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Abstract

Extending work by Gies and Karbstein on the Euler–Heisenberg Lagrangian, it has recently been shown 
that the one-loop propagator of a charged scalar particle in a constant electromagnetic field has a one-
particle reducible contribution in addition to the well-studied irreducible one. Here we further generalize 
this result to the spinor case, and find the same relation between the reducible term, the tree-level propagator 
and the one-loop Euler–Heisenberg Lagrangian as in the scalar case. Our demonstration uses a novel world-
line path integral representation of the photon-dressed spinor propagator in a constant electromagnetic field 
background.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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Fig. 1. One-loop one-photon amplitude in a constant external field.

Fig. 2. One-particle reducible contribution to the two-loop EHL.

Fig. 3. 1PR contribution to the scalar propagator in a constant field.

1. Introduction

The QED one-loop one-photon amplitude vanishes in vacuum by Furry’s theorem. In the 
presence of a constant external field this theorem does not imply that the one-photon diagram 
(Fig. 1) vanishes. However, that diagram is still usually discarded, since it formally vanishes by 
momentum conservation (as usual, the double-line denotes the electron propagator in a constant 
field). See, e.g., [1].

Recently, Gies and Karbstein [2] discovered that this diagram can cause non-vanishing contri-
butions when appearing as part of a larger diagram, due to the infrared singularity of the photon 
propagator connecting it to the rest of the diagram. As their principal example, they analyzed the 
one-particle reducible (‘1PR’) diagram in spinor QED shown in Fig. 2.

They showed that this diagram leads to a hitherto overlooked contribution L(2)1PR to the 
two-loop Euler–Heisenberg Lagrangian [3–6]. Moreover, they found that this “addendum” can 
be written very simply in terms of the one-loop Euler–Heisenberg Lagrangian L(1):

L(2)1PR = ∂L(1)

∂Fμν

∂L(1)

∂Fμν

. (1)

Two of the present authors in [7] extended this result to scalar QED, and there also to the open 
line case, i.e. to the scalar propagator in a constant field Dscal(F ). For the propagator, a 1PR 
diagram analogous to Fig. 2 appears already at the one-loop level (Fig. 3).

In [7] it was found that equation (1) generalizes to the propagator in x-space as

D
x′x(1)1PR
scal = ∂Dx′x

scal ∂L(1)
scal
μν

+ ie
Dx′x

scalx
′μ ∂L(1)

scal
μν

xν . (2)

∂Fμν ∂F 2 ∂F
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Fig. 4. One-loop propagator in a constant field.

Here Fock–Schwinger gauge centered at x was chosen1. Of the two terms on the right-hand side, 
only the first one survives the Fourier transformation to momentum space:

D
(1)1PR
scal (p) = ∂Dscal(p)

∂Fμν

∂L(1)
scal

∂Fμν
. (3)

This 1PR addendum is of the same order in α as the standard 1PI diagram shown in Fig. 4.
The purpose of the present paper is to show that the equations (2), (3) generalize to the spinor 

QED case as they stand, just replacing Lscal, Dscal by their spinor QED analogues, denoted by L
and S respectively. As in the scalar case, we will use the sewing relation

Sx′x(1)1PR =
∫

dDk

(2π)Dk2
�

(1)
(1)[k′, ε′;F ]Sx′x

(1) [k, ε;F ]
∣∣∣
k′→−k, εμε′ ν→ημν

(4)

with the ingredients �(1)
(1)[k′, ε′; F ] (the one-loop one-photon amplitude in the constant field) and 

Sx′x
(1) [k, ε; F ] (the x-space spinor propagator in the field with one photon attached)2.

The former contains a delta function δD(k) and one factor of momentum (see (7) below), so 
that by itself it vanishes. In the sewing relation (4) it will produce a finite contribution via

∫
dDk δD(k)

kμkν

k2
= ημν

D
(5)

when combined with the part of Sx′x
(1) [k, ε; F ] that is also linear in the momentum (this may 

seem mathematically dubious, but can be justified by regularizing the delta function as in [2], 
approaching the constant external field by a slightly space-time dependent one, as is physically 
appropriate in any case).

