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PREFACE 
 

Ladies and gentlemen, dear colleagues, 
 

Welcome to Zlatibor, to the International Scientific Conference Heavy Machinery 2017. 
This year the International Conference Heavy Machinery is held by the University of 

Kragujevac, Faculty of Mechanical and Civil Engineering in Kraljevo from 28 of June to 1 of 
July 2017.   

It has gained a unique recognizable form for exchange of information, ideas and new 
scientific researches. The Conference is held in the year when the Faculty of Mechanical and 
Civil Engineering in Kraljevo celebrates the 58th year of university teaching in mechanical 
engineering and sixth year of university teaching in civil engineering. 

For 24 years of its existence it has acquired specific and recognizable form in domestic 
and foreign scientific circles thanks to its scientific and research results.  

The goal of the Conference is to make the research from the fields covered at the Faculty 
of Mechanical and Civil Engineering in Kraljevo available and applicable both within 
domestic and foreign frames. Also, our scientific workers will have the opportunity to learn 
about results of research done by their colleagues from abroad in the fields of transport design 
in industry, energy control, production technologies, and civil engineering through the 
following thematic sessions: 
 

- Earth moving and transportation machinery, 
- Production technologies, 
- Automatic control, robotics and fluid technique, 
- Machine design and mechanics, 
- Railway engineering, 
- Thermal technique and environment protection, 
- Civil engineering and materials.  

High scientific rating of domestic and foreign participants as well as the number of 
papers provide guarantees that the Conference is going to be very successful.  

I wish to emphasize that this year we have a large number of papers, especially from 
abroad. The program also contains 104 invited papers in the plenary session. The invited 
lectures reflect the wide spectrum of important topics of current interest in heavy machinery. 
The sponsorship by the Ministry of Education and Science of the Republic of Serbia is 
supportive of efforts to promote science and technology in the area of mechanical and civil 
engineering in Serbia. We would like to express our sincere thanks to all members of scientific 
and organizing committee, reviewers, as well as to all participants including invited speakers 
for coming to Zlatibor to present their papers. 
 
Thank you and see you at the next conference. 
 
 Kraljevo – Zlatibor, June 2017 Conference Chairman,  
   
  Prof. Dr Milomir Gašić, mech eng. 
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DMLS enables manufacturing of functional parts with complex shapes in a short time. This technology has some 
drawbacks: high manufacturing cost, residual stresses, and volume and surface imperfections. These problems can be 
solved by additional post processing (machining, heat treatment and shot peening), which increase manufacturing cost and 
time. There is an increasing interest towards the mechanical response of parts in the as-fabricated state. Being able to 
manage these parts, without the need for machining or heat treatment, would strongly increase the great potentials of this 
technology. The present study deals with the effect of machining and heat treatment (aging at the temperature of 490°C for 
6 hours) on the fatigue response of DMLS Maraging steel parts, with vertical build orientation. Specimens have been 
manufactured according to ISO 1143 for fatigue tests under rotating four-point bending. The experimental campaign has 
been arranged as a 2-by-2 factorial plane, with a total amount of four treatment combinations. The first results, processed 
also by tools of analysis of variance, indicate that heat treatment has the greatest beneficial impact on the fatigue response 
and that even without machining a fatigue limit in the order of 25% of the ultimate tensile strength can be achieved.  

Keywords: Fatigue strength, Maraging steel, Additive manufacturing, Direct Metal Laser Sintering, Aging heat 
treatment, Machining.

1. INTRODUCTION 

Additive Manufacturing (AM) process is based on 
layer manufacturing, without any additional tools or 
machining processes [1-4]. Direct Metal Laser Sintering 
(DMLS) and Selective Laser Melting are the two most 
important Additive Manufacturing technologies. Both of 
them are powder bed-based technologies.  

Concept of layered built parts dates from more than 
one century. AM enables manufacturing without tools, 
using just one AM machine fed by a CAD model. CAD 
model is split into two-dimensional layers with constant 
thickness, by specific software. These layers cabn be 
regarded as areas that will be melted with thickness 
corresponding to the distance between layers (thickness of 
the layer). Every new layer is fused with the previous one 
during the AM process. Part is built, by repeating this 
process until the last layer is stacked. 

