication resource, techniques similar
to that employed in a wireless sensor network can be used,
yet sensor node power consumption is much less of a con-
cern, allowing for continuous, real-time sampling of the
structure health status. As a result, a sensor near electronics,
which allows to preprocess monitoring information, loss-
lessly encode it and transmit it to the cloud via a purposely
designed companion gateway device was developed.

This sensor node was designed to be connected to other
similar devices to create a network of up to 64 nodes: the total
number of nodes on the network can be expanded arbitrarily
by means of repeater nodes not discussed in this work. Com-
munication to a notebook PC or to an embedded platform
like Raspberry is performed in a half-duplex fashion at an
effective speed of 200 ksps by means of a low-voltage, high-
speed, half-duplex RS485 transceiver.

The paper is organized as follows. In Section 2 the sensor
node, the gateway, and the implemented database interface
are discussed; these materials are used as building block for
the SHM sensor network. Section 3 discusses sensor calibra-
tion and data acquisition, and processing and collection.
Finally, in Section 4, after discussing the application of the
proposed sensor network to a case of study, the results of

the modal shape and natural frequency analysis algorithms
applied to the acquired dataset are compared with the theo-
retical predictions. Conclusions are then drawn in Section 5.

2. Materials

2.1. Sensor Node. The sensor node is built upon a four build-
ing block architecture as shown in Figure 1. All the devices in
the sensor node are capable to withstand temperatures in the
range of −40°C to 85°C.

At its heart is an ST Microelectronics STM32F3 32 bit,
3.3V low power microcontroller unit (MCU): it belongs to
a family of low-voltage 32 bit mixed-signal MCUs with DSP
and FPU instructions which feature an integrated 8MHz
oscillator, a 40KiB SRAM, and a 256KiB FLASH, thus reduc-
ing the number of external components, hence the area occu-
pied. The two integrated serial peripheral interface (SPI) and
universal synchronous/asynchronous receiver/transmitter
(USART) contain all the clock generators, shift registers,
and data buffers necessary to perform input/output serial
data transfers independently of device program execution.
The maximum current consumption in active mode at a sys-
tem clock frequency of 64MHz is less than 40mA but it can
be decreased to less than 1.37μA in standby mode.

In order to expand its limited memory capacity, a micro-
chip 23LC1024 128Kibit Serial SRAM device is used as a tem-
porary storage for the processed data samples. The MCU can
access it through a dedicated SPI interface. It features an
unlimited number of read/write cycles and zero write time,
allowing for data rate up to 20Mbps in sequential access
mode. Still, it has a very low power consumption; when in
standby, only 2μA is absorbed from the 3.3V power supply,
while typical operative current is less than 2mA.

To interface the MCU to the SAN network, an ST Micro-
electronics ST3485EB 3.3V low power transceiver (XCVR)
for RS-485 and RS-422 communications is used. All trans-
mitter outputs and receiver inputs are protected to ±15 kV
IEC 610004-2 air discharge. The MCU can access it through
a dedicated USART interface. The driver is short-circuit cur-
rent limited and is protected against excessive power dissipa-
tion by thermal shutdown circuitry that places the driver
outputs into a high impedance state. It features a guaranteed
12Mbps data rate at a very low power consumption; when in
current shutdown mode, only 1μA is absorbed from the
3.3V power supply, while typical operative current is less
than 1.5mA. A mesh of passive components is used to inter-
face the XCVR to the SAN network: two 10μF capacitors are
used to capacitively couple the XCVR input/outputs to the
bus, while a resistive partition network allows for fail-safe
biasing at less than 27μA.

The entire sensor node is powered through a Texas
Instrument LM3480 100mA low-dropout (LDO) regulator.
A device with a fixed 3.3V output voltage was selected to
reduce the number of required external components. This
IC features operation from an input voltage as high as 30V
and an ensured maximum dropout of 1.2V at the full
100mA load, which is compliant with the 5.0V power supply
of the entire SAN bus. Its quiescent current is less than
1.75mA and is inversely proportional to the load current. A
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695μH differential mode choke is used along with a 10μF
capacitor to extract power from the SAN bus and feed it to
the LDO.