In [7], the identities (2), (3) were shown by a direct calculation of all the ingredients, using the 
worldline approach to QED in a constant field [8–15]. Here, we will proceed in a more efficient 
manner: rather than explicitly calculating the spinor propagator in the field and with one photon 
attached, which is the only really new ingredient, we will write down a worldline path integral 
representation for this object, and show by manipulations under the path integral that its linear 
part in the photon momentum kμ – which is all that is required for the sewing – fulfills the 
identity

1 We have interchanged x and x′ with respect to the conventions of [7].
2 By Sx′x

(N)
and Kx′x

(N)
we denote the constant field propagator and its kernel, the latter to be introduced below, with N

finite-energy photons attached (in addition to the zero-energy photons exchanged with the constant field background), and 
we refer to these objects as the “N -photon propagator” and “N -photon kernel” respectively. Thus, N = 0 corresponds 
to the constant-field propagator itself, although we will keep writing Sx′x, Kx′x for it rather than Sx′x

(0)
, Kx′x

(0)
. In this 

context the constant-field propagator will also be called “photonless,” despite its interaction with the field.
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Sx′x
(1)

∣∣∣
k
= −2iε ·

(
∂Sx′x

∂F
+ ie

2
x−Sx′xx+

)
· k − ie

2
ε · (γ x− + x−γ

) · kKx′x

= −2iε ·
(

∂Sx′x

∂F
+ ie

2
x′Sx′xx

)
· k + ε · L · k , (6)

where x+ ≡ 1
2 (x + x′), x− ≡ x′ − x, and Lμν is a symmetric tensor that will drop out upon 

sewing since the contribution from the one-loop one-photon diagram is anti-symmetric in its 
Lorentz indices (see (17) below). Together with the similar identity for the closed loop [7],

�
(1)
(1)

[k, ε;F ] = −2i(2π)DδD(k)
[
ε · ∂L(1)(F )

∂F
· k + O(k3)

]
, (7)

it is then immediate to obtain, from the relations (4), (5), the spinor QED generalization of (2),

Sx′x(1)1PR = ∂Sx′x

∂Fμν

∂L(1)

∂Fμν
+ ie

2
Sx′xx′μ ∂L(1)

∂Fμν
xν , (8)

and, by Fourier transformation, the momentum space version thereof,

S(1)1PR(p) = ∂S(p)

∂Fμν

∂L(1)

∂Fμν
. (9)

The next section will be devoted to the demonstration of the “derivative identity” (6). With the 
identities (8), (9) in hand, we then use them in section 3 to write the 1PR contribution explicitly 
in x-space and momentum space, now requiring only the photonless versions of the loop and 
propagator. In the concluding section we summarize our findings.

2. Worldline derivation of the derivative identity

2.1. The closed loop with zero and one photons

As a warm-up, let us rederive the closed-loop formula (7) in the new approach. In the world-
line formalism, the one-loop spinor QED effective action can be written in terms of a double 
worldline path integral as follows (see [14] and refs. therein):

�(1)[A] = −1

2

∞∫
0

dT

T
e−m2T

∫
P

Dx

∫
A

Dψ

× exp

[
−

T∫
0

dτ
(1

4
ẋ2 + 1

2
ψ · ψ̇ + ieA · ẋ − ieψ · F · ψ

)]
. (10)

Here the orbital path integral 
∫

Dx is over closed trajectories in space-time, x(T ) = x(0), the 
spin path integral 

∫
Dψ over Grassmann functions ψμ(τ) obeying antisymmetric boundary con-

ditions, ψμ(T ) = −ψμ(0).
For a constant Fμν it is convenient to use Fock–Schwinger gauge centered at the loop center 

of mass x0 [9], since this allows one to write Aμ in terms of Fμν :

Aμ(x) = 1
(x − x0)

νFνμ . (11)

2
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Separating off the loop center of mass via x(τ) = x0 + q(τ), one obtains

�(1)(F ) =
∫

dDx0L(1)(F ) , (12)

where

L(1)(F ) = −1

2

∞∫
0

dT

T
e−m2T

∫
P

Dq

∫
A

Dψ

× exp

[
−

T∫
0

dτ
(1

4
q̇2 + 1

2
ψ · ψ̇ + ie

2
q · F · q̇ − ieψ · F · ψ

)]
(13)

and qμ(τ) now obeys the “string-inspired” constraint 
∫ T

0 dτqμ(τ) = 0.