There are several AM technologies that are divided, 
based on the type of material, how material is applied, 
fused etc. Powder Bed technology is based on material 
application on the entire building surface; afterwards, the 
laser or electron beam melts the area that corresponds to 
the sliced surface. The process is repeated, until part 
completion. Wire or powder feed technology is based on 
step-by-step material application and melting, forming the 
surface that correspond to the sliced layer. In this case, 
material is applied just to the surface that is being 
manufactured. A further classification of the AM 
techniques could be made, based on the principle of 
material melting (laser beam, electro beam, electro-arc 
etc.). In almost all the technologies for AM of metal parts, 
the material is completely melted and bonding between 
layers is achieved during solidification. DMLS and SLM 
are nowadays quite close technologies. Their different 
names mostly arise from different trademarks [5]. At the 
early stages of development of these technologies, 

components after manufacturing were porous, density was 
not full due to partial fusion. The sintering process was 
different and material was based on Iron, Copper and 
Nickel alloy. Additional processing was needed to achieve 
better density and fusion [6,7]. 

AM technologies are used not only in industrial 
applications but also in the medical field. It is possible to 
use these technologies and material, to build custom 
implants. Using 3D CT scanners, it is possible to model 
implants that perfectly fit the person’s need [8-10]. These 
materials have good bio-compatibility that gives them 
good potential for dental and medical purposes [11]. 

Since AM of metal parts is based on manufacturing 
of fully functional parts that can be built directly into 
machine, with minimal post processing, mechanical and 
physical characteristics of the built parts are of high 
importance. Layer based manufacturing provides 
characteristic microstructure of the build parts that is 
different than casted structure of the same material. In 
AM, material melting takes place on one plane (build 
plane), whereas the stacking direction is normal to this 
plane. Material melting and cooling rates are very high. 
Fast melting is the result of high energy concentration. 
Fast cooling arises from the small amount of melted 
material with low surrounding temperature. This high 
temperature gradient usually induces high residual 
stresses. Part building starts on thick steel plate (base-
plate). Part can be built directly on the plate or with a 
support structure, generated between plate and part. Its 
purpose is part constraining, moreover it facilitates heat 
flow from the part during the scanning (melting) process. 
Support structure needs to be strong enough, to restrain 
any kind of deformation that residual stress can cause. 

With casting technology, a much larger amount of 
material keeps heat accumulated for a longer period time. 
Melting and solidification of material is a slow process 

D.27



Proceedings of IX International Conference “Heavy Machinery- HM 2017”, Zlatibor, 28 June – 1 July 2017 
 

S. Ćirić-Kostić, N. Bogojević, A. Vranić, D. Croccolo, M. De Agostinis, S. Fini, G. Olmi 

and involves the whole volume. For this reason, it is 
interesting to explore influence of layer manufactured 
structure on mechanical properties. Machine manufactures 
usually provide some data regarding the mechanical 
properties of AM built parts in the material datasheets 
[12]. However, these mainly deal with static properties, 
such as ultimate tensile strength, yield strength, hardness, 
mechanical characteristics after ageing etc. 

Maraging steel is one of the most promising 
materials, for use in Additive Manufacturing [13]. Density 
of AM built parts are >90%. Hardness of AM built parts 
from maraging steel is similar to those made by 
conventional ways like casting. It has good mechanical 
characteristics and it can be a good candidate for high-
carbon steel substitution. It is resistant to corrosion and 
crack initiation during tempering and it has good 
machinability [14-16]. It has a relatively high ultimate 
tensile strength (UTS) after the heat treatment, around 
2000MPa. Thanks to its high UTS, it is a promising 
material to be used for complex structures exposed to high 
states of load. This becomes more attractive, considering 
that AM technologies gives the chance to build multi-part 
object as a single part [17]. Research contributions on the 
Fatigue limit (FL) and the fatigue strength (FS) of 
Maraging steel made by some of AM processes are quite 
limited, to the authors’ best knowledge. This paper 
presents a follow-up of a previous research by the same 
authors [18].  

Components produced by AM can have different 
orientation with respect to the stacking direction of the 
layers. The aim of the previous research was to explore the 
effect of build orientation on the fatigue strength of 
Maraging Steel samples built by DMLS EOS M280 
machine. The obtained results indicate that part orientation 
did not have significant effect on FS and FL.  