Finally, the sensor node is customized to collect accel-
erations and angular velocities by means of an ST micro-
electronics LSM6DSL iNEMO inertial measurement unit
(IMU). This device is a system-in-package featuring a 3D
digital accelerometer and a 3D digital gyroscope perform-
ing at 0.65mA in high-performance mode and enabling
always-on low power measurements. The MCU can access
it through a dedicated SPI interface. It has a full-scale maxi-
mum acceleration range of ±16 g and a maximum angular
rate range of ±2000 dps. When in current shutdown mode,
only 3μA is absorbed from the 3.3V power supply.

The chosen triaxial MEMS accelerometer, with a sensitivity
of 825mV/g in a small package (2.5mm×3.0mm×0.8mm)
compares well versus commercial uniaxial high sensitivity pie-
zoelectric accelerometers with similar sensitivity (1000mV/g)
in a much larger package (48mm×48mm×37mm), as
well as triaxial high sensitivity piezoelectric accelerometers
with lower sensitivity (100mV/g) in a compact package
(14mm×14mm×14mm); both these solutions do not offer
signal processing capabilities. As such, the proposed solution
demonstrates the possibility to integrate within a small pack-
age both triaxial sensing and signal processing capabilities.

Structural vibrations are recorded by the IMU and stored
in the MCU internal RAM. Program instructions and filter
coefficients are stored in the MCU embedded flash memory
for the purpose of data processing. After processing, data
can be stored in the external SPI serial SRAM, waiting for
remote retrieval and collection.

The mean value of the total current consumed by a
woken-up sensor node amounts to 44.8mA when the

SAN bus is powered at 5.0V, whereas a sleeping node
consumes less than 2mA. Each sensor node is roughly
30mm× 23mm wide and weighs less than 5 g, making it
attractive for fields where size, power, and weight reduc-
tion are crucial.

2.2. Gateway Device. A Raspberry Pi is employed as a smart
data relay. This device is a low cost, flexible, single-board
computer with a small form factor which is popular in the
IoT field and starting to get attention from the SHM commu-
nity [20, 21, 28]. The Pi comes in various models (in date
publication order): A, B, A+, B+, 2, Zero, 3, and Zero W.
Among them, the current flagship board of Raspberry Pi
Foundation, the Raspberry Pi 3(https://www.raspberrypi
.org/products/raspberry-pi-3model-b/) was chosen. The
board is equipped with a quad-core 1.2GHz Broadcom 64
CPU, 1GB of RAM and BCM43438 wireless LAN interface.
It mounts a Debian-based Linux distribution called Rasp-
bian. Its form factor (85mm× 56mm) is not as small as the
nodes in SAN but it can still be suitable in SHM without
any disadvantages, considering that most likely there will be
only one gateway in a monitored structure. About the power
consumption, the device also drains considerably higher
currents than the sensor nodes. In idle state, as referred
in [29], it consumes 260mA, whereas at runtime operation,
current consumptions raise to 480mA. This difference
compensates for the computational and communicational
capabilities gain.

The main task of the Pi is to send the sensed data to an
online database and serve as an interface to allow remote
communication with every SAN node. The adoption of the
Pi 3 has cut the cost of development thanks to its easy pro-
gramming and connectivity interfaces.
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Figure 1: Schematic diagram of the sensor node (a) and the relative prototype (b).
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The device is connected to the SAN through ad hoc
serial interface and communicates with remotes nodes
using its Wi-Fi interface. The physical SAN network inter-
face is built upon a four building block architecture as
shown in Figure 2. All the devices in the network interface
are capable to withstand temperatures in the range of
−40°C to 85°C.

An FTDI FT231X USB to full handshake UART inte-
grated circuit (IC) is used to provide USB connectivity to
the Raspberry. The entire USB 2.0 full speed protocol is
handled on this chip, allowing for data transfer rates from
300 baud to 3Mbaud at TTL levels. It is operated by a sin-
gle supply line taken directly from the USB bus and inter-
nally regulated to by integrated low-dropout (LDO)
regulators. When active, it typically consumes 8mA, but it
can also enter a suspend state in which power consumption
drops to 125μA.