The one-loop one-photon amplitude �(1)
(1)[k, ε; F ] is obtained from (10) by the insertion of the 

photon vertex operator

−ieV [k, ε] = −ie

T∫
0

dτ
[
ε · ẋ + 2iε · ψk · ψ

]
eik·x

= −ie eik·x0

T∫
0

dτ
[
ε · q̇ + 2iε · ψk · ψ

]
eik·q (14)

under the path integrals in (13). Eventually the prefactor eik·x0 integrating over x0 will provide 
a momentum conserving δ(k), which means that for the remaining τ – integral we are inter-
ested only in the leading, linear term in the momentum expansion (the integrand contains also 
a momentum-independent term, which however integrates to zero). Projecting that part of the 
vertex operator correspondingly, we have

−ieV [k, ε] −→ eik·x0

T∫
0

dτ e
[
ε · q̇k · q + 2ε · ψk · ψ

]
. (15)

We observe that, when acting on the exponent in (13), we can further replace the integrand in 
this last expression under the path integral by

−2i eik·x0εμ ∂

∂Fμν
kν. (16)

Putting things together we obtain eq. (7) (to linear order in k),

�
(1)
(1)[k, ε;F ]

∣∣∣
k
= −2i

∫
dDx0 eik·x0εμ ∂

∂Fμν
kνL(1)(F )

= −2i(2π)DδD(k)ε · ∂

∂F
· kL(1)(F ). (17)
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2.2. The open line with zero and one photons

The worldline representation of the spinor propagator in a constant field, dressed with pho-
tons, is a much more complicated issue, and a formalism suitable for practical calculations has 
been developed only very recently [16], based on [6,17]. For the photonless case, it leads to the 
representation3

Sx′x(F ) =
[
m + iγ ·

(
∂

∂x′ − ie

2
F · x−

)]
Kx′x(F ) (18)

with the “kernel” function

Kx′x(F ) =
∞∫

0

e−m2T dT

x(T )=x′∫
x(0)=x

Dx e− ∫ T
0 dτ

( 1
4 ẋ2+ieA·ẋ)

× 1

4
symb−1

{∫
A

Dψ e− ∫ T
0 dτ

[ 1
2 ψ ·ψ̇−ie

(
ψ+ 1

2 η
)·F ·(ψ+ 1

2 η
)]}

=
∞∫

0

dT e−m2T e− x2−
4T

∫
Dq e

− ∫ T
0 dτ 1

4 q
(− d2

dτ2 +2ieF d
dτ

)
q+ ie

T
x−FQ

× 1

4
symb−1

∫
Dψ e− ∫ T

0 dτ
[ 1

2 ψ
( d
dτ

−2ieF
)
ψ−ieψ ·F ·η− ie

4 η·F ·η]

=
∞∫

0

dT e−m2T (4πT )−
D
2 det−

1
2

[
tanZ
Z

]
e− 1

4T
x−·Z ·cotZ ·x−symb−1

[
e

i
4 η·tanZ ·η] .

(19)

Here the propagation is from x to x′, ημ is a constant Grassmann vector and Zμν ≡ eFμνT . 
Again we have used Fock–Schwinger gauge, now centered at the initial point x (it is well-known 
how to convert the propagator from this gauge to a general gauge [19]). In the second line we have 
introduced the orbital path-integral 

∫
Dq which runs over fluctuations about the straight-line 

path leading from x to x ′; that is, trajectories q(τ) obeying Dirichlet boundary conditions in 
proper-time, q(0) = q(T ) = 0, and have defined

Qμ ≡
T∫

0

dτ qμ(τ) . (20)

The “symbol map” symb is defined by

symb
(
γ̂ [αβ···ρ]) ≡ ηαηβ . . . ηρ (21)

where

γ̂ μ ≡ i
√

2γ μ (22)

and γ̂ [αβ···ρ] denotes the totally antisymmetrized product,

3 Our field theory conventions follow [18], except that we use a different sign of the elementary charge.
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γ̂ [α1α2···αn] ≡ 1

n!
∑
π∈Sn

sign(π)γ̂ απ(1) γ̂ απ(2) · · · γ̂ απ(n) . (23)