Literature studies dealing with orientation influence 
on the mechanical properties of the parts made by AM are 
few. Most of the research deals with the influence of 
orientation and additional post-processing on tensile 
strength [19-21]. Few papers are concerned with research 
on the part orientation effect on fatigue strength of 
Aluminium alloy [22-25], Inconel alloy [26] and Titanium 
alloy samples [27]. Review papers have been written, 
trying to collect all the technologies and all the available 
mechanical testing results [28]. However, a lack of 
consistency between the testing procedures and the 
obtained results can be noticed, when all these data are 
rounded together. Different technologies provide different 
results for same materials. This may be due to the lack of 
Standards in AM that define the parameters of the process, 
how building preparation of samples should be managed, 
etc.  

There is an increasing interest in lowering down 
post-manufacturing expenses in AM, and in speeding up 
the process from design to installation. Sometimes, post 
processing is not possible, for instance, when treating 
lattice structures, cooling channels in injection moulds or 
in turbine blades. In particular, machining or shot-peening 
cannot be performed on internal surfaces. This was the 
main motivation that led to this study. This topic has been 
tackled experimentally: for this purpose, an experimental 
campaign has been arranged as a 2-by-2 factorial plane, 

with a total amount of four treatment combinations as 
shown in Table 1, presenting four sample types, one for 
each of the treatment combinations. 

Table 1:  2-by-2 research plan 

N 
Not heat treated 

As Built 

M 
Not heat treated 

Machined with 0.5mm 
allowance 

H 
Heat treated 

As Built 
 

1 
Heat treated 

Machined with 0.5mm 
allowance 

As an extension of the previous research [18], this 
paper focuses on the effects of heat treatment and 
machining influence on FS and FL. Samples without 
machining, named “as built” underwent only shot peening 
as surface post processing.  

2. MATERIALS AND METHODS 
Testing procedure was based on ISO 1143 Standard 

for rotating bending fatigue testing [29]. Standard defines 
testing procedure, loads and specimen geometry. 
Specimens were designed with cylindrical smooth 
geometry with reduction at the gage cross section. 
Specimen geometry with uniform 6mm diameter at the 
gage the as smallest dimension purposed by the Standard, 
has been chosen as the best compromise, considering the 
high manufacturing costs. A drawing of the specimen is 
shown in Fig. 1. The specification regarding surface 
quality was not considered for the “as built” to properly 
account for the influence of machining.  

 
Figure 1: Specimen drawing with the 6mm diameter at 

gauge, according the ISO 1143 standard 

The specimens have been manufactured by M280 
DMLS machine (EOS GmbH – Electro Optical Systems, 
Germany), equipped by Ytterbium fibre laser with 200W 
power and emitting 0.2032mm thickness and 1064nm 
wavelength infrared light beam [30]. Specimen material 
was MS1 maraging steel (EOS GmbH – Electro Optical 
Systems, Germany), equivalent to 1.2709 steel [31]. 
Chemical composition of the material is provided in Table 
2. Specimen manufacturing was done in the processing 
chamber of the machine. The recoater applies material 
from the dispenser platform on building plate and takes 
excess material onto collector platform.  Building starts on 
the base plate with working area of 250×250mm in 
horizontal plane and with maximum building height up to 
325mm. Base plate was preheated to the temperature of 
40°C.  
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Table 2: Chemical composition of MS1 Maraging Steel by EOS 

 Fe Ni Co Mo Ti Al Cr Cu C Mn Si P S 

%  17-19 8.5-
9.5 

4.5-
5.2 

0.6-
0.8 

0.05-
0.15 ≤0.5 ≤0.5 ≤0.03 ≤0.1 ≤0.1 ≤0.01 ≤0.01 

Manufacturing process typically takes place in 
nitrogen inert atmosphere, generated from compressed air 
by nitrogen generator that is built inside machine. Process 
chamber consists of three platforms and recoater: The 
Dispenser platform, where material powder is contained, 
the Building platform, on which the base plate is set and 
building process is done, the Collector platform for the 
collection of excess material. Schematics of the building 
chamber is presented on Fig. 2 

 
Figure 2. Process chamber schematics 

Material is applied with 40µm thickness that 
corresponds to layer thickness for the MS1 Maraging 
Steel. Building parameters (laser speed, laser power, laser 
offset, layer thickness etc.) of the EOSINT M280 for MS1 
sample manufacturing were kept constant. They were 
provided by the EOS as a predetermined set of parameters 
named “PERFORMANCE”. This parameter set is a good 
compromise between good surface quality and 
manufacturing speed, for which EOS warrants mechanical 
characteristics of the built parts. 

