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Abstract: The fault diagnosis of wind farms has been proven to be a challenging task, and motivates
the research activities carried out through this work. Therefore, this paper deals with the fault
diagnosis of a wind park benchmark model, and it considers viable solutions to the problem of earlier
fault detection and isolation. The design of the fault indicator involves data-driven approaches, as they
can represent effective tools for coping with poor analytical knowledge of the system dynamics,
noise, uncertainty, and disturbances. In particular, the proposed data-driven solutions rely on fuzzy
models and neural networks that are used to describe the strongly nonlinear relationships between
measurement and faults. The chosen architectures rely on nonlinear autoregressive with exogenous
input models, as they can represent the dynamic evolution of the system over time. The developed
fault diagnosis schemes are tested by means of a high-fidelity benchmark model that simulates the
normal and the faulty behaviour of a wind farm installation. The achieved performances are also
compared with those of a model-based approach relying on nonlinear differential geometry tools.
Finally, a Monte-Carlo analysis validates the robustness and reliability of the proposed solutions
against typical parameter uncertainties and disturbances.

Keywords: fault diagnosis; analytical redundancy; fuzzy logic; neural networks; data-driven
approaches; nonlinear geometric approach; wind farm benchmark simulator

1. Introduction

The increased level of wind-generated energy in power grids worldwide raises the levels of
reliability and sustainability required of wind turbines. Wind farms should have the capability to
generate the desired value of electrical power continuously, depending on the actual wind speed level
and on the grid demand.

As a consequence, the possible faults affecting the system have to be properly identified
and treated, before they endanger the correct functioning of the turbines or become failures.
Megawatt-sized wind turbines are extremely expensive systems, and therefore their availability and
reliability must be high in order to assure the maximisation of the generated power while minimising
the operation and maintenance (O & M) services. Alongside the fixed costs of the produced energy
(mainly due to the installation and the foundation of the wind turbine), the O & M costs could increase
the total energy cost by up to about 30%, particularly considering offshore installation [1].

These considerations motivate the introduction of fault diagnosis systems that can also be coupled
with fault-tolerant controllers [2,3]. Actually, most of the turbines feature a simply conservative
approach against faults that consists of the shutdown of the system to wait for maintenance service.
Hence, effective strategies to cope with faults must be studied and developed for improving the turbine
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performance, particularly in faulty working conditions. Their benefits would concern the prevention of
failures that jeopardise wind turbine components, thus avoiding unplanned replacement of functional
parts, as well as the reduction of the O & M costs and the increment of the energy production.
The advent of computerised control, communication networks, and information techniques brings
interesting challenges concerning the development of novel fault detection and diagnosis (FDD) and
fault-tolerant control (FTC) design strategies for industrial processes.

Indeed, in recent years, many contributions have been proposed related to the topics of fault
diagnosis of wind turbines and wind farms (e.g., [4,5]). Some of them highlight the difficulties in
achieving the diagnosis of particular faults (e.g., those affecting the drive-train) at the wind turbine
level. However, these fault are better dealt with at the wind farm level, when the wind turbine is
considered in comparison to other wind turbines of the wind farm [2]. Moreover, fault-tolerant control
of wind turbines has been investigated e.g., in [3,6] and international competitions on these issues
arose [7,8].

The benchmark model for the wind farm fault detection and isolation (FDI) that is considered in
this work was previously proposed in [2]. Based on this model, an international competition on wind
farm FDI was also organised. Selected contributions were presented at the International Federation
of Automatic Control (IFAC) World Congress 2014, and the three top solutions for this competition
were considered and evaluated in [8]. These three works were proposed by Borchersen et al. [9],
Blesa et al. [10], and Simani et al. [11]. In particular, the FDI system designed in [9] takes advantage
of the fact that several of the turbines within a wind farm will be operating under similar conditions.
To enable this, the turbines are grouped into several groups of similar turbines, then the turbines
within each group are used to generate residuals for the turbines in the group. The generated residuals
are then evaluated using dynamical cumulative sum (CUSUM). On the other hand, [10] addressed
the FDI problem for the wind farm using interval parity equations (IPE). Fault detection is based
on the use of parity equations and unknown but bounded description of the noise and modelling
errors. The fault detection test is based on checking the consistency between the measurements and the
model by finding if the formers are inside the interval prediction bounds. The fault isolation algorithm
analyses the observed fault signatures on-line, and matches them with the theoretical ones obtained
using structural analysis. Finally, the same authors in [11] proposed an FDI solution relying on fuzzy
residual generators that are identified from the noisy measurements acquired from a simulated wind
park. Note, however, that these fuzzy residual generators did not generate the reconstruction of the
fault functions, as proposed in this work. Therefore, the fault diagnosis of wind turbine and wind farm
systems has been proven to be a challenging task, and motivates the research activities carried out
through this paper.