By simple algebra, one may verify that

symb−1
[

e
i
4 η·tanZ ·η] = 1 − i

4
(tanZ)μν[γ μ, γ ν] + i

8
εμναβ(tanZ)μν(tanZ)αβγ5 (24)

and it is then easy to identify (18) with the form given, e.g., in [19].
Similarly, the fermion propagator with one photon attached can be written as [16]

Sx′x
(1) [k, ε;F ] =

[
m + iγ ·

(
∂

∂x′ − ie

2
F · x−

)]
Kx′x

(1) [k, ε;F ] − e/εeik·x′
Kx′x(F ) . (25)

Here the photonless kernel Kx′x(F ) has been given in (19) above, and the one-photon kernel 
Kx′x

(1) [k, ε; F ] has the following path-integral representation:

Kx′x
(1) [k, ε;F ] = − ie

4

∞∫
0

dT e−m2T e− x2−
4T

∫
Dq e

− ∫ T
0 dτ 1

4 q
(− d2

dτ2 +2ieF d
dτ

)
q+ ie

T
x−FQ

× symb−1
∫

Dψ e− ∫ T
0 dτ

[ 1
2 ψ

( d
dτ

−2ieF
)
ψ−ieψ ·F ·η− ie

4 η·F ·η]
V x′x

η [k, ε].
(26)

The photon vertex operator now appears in the form

V x′x
η [k, ε] =

T∫
0

dτ

[
ε ·

(x−
T

+ q̇
)

+ 2iε ·
(
ψ + η

2

)
k ·

(
ψ + η

2

)]
eik·(x+x− τ

T
+q

)
. (27)

Again we are free to restrict this operator to its linear part,

V x′x
η [k, ε]

∣∣∣
k
= iε ·

T∫
0

dτ

[(x−
T

+ q̇
)(

x + x−
T

τ + q
)

+ 2
(
ψ + η

2

)(
ψ + η

2

)]
· k . (28)

With suitable integration by parts and application of the boundary conditions this can be written 
as

V x′x
η [k, ε]

∣∣∣
k
= iε ·

[
1

2
x−(x + x′) +

T∫
0

dτ
(
q̇q + x−

T
q − q

x−
T

+ 2
(
ψ + η

2

)(
ψ + η

2

))]
· k.

(29)

In this form it is easy to see that an insertion of −ieV x′x
η [k, ε]

∣∣∣
k

into the N = 0 kernel is equiva-

lent to acting on it with the operator

(−2i)ε ·
(

∂

∂F
+ ie

2
x−x+

)
· k , (30)

leading to

Kx′x
(1) [k, ε;F ]

∣∣∣ = (−2i)ε ·
(

∂ + ie
x−x+

)
· k Kx′x(F ) . (31)
k ∂F 2



384 N. Ahmadiniaz et al. / Nuclear Physics B 924 (2017) 377–386
Using this derivative identity for Kx′x
(1) in (25), and expanding the second term of that equation to 

linear order in k, it is then simple to show the derivative identity for Sx′x
(1) itself, eq. (6). As de-

scribed in the introduction this immediately leads to our compact expression for the addendum4

in the spinor case, equation (8).

3. Explicit form of the 1PR addendum

After having proven the identities (8), (9), we can now use them to forget about the one-photon 
amplitudes, and work out the 1PR contribution from the photonless propagator, as given in (18), 
and the one-loop Euler–Heisenberg Lagrangian L(1)(F ). A representation of the latter suitable 
for our purposes is [9]

L(1)(F ) = −2

∞∫
0

dT

T
(4πT )−

D
2 e−m2T det−

1
2

[
tanZ
Z

]
. (32)

3.1. The 1PR addendum in configuration space

In configuration space, an explicit representation of the addendum can be found by simply 
carrying out the differentiation (note that all matrices are built out of the constant anti-symmetric 
field strength tensor and so commute with one another) of the photonless propagator and one-loop 
effective action:

Sx′x(1)1PR

= e2

∞∫
0

dT T e−m2T (4πT )−
D
2 det−

1
2

[
tanZ
Z

]
e− 1

4T
x−Z ·cotZ ·x−

×
∞∫

0

dT ′(4πT ′)−
D
2 e−m2T ′

det−
1
2

[
tanZ ′

Z ′

]{[
m − i

2T
γ ·Z · (cotZ + i) · x−

]