A Linear Technology LTC4414 low loss PowerPath™
Controller (PPC) is used to control an external P-channel
MOSFET in order to create a near ideal diode function for
power switchover. This permits the interface to perform a
highly efficient management of the available power sources,
namely, the 5.0V, 500mA USB power supply line, and an
external 3.5V to 36V, 5A auxiliary power supply unit. When
conducting, the measured voltage drop across the MOSFET
is typically 20mV with a typical RDS(ON) of 31mΩ. The load
is automatically disconnected from the USB power line when
the auxiliary source is connected. The wide supply operating

range of the PPC also supports operations from one to eight
Li-ion cells in series to manage battery-operated scenarios.
The low quiescent current (30μA typical) is independent of
the load current.

The PPC primarily feeds a Texas Instrument LM317
medium current 1.2V to 37V adjustable LDO voltage regula-
tor. When powered through the 5.0V USB source, quiescent
current consumption never exceeds 1.5mA; conversely, cur-
rents up to 4.0mA can be measured when a higher voltage is
supplied through the auxiliary power line. Similarly to the sen-
sor node, the LDO feeds an ST Microelectronic ST3485EB
RS485/RS422 transceiver (XVCR), used to interface theUART
to the SAN network. Through the LDO section, the SAN
networkbus is alsopoweredbymeansof twomutually coupled
695μH inductors in an antiparallel configuration. This filters
out common mode interferences from the SAN network bus,
while allowing the flow of power supply current [30].

The mean value of the total current consumed by the
interface circuit mounts to 12mA when the SAN bus is pow-
ered at 5.0V, whereas a sleeping interface consumes less than
2mA. Each interface node is roughly 48mm× 26mm wide
and weigh less than 10 g, making it attractive for fields where
size, powe,r and weight reduction are crucial.

Concerning power consumption, one of the gateways is
about that of 11 sensor nodes: a system comprising 16 nodes
and one gateway device powered at 5V consumes slightly less
than 6VA. This compares very favorably with a commercial
system capable to collect data from the same amount of node,
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Figure 2: Schematic diagram of the SAN interface (a) and the relative prototype (b).
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which requires more than 300VA for data acquisition with-
out offering data processing capabilities.

2.3. Online Database. Data collected in loco by sensors in a
monitored structure should be deployed online to implement
a remote monitoring system. Furthermore, logs about
events occurred during the structure lifetime can provide
useful information for planning maintenance operations.
Consequently, in our software architecture, we employed
a database to store this data. The database technology is a
Cassandra (http://cassandra.apache.org/) instance installed
in a remote data center.

Cassandra is an open source NoSQL database manage-
ment system maintained by the Apache foundation. It offers
robust support for clusters and it is designed to handle large
amount of data. Furthermore, it features high availability due
to its distributed nature with no single point of failure [31].
Studies have also shown its scalability and high throughput
capabilities [25]. It employs a tailored data model to achieve
its performance. The most notable difference from relational
databases [32] is how tables are structured. Specifically, how
rows are indexed in the tables and how tables are stored
throughout the cluster which allows to fastly insert, delete,
update, and read data.

The primary key is subdivided in two sections. One
defines the partition key that identifies data locality, which
means rows with the same partition key are stored inside
the same cluster. The other, the so-called clustering columns,
specifies how the rows are sorted, which allows to fast insert,
delete, update, and read data. The combination of partition
key and clustering columns should be unique to obtain a cor-
rect data model.

For example, consider to record acceleration values along
the x-axis of an accelerometer and to query the database for
its top five values as shown in Table 1.

The sensorId column is the PARTITION KEY ensuring
that all the data from the sensor A40CFF12.. are stored in
the same node. Then the rows are ordered by value (descend-
ing order) and finally by timestamp (also in descending
order) that guarantee uniqueness. A query issued to the data-
base could be

SELECT ∗ FROMacceleration by sensor

WHERE id = ’A40CFF12 ’
LIMIT 5

1

Accordingly to this query, the database engine will search
for the node where the id is stored, then thanks to the already
ordered rows retrieve the first five.