Scanning strategy was set in such way, where laser 
scans surface in parallel traces in one layer. For next layer, 
scanning strategy was rotated by an angle of 67°. For 
every layer, the contour of the scanned surface was finally 
rescanned, in order to get better surface quality. Example 
of the scanning process is shown in Fig. 3 a). 

Specimens were built directly on the base plate, 
without using a support structure, Fig. 3 c). Proceeding 
this way, the surface quality of the as built specimens 
could keep unaffected by the support structure teeth traces 
on the surface. After building process, specimens were 
taken from the process chamber, cleaned from excessive 
powder by shot-peening, using stainless steel spherical 
shots with 400 μm diameter. Cutting off samples from the 
base plate was done by wire cutting with Electrical 
Discharge Machining (EDM).  

Samples planned for heat treatment underwent age-
hardening by heating in oven. Temperature was increased 
from room temperature to 490 °C in 1h, afterwards, they 
were kept at constant temperature for additional 5h (total 
6h process). This heat treatment was particularly important 
for lowering or relaxing the residual stresses, which arise 
from AM process, thus enhancing fatigue response of the 
built specimens [32, 33]. Since these samples were built 
vertically, their geometry was not influenced by residual 

stress. After heat treatment process, specimens were 
cooled to room temperature in fresh air. Shot-peening gave 
effect just in better surface quality and closing micro pores 
for as built samples. For heat treated samples surface 
hardening induced by plastic deformation was lost after 
ageing, due to relaxation of the compressive residual 
stresses induced by shot-peening. The effect of micro shot 
peening was also questionable for the machined samples, 
since allowance for machining was 0.5mm. There is large 
probability that the hardened surface following micro shot 
peening was removed upon machining. Finally, specimens 
planned for machining, underwent machining and refining 
by grinding with the aim of achieving the surface quality 
required by the ISO 1143 Standard and also to improve the 
fatigue performance [29]. 

 
Figure 3. a) As Built specimens during scanning,  

b) Specimens cleaning from powder,   

c) Specimens after micro shot peening 
For this research campaign, three sets of samples 

were built, all with vertical build orientation, with dog 
bone shape and shot peened. The first specimen set, type 1 
(with additional age-hardening and machining with 0.5mm 
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allowance), was tested in the previous research campaign 
[18] and the related results were used here for 
comparisons. The second specimen set type M, for 
machined condition without age hardening, was built 
under the same conditions as the first one, with 0.5mm 
allowance for machining. The last two sets in the as built 
condition (one with age hardening, type H, the other 
without age hardening, type N) were built without any 
additional material allowance. Their surface roughness 
was lowered just by micro shot peening process.  

Specimens were mounted on the testing rig, by 
tightening their heads into chuck collet, on both sides of 
the specimen Fig 4. Load was kept constant and bending 
moment was constant at gage during testing Fig. 5. The 
Testing rig, for four-point rotating bending was described 
in [18]. 

 
Figure 4. a) Clamped specimen after break, 

b) Specimen running,   
c) Chuck collet  

 
Figure 5. Load distribution 

The specimens were tested until failure or until 107 
cycles: in this case the specimen was marked as “RUN 
OUT”. Each sample set consisted of 7 to 14 specimens. In 
the previous stage of the research, some samples were 
damaged during the manufacturing process, so they were 
not considered. 

Using the aforementioned procedure, it was 
possible to obtain FL and the S-N curve for finite life 
domain. Fatigue limit was obtained by the Dixon stair-case 
method for small number of sample trials with failure or 

non-failure outcomes [34]. Dixon method is a modified 
stair-case method that makes it possible to estimate FL 
even from small series of nominal trials (in this case four 
to seven). Standard deviation was estimated to estimate the 
uncertainty and to determine the confidence band for FL. 
ISO 12107 was used for processing data in finite life 
domain [35]. Data were linearly interpolated in 
logarithmic diagram. Upper and lower limits of the 
logarithmic curve were determined, based on the standard 
deviation of fatigue life, with the probability of failure of 
90% for upper limit and 10% for lower limit and with the 
confidence level of 90%. 