×
[

i

2T
x′ · �′ · x − 1

4T
x− ·

(
cotZ −Z · csc2 Z

)
· �′ · x−

+ 1

2
tr (� · �′) + �′

μν

∂

∂Zμν

]

− i

2T
γ ·

(
cotZ −Z · csc2 Z + i

)
· �′ · x−

}
symb−1

{
e

i
4 η·tanZ ·η} . (33)

Here we have abbreviated

� ≡ 1

Z − 1

sinZ · cosZ = d

dZ tr ln

[
tanZ
Z

]
, (34)

4 We remark that Sx′x
(1)

[k, ε; F ] also contains a term independent of k, but it does not contribute in the sewing procedure. 
The reason is that it leads to a k-integral that vanishes by antisymmetry when matched with the lowest-order term in 
�

(1)
(1)

[k′, ε′; F ], and, as indicated in (7), the next-higher term in the momentum expansion of �(1)
(1)

[k′, ε′; F ] is already of 
order δD(k′)k′ 3 [7].
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and accordingly for �′. It remains to apply the inverse symbol map, which requires the identity 
(24) and one further relation,

�′
μν

∂

∂Zμν

symb−1
{

e
i
4 η·tanZ ·η}

= symb−1
{

i

4
η · sec2 Z · �′ · η e

i
4 η·tanZ ·η

}

= − i

4

[(
sec2 Z · �′)

μν
[γ μ, γ ν] − εμναβ

(
sec2 Z · �′)

μν
(tanZ)αβγ5

]
. (35)

3.2. The 1PR addendum in momentum space

The momentum space version of the addendum can be obtained either by Fourier transforming 
our x-space result above (33), or by a direct use of the momentum space derivative identity (9). 
To give an explicit expression, first we need the photonless propagator in momentum space [16]

S(p) =
∞∫

0

dT
[
m − γ · (1 + itanZ) · p]

e−T (m2+p· tanZ
Z ·p)symb−1

{
e

i
4 η·tanZ ·η

}
. (36)

After simple algebra, one finds

S(1)1PR(p)

= e2

∞∫
0

dT T e−T (m2+p· tanZ
Z ·p)

∞∫
0

dT ′(4πT ′)−
D
2 e−m2T ′

det−
1
2

[ tanZ ′

Z ′
]

×
{[

m − γ · (1 + itanZ) · p
][

− Tp · Z − sinZ · cosZ
Z2 · cos2 Z · �′ · p + �′

μν

∂

∂Zμν

]

− iγ · sec2 Z · �′ · p
}

symb−1
{

e
i
4 η·tanZ ·η

}
, (37)

where the same relations (24) and (35) are required to apply the inverse symbol map. This con-
cludes the determination of the addendum for the spinor propagator.

4. Summary and outlook

Extending recent results we have shown that there is a one-particle reducible contribution to 
the spinor propagator in a constant field at one-loop order, given by a Feynman diagram that was 
previously believed to vanish. This contribution is of the same order in α as the standard 1PI 
self-energy diagram in QED in a constant field. We have derived formulas for this addendum 
in terms of the spinor propagator in the field, and the one-loop Euler–Heisenberg Lagrangian. 
Although these formulas are analogous to the ones obtained for scalar QED in [7], here we 
have introduced a more efficient approach to their derivation in the framework of the worldline 
formalism, using formal manipulations under the path integrals rather than an actual calculation 
of the path integrals as had been done in [7]. We have given explicit but compact expressions for 
the addendum in configuration space and momentum space. These expressions should make it 
easy to study the effect of the addendum on such important quantities in external-field QED as 
the strong-field asymptotics [20] and the Ritus mass shift [21].
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As in the case of the Euler–Heisenberg Lagrangian studied in [2], here, too, for possible 
applications of the addendum it must be stressed that the 1PR diagram, unlike the 1PI one, can 
involve two different fermions, e.g. we could have an electron in the loop and a quark in the line, 
or vice versa.

At higher loop order the non-vanishing of these lately uncovered contributions will clearly 
lead to a proliferation of previously overlooked terms of this type in constant-field QED.
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