The features of Cassandra are perfectly suited for the
implementation of structural monitoring systems. In particu-
lar, its high throughput allows to manage high rates of events
generated in critical scenarios (i.e., earthquakes) and high
sampling frequencies. High availability and robustness guar-
antee data collection even in presence of failures. Finally, the
capability to handle big amount of data is crucial for large
structures which can be sensorized with hundreds of devices.

For the purpose of this work, we deployed a Cassandra
2.2 instance in our testing environment on an Arch Linux
4.14.6-1 single cluster with default settings.

3. Methods

3.1. Sensor Calibration. Accelerometers used in this work, the
ultra-low power high-performance three-axis iNEMO by
STMicroelectronics, are guaranteed by the producer to be
factory calibrated. It means that trimming values are stored
inside the device in a nonvolatile memory, downloaded into
registers, and used to correct any measure during the activity.
However, in order to obtain data as much precise and reliable
as possible, we adopted an additional calibration procedure
suitable to be performed by the end-user on the field [33–35].

The calibration procedure starts with the acquisition of six
values corresponding to the acceleration vector completely
projected on every coordinate axis, in both positive and
negative directions (e.g., vector (0,0,1) for positive direction
of the x-axis). Each acquisition lasts a few seconds, then the
values are averaged and normalized by the MCU and a sin-
gle vector is associated with the corresponding stationary
position. Comparing the raw measurements (gathered in
matrix W) to ideal values (theoretical stationary positions,
in matrix Y), the calibration parameters are calculated as
the twelve coefficients that form the so-called calibration
matrix (X), so that

Y =WX 2

Finding X means solving an overdetermined linear sys-
tem and this can be done through the evaluation of pseudoin-
verse matrix

X = W⊤W −1W⊤Y, 3

when all the columns of W are independent, as in this case.
The obtained calibration parameters are stored on the sensor
node flash memory and used to correct every new raw acqui-
sition, until a new calibration procedure or a reset command
is sent.

3.2. Data Acquisition. The whole system is able to measure
projections of acceleration vectors on the three space direc-
tions x, y, and z with different features. Accelerometers were
programmed to work, according to specific needs of the
users, in a selectable full-scale of ±2 g, ±4 g, ±8 g, or± 16 g,
from a minimum sampling frequency of 1Hz up to 5.3 kHz
and in three different operation modes (high, normal, and

Table 1

SensorId Value Timestamp

A40CFF12.. 5 1514454710

A40CFF12.. 4.2 1514454709

A40CFF12.. 4.1 1514454708

A40CFF12.. 4.1 1514454707

A40CFF12.. 3 1514454706

Partition key: ((sensorId), value, and timestamp).
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low power) that correspond to various data resolutions in bits
(12, 10, and 8, resp.). Moreover, to further decrease power
consumption, when the device does not collect data, the sen-
sor node is automatically set to a default condition of power-
down mode that lasts until a specific command is sent.

The accelerometer embeds a 10 bit, 32-level FIFO buffer
for each of the three output channels. This resource allows
a consistent power saving because MCU does not need to poll
for new data frequently and can be put to sleep mode for a
much longer period of time. Due to the capacity of 10 bits
for each slot in the stack, when the FIFO is operating, the
only data resolutions possible are normal mode and low
power mode.

More specifically, data can be downloaded from the accel-
erometer output registers according to four different working
modes of their FIFO buffers: (i) bypass mode, (ii) FIFOmode,
(iii) stream mode, and (iv) stream-to-FIFO mode.

In the bypass mode, the FIFO is nonoperative: the output
registers used by the accelerometer are just six and they
always contain the current data.

In FIFO mode, data from x, y, and z channels are stored
into the FIFO, which is continuously fed until it is full. When
all the levels are occupied, the buffer stops collecting new
data. The device can generate an interrupt signal when FIFO
reaches a given filling (watermark) level, in order to avoid
data loss.

The stream mode differs from the previous one because
when the buffer is full new data overwrite the older ones, even
if they have not been read yet. Watermark level handling is
applicable in this case too.

Finally, in the stream-to-FIFO mode, the transition from
stream-to-FIFOmode is providedwhen a trigger event occurs.

To improve the efficiency of the whole system and reduce
the CPU time, all the reading stored data operations were
created to be handled by interrupt routines. In this work,
the stream mode was chosen because it gives to the user
more flexibility concerning the sampling frequency while
guaranteeing the availability of fresh acceleration data.