3. EXPERIMENTAL 

All the samples have undergone geometry 
measurement, to check drawing requirements 
accomplishment. Diameter dimension and surface 
roughness have been measured at the head and gauge. For 
this purpose, a micrometre screw gauge, (with the 
resolution of 0.01mm) and a portable surface roughness 
tester (with the resolution of 0.01 μm, Handysurf E-30A; 
Carl Zeiss AG, Oberkochen, Germany) have been used. 

Diameter measurement checks have been done at 
two points at the heads, replicating measurement with 90° 
rotations at each point, for a total of eight replications, 
including both specimen heads. Diameter at the gauge was 
measured at three points, with two replications for each, 
by 90° rotation for an overall number of 6 replications. 

Surface roughness on the both heads was measured 
at four points, with 90° angular spacing, with two 
replications, for a total number of eight replications per 
head. Surface roughness at the gauge was measured only 
after breakage, in same manner as at the heads, with eight 
replications per broken side. Specimens that survived 
testing, marked as run-out, were not measured for surface 
roughness at the gauge. 

Average values of the diameter and surface 
roughness measurements are presented in Tables 3 to 6. 
Table 3. Diameter and roughness measurement for sample 

type 1 
 Gauge diameter Head diameter 

Speci
men 
 ID 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

1.1 6.00 0.004 0.248 9.93 0.004 0.26 
1.2 6.00 0.004 0.470 9.93 0.000 0.21 
1.3 6.00 0.000 0.447 9.93 0.000 0.29 
1.4 6.01 0.000 0.395 9.93 0.000 0.20 
1.5 6.00 0.004 / 9.92 0.000 0.31 
1.6 6.01 0.000 / 9.93 0.000 0.22 
1.7 6.00 0.000 / 9.93 0.007 0.27 
1.8 6.00 0.004 0.697 9.93 0.000 0.30 

Specimen types 1 and M are well consistent with 
the drawing requirements presented in Fig.1.  
Measurements indicate minor diameter deviations from the 
drawing specifications, according to ISO 1143, for 
specimen types H and N. Surface roughness values for the 
same specimen types were almost five times higher than 
specifications. It is reasonable, considering that these 
specimens were in as-built condition. Although these 
specimens did not satisfy surface roughness requirements, 
their testing was justified by the increasing demand for as-
built parts and by the need for an estimation of their 
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fatigue response. After measurement procedure, fatigue 
tests were carried out, loading the samples under four-
point rotary bending. 

Table 4. Diameter and roughness measurement for sample 
type H 

 Gauge diameter Head diameter 
Speci
men 
ID 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

H.1 6.05 0.004 4.063 10.09 0.017 4.90 
H.2 6.06 0.015 4.700 10.10 0.012 4.95 
H.3 6.06 0.008 4.055 10.07 0.010 5.02 
H.4 6.06 0.011 3.738 10.10 0.015 4.55 
H.5 6.05 0.004 3.769 10.09 0.004 4.13 
H.6 6.06 0.008 / 10.08 0.010 5.50 
H.7 6.06 0.008 / 10.09 0.017 4.78 
H.8 6.05 0.003 / 10.09 0.013 4.30 
H.9 6.05 0.006 4.000 10.08 0.014 4.70 

H.10 6.08 0.005 4.195 10.11 0.019 4.67 
H.11 6.04 0.012 5.614 10.09 0.006 6.38 
H.12 6.05 0.014 3.714 10.07 0.014 4.55 

Table 5. Diameter and roughness measurement for sample 
type N 

 Gauge diameter Head diameter 
Speci
men 
ID 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

N.1 6.08 0.012 4.24 10.07 0.020 5.54 
N.2 6.09 0.010 4.12 10.08 0.004 5.48 
N.3 6.08 0.008 3.97 10.06 0.010 5.19 
N.4 6.09 0.008 4.37 10.07 0.013 4.74 
N.5 6.09 0.005 4.57 10.07 0.019 5.28 
N.6 6.09 0.009 / 10.07 0.012 4.75 
N.7 6.09 0.010 / 10.08 0.007 4.43 
N.8 6.08 0.007 / 10.07 0.008 4.24 
N.9 6.09 0.007 4.07 10.06 0.010 4.76 

N.10 6.09 0.009 5.12 10.08 0.011 5.65 
N.11 6.10 0.012 4.54 10.08 0.014 4.72 
N.12 6.08 0.012 2.30 10.07 0.015 4.86 
N.13 6.08 0.009 3.75 10.08 0.008 5.10 
N.14 6.09 0.014 4.21 10.05 0.003 4.48 

Table 6. Diameter and roughness measurement for sample 
type M 

 Gauge diameter Head diameter 
Speci
men 
ID 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

Mean 
[mm] 

ST. 
Dev. 
[mm] 

Roug
hness 
[µm] 

M.1 5.99 0.006 0.753 10.01 0.003 0.24 
M.2 5.99 0.009 0.544 10.02 0.002 0.94 
M.3 5.99 0.007 0.701 10.02 0.001 0.29 
M.4 5.99 0.005 0.694 10.04 0.058 0.95 
M.5 5.99 0.008 0.748 10.01 0.002 0.94 
M.6 5.99 0.006 / 10.02 0.002 0.30 
M.7 5.99 0.007 0.765 10.00 0.005 0.29 
M.8 6.00 0.004 / 10.02 0.002 0.36 
M.9 6.02 0.005 / 10.01 0.002 0.94 
M.10 5.99 0.005 0.714 10.02 0.002 1.03 

Tightening was done in such a way that specimen 
heads could not revolve in any chance inside chuck collets. 
It was also important to avoid overtightening, otherwise 
superposition of the chuck collet pressure and load may 
have occurred, which is likely to result in some irregular 
results. After specimen was mounted, radial misalignment 
of the gage section was checked. Total misalignment 

between spikes, was also checked for all samples during 
machining process. Testing was done under reversed 
bending load with stress ratio R=-1 and with the frequency 
of 60Hz. Fractographic and micrographic analysis have 
been done as well for some samples, after the end of the 
testing campaign to examine fracture initiation and 
propagation areas.  

4. RESULTS 
The results of the testing campaign are collected in 

Tables 7 to 9. The Tables provide data regarding specimen 
ID, applied loads, nominal stress value at the gage, 
observed life and comment regarding the trial outcome. In 
particular, “Run-out” indicates that the specimen survived 
testing at given load after 107 cycles, whereas “Yes” 
indicates that failure occurred. In this case the number of 
cucle to failure is also reported. 

Table 7. Test results for sample type 1 
Specimen 

 ID 
Load 
[N] 

Stress 
[MPa] 

Life 
[cycles] Failure 

1.1 211.9 699 2 277 295 Yes 
1.2 201.6 665 3 374 203 Yes 
1.3 180.5 596 6 090 458 Yes 
1.4 158.9 524 - Run-out 
1.5 169.7 560 - Run-out 
1.6 169.7 560 - Run-out 
1.7 180.5 596 - Run-out 

Table 8. Test results for sample type H 
Specimen 

ID 
Load 
[N] 

Stress 
[MPa] 

Life 
[N] Failure 

H.1 211.8 699 85 768 Yes 
H.2 184.9 610 120 572 Yes 
H.3 157.4 520 127 820 Yes 
H.4 103.0 340 - Run-out 
H.5 139.3 460 - Run-out 
H.6 148.6 490 - Run-out 
H.7 148.6 490 - Run-out 
H.8 157.4 520 - Run-out 
H.9 166.7 550 523 162 Yes 

H.10 175.5 580 491 671 Yes 
H.11 166.7 550 56 331 Yes 
H.12 161.8 534 405 247 Yes 

Table 8. Test results for sample type N 
Specimen 

ID 
Load 
[N] 

Stress 
[MPa] 

Life 
[N] Failure 

N.1 184.9 610 175 804 Yes 
N.2 166.7 550 236 637 Yes 
N.3 148.6 490 3 577 212 Yes 
N.4 130.4 430 8 336 653 Yes 
N.5 121.2 400 9 659 056 Yes 
N.6 112.3 370 - Run-out 
N.7 121.2 400 - Run-out 
N.8 130.4 430 - Run-out 
N.9 139.3 460 8 069 582 Yes 

N.10 130.4 430 - Run-out 
N.11 139.3 460 9 900 777 Yes 
N.12 184.9 610 151 212 Yes 
N.13 166.7 550 156 691 Yes 
N.14 148.6 490 687 908 Yes 

Table 9. Test results for sample type M 
Specimen 

 ID 
Load 
[N] 

Stress 
[MPa] 

Life 
[N] Failure 

M.1 184.9 610 81 160 Yes 
M.2 157.4 520 219 333 Yes 
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M.3 139.6 460 2 415 186 Yes 
M.4 121.2 400 7 885 879 Yes 
M.5 112.3 370 3 035 027 Yes 
M.6 103.0 340 - Run-out 
M.7 112.3 370 7 879 073 Yes 
M.8 103.0 340 - Run-out 
M.9 112.3 370 - Run-out 
M.10 121.2 400 5 662 050 Yes 

Finally, each specimen was removed from the 
chuck collets and carefully examined for any irregularity.  