3.3. Parameter Estimation. Modal shape and natural fre-
quency estimation were conducted in this work in two
modalities: on-sensor and off-sensor.

3.3.1. On-Sensor Estimation. Modal estimation was devel-
oped on-sensor by implementing procedures to detect rele-
vant peaks in the acquired signal spectrum.

More precisely, we exploited functions from CMSIS DSP
library to perform fast Fourier transform for floating point,
32-bit data. The magnitude of the complex Fourier transform
coefficients is passed as input to an algorithm of peak detec-
tion [36]. Such algorithm compares the magnitude of the ith
coefficient (X i ) with a given threshold, which can be set
independently for each axis and to the previous and follow-
ing ones, X i − 1 and X i + , respectively: if X i is greater
than threshold and its adjacent samples, the peak is detected.

In order to avoid false natural frequencies detection, dur-
ing the experimental trials, many different values for the
threshold levels in the peak detection algorithm were tested.
According to the capability of the system to act differently

on each axis, it was also possible to optimize the sensor node
sensitivity for each channel separately. Moreover, to identify
the peak position with more accuracy, a correction factor to
the identified quantized frequency i was applied by perform-
ing a quadratic interpolation:

i −
X i + 1 − X i − 1

2 X i + 1 − 2 X i + X i − 1
4

Such correction is applied to all the identified peaks as
part from the zero frequency acceleration which is related
to gravity.

3.3.2. Off-Sensor Estimation. More sophisticated algorithms
are computed off-sensor to extract natural frequencies and
modal shapes. It is worth noting that the extraction of the
modal parameters in the pristine structure is of extreme
importance because it creates a set of benchmark values that
must be as accurate as possible to detect abnormalities during
the real-time estimation stage. Several procedures were con-
sidered to compute the probability density function (PSD)
of the sensor acquisitions either based on parametric or
nonparametric approaches. Among the algorithms of the
first group, we considered autoregressive (AR) [37] and
AR+noise models [38] which are suited for operational
modal analysis in presence of strong acquisition noise. As
concerning the nonparametric approaches, we have consid-
ered the frequency domain decomposition (FDD) [39],
periodogram, and Welch estimation [38] methods.

It is worth noting that, besides data and power communi-
cation, the data-over-power bus also natively allows for data
acquisition time base synchronization and consequently the
output-only estimation of modal shapes. According to the
authors in [40], the synchronization of data recording has a
direct impact on the covariance index of the original mode
shape to its time-shifted version estimated on-sensor. In the
proposed sensor network, the maximum delay between each
sensor is 50μs, which corresponds to a maximum degrada-
tion of 1% in the correlation factor of the fourth mode.

Algorithms in the time and frequency domain were
developed for the purpose of output-only estimation of
modal shapes, followed by the application of the second
order blind identification (SOBI) method, a strategy which
reveals the independent components hidden within a set of
measured signal mixtures [41]. Alternatively, the frequency
domain decomposition (FDD) method can be used to
identify modal parameters of a dynamic system by apply-
ing the singular value decomposition (SVD) technique to the
output spectral density matrix, whereas the time domain
decomposition (TDD) computes the SVD of the energy cor-
relation matrix referred to bandpass-filtered data around the
expected vibrational modes [39].

3.4. Data Collection. As anticipated in Section 2.2, the
Raspberry Pi 3 device is in charge of data gathering. A custom
made Go language software [42] able to query every node in
the SAN network and send the data to the remote Cassandra
service is installed on board. The process is running in the
background as a service in the Raspbian OS and behaves as
described in Algorithm 1.

6 Journal of Sensors



First, all sensors are programmed to start the sensing
phase in the Init loop. The startSensor procedure sends to a
specific address the AlwaysRunCommand that defines the
triggers in every spatial axis of acceleration sensing space.
Each sensor can perform both individual and collective trig-
gering, hardware, and software; in particular, each sensor is
capable to receive and transmit trigger information from
and to the other sensors in the network with a maximum
delay of 50μs, which is less than the minimum sampling
period of 189μs at 5.3 KHz. If the acceleration sensed in
one of the sensors exceeds a given threshold, data is stored
in the FIFO buffer and the event is communicated to all the
other sensors. This event triggers the Main loop where data
is retrieved from the buffers in the sensors. After data read-
ing, the sensor must be reprogrammed to sense the acceler-
ation continuously. Finally, the primitives send and read
manage the serial connection with the SAN while send-
ToDB function communicates with the Cassandra cluster
over the Wi-Fi interface.