5. DISCUSSION 
The results of specimen testing presented in the 

previous Section were processed, to obtain the S-N curves 
in the finite life domain [35]. Curves trends with their 
upper and lower bounds for 90% confidence levels, 
obtained using linear regression method, are shown in 
Figures 6 to 9, using double logarithmic scale.   

 
Figure 6. S-N Curve for sample type 1  

 
Figure 7. S-N Curve for type sample H 

 
Figure 8. S-N Curve for sample type N 

 
Figure 9. S-N Curve for sample type M 

Details regarding specimen type, load ratio, testing 
frequency and the equation of the curve are also included 
in the same graphs. Run outs are marked with arrows on 
the graphs with indication of how many of them occurred 
at any load level. For all sample types, inclination angles 
between S-N curves and vertical axis were calculated. For 
sample type 1 the angle value it is 76°, for sample type H, 
it is 71°, for sample type N, 85° and for sample type M, 
84°. Larger angle between the vertical axis and the S-N 
curve means that that those sample types are more 
sensitive to load increase. For those sample types with 
smaller angle value, the number of cycles to failure 
decreases less with load increase. Change in load leads to 
smaller change in cycle number. Sample types N and M 
exhibit a higher sensitivity to load increase than sample 
types 1 and H. A reason for this can be influence of age 
hardening, their hardness should be increased from 33-37 
HRC to 50-56 HRC [31]. Sample type H exhibited greater 
scattering of the results than the other three sample types, 
which can be seen in Fig. 7. Specimens experienced 
failures at the same or close load levels with considerable 
differences in life cycle numbers, which also affected the 
unusual S-N curve inclination. As an effect of these 
outcomes, the confidence band for this curve is 
particularly wide (much wider than the others), which will 
probably require to run further tests at the next stages of 
this research.  

Fatigue limit for every sample type was obtained 
using Dixon stair case method, based on the retrieved 
series of failure, and not-failure outcomes.  

 
Figure 7. Fatigue limits with confidence bands 

 Fatigue limits for all sample types with their 
confidence band (95% confidence level) are presented in 
the bar graph in Fig. 7. The first two sample types 
underwent heat treatment, whereas the second two ones 
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were without heat treatment. The calculated value of FL 
for sample type 1 is 606MPa, for sample type H is 
524MPa, for sample type N is 426MPa and for sample 
type M is 363MPa. These results indicate that heat 
treatment significantly enhances FL. UTS of MS1 
maraging steel is 1100MPa in as the built condition, after 
hardening it is incremented up to 2050MPa, corresponding 
to almost 100% increase of UTS, following heat treatment 
[31]. Sample types 1 and H underwent hardening and their 
FL is respectively 29% and 25% of UTS. Sample types N 
and M were without hardening and their FL is indeed 
lower but respectively 39% and 33% of the corresponding 
UTS without heat treatment. These ratios are much lower 
than the commonly accepted ratios of FL over UTS of 50% 
for machined samples, but are in agreement with some 
literature research, when considering as built parts [38-39]. 
This is not surprising, due to the layered characteristic of 
specimens. Sample type N had greater FL, than machined 
sample type M. Both samples were without any heat 
treatment. First, it must be observed that the difference 
between type N and type M fatigue strengths is quite 
small: a statistical test, based on the Analysis of Variance 
and on the Fisher-test, indicated that these differences are 
not significant at the 5% significance level. Anyway, some 
possible reasons for unmachined samples having a better 
performance than machined ones is provided in the 
following. Sample types N had greater surface roughness 
than types M. This is possible outcome of shot peening 
which is known to have positive effect on FL [40].  

 

 
Figure 8. Pore in crack initiation zone, close to the surface 

for H.5 specimen 
The surfaces of the sample types N were hardened 

by shot peening plastic deformation, and all micro pores 
were closed as a result of this process, conversely for 
sample type M, this effect is shadowed because of the 
machining. Machining also took possible irregularities and 
porosities inside material to surface, which are possible 
sources of premature crack initiations [27].  

The previous statement can be confirmed by the 
many porosities and voids revealed during fractographic 
and micrographic analysis. During fractographic analysis 
of break surface of both sides of the broken sample, it was 
found that crack initiation and nucleation starts at one 
point on the surface or just beneath it, as shown in Fig. 8. 
Some amount of voids and inclusions were noticed on 

fractured surface of all samples. It is indeed possible that 
voids or inclusions were responsible for crack initiation: 
most cracks seem to start from such defects. On all the 
samples, only one crack initiation point was noticed. There 
have been some doubts for as built samples, due to surface 
roughness influence (notch effect). 
Fracture surface of as built samples without heat treatment 
showed coarse-grained structure. 

Some specimens were cut, embedded into phenolic 
resin, and polished for micrographic analysis Fig.9.  

 
Figure 9. Specimen preparation for micrography 

Specimen surface was etched with combination of 
150cc of water (H2O), 50cc of Chloridric Acid (HCl), 25cc 
of Nitric Acid (HNO3) and 1g of Calcium Chloride. 
Etching was done at room temperature for 70 seconds. It 
must be pointed out that laser scanning traces were visible 
both in longitudinal and in transverse sections, regardless 
of heat treatment execution.  

 
Figure 10. a) Longitudinal section of the N.2 specimen 

without heat treatment 
b) Build plane section (normal to specimen axis) 

Some inclusions were noticed and marked with 
arrows in Fig.10. Scanning pattern in build plane section 
Fig.10 b), shows some scanning traces underneath with 
rotation angles corresponding to the aforementioned angle 
of 67°. Specimens without heat treatment had more 
pronounced scanning traces that those that had undergone 
the heat treatment by age hardening (see Fig 11). This 
outcome indicates that heat treatment had some effect on 
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fusion of the laser traces but was not effective at 
completing deleting these traces. For all the four sample 
types a comparable amount of inclusion was observed. 
Heat treatment had no effect on the presence of porosities 
in material. 

 
Figure 11. a) Longitudinal section of the specimen with 

heat treatment 
b) Build plane section (normal to specimen axis) 

6. CONCLUSION 
This paper aims at a study on machining and heat 

treatment effects on fatigue limit and fatigue strength of 
Maraging Steel specimens manufactured by DMLS 
EOSINT M280 machine. Four sample sets were 
considered, all with vertical stacking direction during 
building. No deformation of the specimens as a result of 
residual stresses was observed. All the sets were shot 
peened as part of cleaning process. Two sets underwent 
machining procedure for 0.5mm allowance and two were 
left in the as built surface state. One machined and one as 
built set were heat treated by age hardening in oven. All 
sample sets were then tested under four point bending 
tested with R=-1 load ratio at the frequency of 60Hz. All 
the experimental results were processed for the 
determination of S-N curves in the finite life domain and 
fatigue limits. The heat treated samples exhibited steeper 
S-N curve than the samples without heat treatment.  
Moreover, heat treated samples without machining 
exhibited a great result scattering that can be attributed to 
notch effect deriving from surface roughness. Anyway, 
this outcome will need further testing and investigations at 
the next stages of the research. Heat treated sample types 
had greater fatigue limits than samples without heat 

treatment. Fatigue strength to ultimate tensile strength 
ratio for unmachined heat treated samples was around 
25%, which is consistent with other research but lower 
than the corresponding ratios for the other two sample sets. 
In fact, when running comparative analysis, it must be 
noticed that the ultimate tensile strength for samples 
without heat treatment is almost one-half of the value for 
heat treated ones. 

Machined samples without heat treatment had 
lowest ultimate tensile strength. A possible reason is that, 
following machining, pores, inclusions and micro cracks 
were brought to the surface and became source of micro 
stress concentration, thus inducing crack initiation and 
detrimentally affecting fatigue limit. In addition, the 
hardened surface obtained by plastic deformation (and the 
related compressive residual stress state) via shot peening 
was also taken away, which is not the case for as built 
sample without heat treatment, resulting in a greater 
fatigue limit.  
 in the future it could be possible to expand 
research with shot peening effect on machined samples 
after machining. In this way all the pores and microcraks 
brought to surface would be closed, the surface would be 
hardened by plastic deformation and a potentially 
beneficial compressive residual stress state could be 
induced. 
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