3.4.1. Data Model Design. Using Cassandra as database
implies the use of a new data model design created to ensure
sound and efficient design [43]. This kindof development pro-
cess is called query-driven design, and it is based on the defini-
tion of tables from the applicationworkflow.As shown in [43],
the process is made up of several phases, depicted in Figure 3.

In the application workflow, we start by defining the queries
needed for adequate application behavior.

(Q1) Retrieve acceleration data produced by a sensor in a
certain time interval (latest-first).

(Q2) Retrieve acceleration data produced by a sensor
above a certain threshold (latest-first).

(Q3) Retrieve modal parameters estimated by a sensor in
a certain time interval (highest frequency first).

(Q4) Retrieve combined acceleration and estimated
modal parameters (highest frequency first).

These are basic queries that allow application users to get
information about the monitored structure. Q1 ensures data
enumeration (i.e., list all data acquired by SENSOR 1),

Application
workflow

Conceptual
data model

Mappping of
conceptual
to logical

Logical
data model

Figure 3: Query-driven design process phases.
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1: procedure startSensor(address: int)
2: command ← new AlwaysRunCommand
3: send(address,command)
4: waitForAck(address,TIMEOUT)
5: Init loop:
6: for all sensor address do
7: startSensor(address)
8: Main loop:
9: for all sensor address do
10: command ← new GetAccCommand
11: send(address,command)
12: data ← read(TIMEOUT)
13: ifvalid(data) then
14: send(address,ACK)
15: acc ← decode(data)
16: timestamp ← decode(data)
17: sendToDB(address,acc,timestamp)
18: startSensor(address)
19: gotoMain loop.

Algorithm 1: Data collection algorithm.

Table 2: Tables for the queries in the monitoring application:
entries marked with K representing the primary key, whereas C
stands for the clustering key.

Q1: AccBySensor

SensorId K

Timestamp C

Value

Q2: AccBySensorTH

SensorId K

Value C

Timestamp C

Q3: ModBySensor

SensorId K

Freq C

Timestamp C

Amp

Q4: ModAccBySensor

SensorId K

Timestamp C

Freq C

Value

Amp
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Q2 gives a basic level of filtering (i.e., select only relevant
accelerations), Q3 concerns modal parameter data enu-
meration, and finally Q4 correlates an acceleration value
with modal parameters at that timestamp.

Combining the defined queries with the logical data
model for the monitoring application shown in Figure 4
and following the rules defined in [43], the tables reported
in Table 2 are crafted, which guarantee the correctness of
data model stored in the Cassandra database. Notice that
if a new kind of sensor data is to be gathered, the system
can be scaled by adding a new pair of tables satisfying Q1
and Q2.

4. Result and Discussion

A network comprising five sensor nodes and one interface
connected in a daisy-chain fashion was tested in a setup
which consists of a simply supported L=1900mm steel beam
with cross-section base b=60mm and height h=10mm in
free vibrations conditions, as shown in Figure 5. Sensors node
are separated by 214mm with respect to the first sensor,
which is placed close to the beam center.

The beam was excited in correspondence of its center by
mean of an impact hammer, thus allowing it to oscillate in
condition of free vibrations. The amplitude of the acquired
signals ranged from 0.1 g to 2.3 g, respectively, referred to

the minimum and maximum value of the recorded induced
acceleration along the z-axis. The chosen impact position is
very close to the antinode of the first vibrational mode: as a
result, this mode is much more energetic than other recorded
modes, showing a difference of nearly 40 dB which can
intensely affects the optimal performance of modal shapes
reconstruction techniques.

905 mm 214 mm 214 mm 214 mm 214 mm 139mm

1 2 3 4 5

Figure 5: Experimental setup for modal shape and natural frequency verification and comparison.
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Signal processing techniques have been applied to the
raw acquired signals to extract natural frequencies and modal
shapes. The results of the modal shape and natural frequency
estimation algorithms applied to the acquired dataset were
compared with theoretical predictions obtained from the
physical model of the beam to assess the performance of
the implemented circuitry. In particular, the extracted first
three natural frequencies are compared with the nominal
values estimated as 6.25Hz, 24.99Hz, and 56.24Hz through
the theoretical formula:

f n =
1
2π

n ⋅ π 2

L2
E ⋅ I
ρ ⋅ A

, 5

where ρ=7880 kg/m3 is the density of steel, A= b×h and
I= bh3/12 are the cross-section area and moment of inertia,
respectively, and n is the frequency index. Here, for accu-
rately measured beam dimensions and weight, a value of
Young’s modulus E=195GPa was assumed to minimize the
error on f1.

As it can be seen in Figure 6, the outcome of the algo-
rithms computed is highly consistent with respect to the
physical model, even in presence of high differences in
the energy distribution. The relative error in natural
frequencies estimation is always below 2.5% even in the
worst case, related to the middle frequency. At low
frequency, the performance of the spectral estimation
methods is almost the same, whereas autoregressive tech-
niques are more accurate for the estimation of the second
vibrational component. At higher frequencies (above 30Hz),
there are no relevant differences among parametric and non-
parametric algorithms.

Considering the fact that AR models are suited for
systems affected by noise, the obtained results suggest that
it is necessary to select the spectral estimation methods
depending on the SNR. As shown in Figure 7, the PSD
computed with the techniques mentioned demonstrates that,
at low frequencies, there is an evident vertical alignment
between computed and theoretical values, whereas the out-
put is less precise when frequency increases. It is also evident
that even the fourth natural frequency can be estimated from
each of the tested algorithms, as testified by the peaks
around 97.0Hz.

Coherently with the literature [44], SOBI technique does
not perform equally well as FDD or TDD since it is suited for
dealing with signals sources in which mode strengths are
each other similar and excitation is stationary. For real sce-
narios, characterized by low SNR values, noise can deterio-
rate the performance of the SOBI approach, especially while
considering that no prior preprocessing is required apart
from whitening raw signals.

The impact of sampling frequency on performance is
also not negligible: in fact, by reducing the sample time,
the number of samples to be used for modal shapes recon-
struction is correspondingly augmented. This condition is
of fundamental importance when some of the expected
natural frequencies of the structure under test are close
to Nyquists frequency: in such a scenario a strong correla-
tion between estimation errors and sampling conditions is
expected [45].

Results depicted in Figure 8 display the first three mode
shapes extracted with three different techniques superim-
posed to the theoretical mode shapes. Again, the experimen-
tal behavior of the structure very well fits the physical model
at low frequency, whereas deviation is more remarkable for
modes related to higher natural frequencies.
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Such behavior is due to the fact that the lowest fre-
quency component is the most energetic. It is also worth
highlighting that, although the SOBI method is totally
unsupervised, its performance is almost equivalent to
FDD and TDD, making it suitable for autonomous dam-
age detection systems.

5. Conclusions

This work reports on the implementation of a lightweight
SHM sensor network comprising miniaturized sensor nodes
and a gateway based on a single board PC. The sensors and
the gateway are capable to exchange data and power on the
same bus, thus minimizing the burden due to cabling. Also,
byexploiting awiredconnection,powerfigures anddataband-
width are fully compatible with the requirements of real-time
data acquisition and processing. Two different processing
modalities were made available, one exploiting the data pro-
cessing capabilities of the sensor nodes, the other the ones of
the gateway itself. Data processing results can be uploaded to
a highly available database system for data collection and
further interpretation without compromising the overall
system performance. A modal shape and natural frequency
estimation experiment has been conducted in order to assess
the accuracy of the proposed SHM network at reconstructing
the natural oscillation frequencies and shapes of a simply
supported steel beam. The discussed results reveal the

potentialities of the implemented network for SHM applica-
tions thanks to its versatility and high scalability, becoming a
suitable candidate for a relatively cheap and low consump-
tion system capable to provide real-time information.
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