In recent years, the increasing demand for energy generation from renewable sources has led to
a growing attention on wind turbines. Indeed, they represent very complex systems which require
reliability, availability, maintainability, safety, and, above all, efficiency in the generation of electrical
power. Thus, new research challenges arise—in particular in the context of modelling and control.
Advanced control systems can also provide the optimisation of energy conversion and guarantee
the desired performances, even in the presence of possible anomalous working conditions caused by
unexpected faults.

This work deals with the fault diagnosis of a wind farm system, and it proposes the application of
viable and reliable solutions to the problem of earlier fault detection, isolation, and estimation. Further,
fault-tolerant controllers (which are not considered in this work) can be based on the fault diagnosis
module developed in this paper, which provides the on-line information on the faulty or fault-free
status of the system and the fault estimation, so that the controller action can be compensated. The
design of the fault diagnosis system involves data-driven approaches, as they offer an effective tool for
coping with a poor analytical knowledge of the system dynamics, noise, uncertainty, and disturbance.

The first data-driven proposed solution relies on fuzzy Takagi–Sugeno models, which are derived
from a clustering c-means algorithm, followed by an identification procedure solving the noise-rejection



Energies 2017, 10, 866 3 of 26

problem. Furthermore, a second solution makes use of neural networks to describe the strongly
nonlinear relationships between measurement and faults. The chosen network architecture belongs
to the nonlinear autoregressive with exogenous (NN-NARX) input topology, as it can represent a
dynamic evolution of the system over time. The training of the neural network fault estimators exploits
the classic back-propagation Levenberg–Marquardt algorithm, which processes a set of acquired
target data.

A purely nonlinear model-based scheme for fault-tolerant control purposes was also proposed
by the same authors in [12], which is based on nonlinear differential geometric approach (NLGA)
tools [13]. Already suggested by the authors also in the aerospace framework [14], it was extended by
the same authors to the active fault-tolerant control for the same wind farm simulator [12], but it is
considered here only for comparison purposes.

The developed fault diagnosis schemes are tested by means of a high-fidelity benchmark model
that simulates the normal and the faulty behaviour of the wind farm system. The performances
achieved via the data-driven approaches are analysed and compared with the proposed nonlinear
model-based approach. Moreover, a Monte-Carlo analysis validates the robustness and reliability
features of the proposed fault diagnosis schemes against the typical parameter uncertainties and
disturbances. Finally, the effectiveness shown by the obtained results suggests further investigations
of the industrial application of the proposed fault diagnosis methodologies.

It is worth highlighting the key features of the proposed fault diagnosis strategies. First, the proposed
methodologies relying on fault estimators used as residuals represent one novel aspect of the suggested
FDI/FDD strategies. These estimations are achieved using both neural networks and fuzzy systems.
On one hand, even if neural networks estimators are well-known and well-established for fault
classification and fault detection, they are used here for the reconstruction of the fault function. On the
other hand, the performances of these neural estimators are compared with the fuzzy estimators
which are based on the parameter estimation methodology suitably developed by the same authors
in [15]. Additionally, in this case, this fuzzy strategy was already proposed by the same authors for
fault-tolerant control purposes by means of both active and passive schemes (e.g., [12]); however,
these tools are exploited in this work for the first time for solving the FDI/FDD tasks applied to
the wind farm benchmark, and using the fault reconstruction principle. Moreover, it is quite well
established that FDI methods relying on fault estimation strategies rather than classical residual
generation techniques result to be more robust (e.g., [16]). Moreover, the final comparisons among
the data-/driven and model-based FDD approaches are indeed very meaningful. In fact, the fuzzy
approach relies on the errors-in-variables (EIV) framework, whilst the neural network approach
considers equation error models (NN-NARX). On the other hand, these two data-driven schemes are
compared with a purely nonlinear methodology that exploits a model-based disturbance decoupling
method (the NLGA adaptive filters). These FDD schemes are compared for the first time when applied
to a wind farm simulator.

The work is organised as follows. Section 2 recalls the wind farm benchmark simulator. Section 3
describes the FDD schemes for residual generation relying on fuzzy prototypes and neural network
structures. A purely nonlinear approach proposed by the authors for wind turbine FDD is summarised
in Section 4. The achieved results are reported in Section 5. Comparisons with the recalled model-based
nonlinear FDD strategy are also reported. Finally, Section 6 concludes the paper by summarising the
main achievements of the work, and providing some suggestions for further research issues.

2. Wind Farm Benchmark Model

The wind farm benchmark model considered in this work has been proposed in [2] by the same
authors who developed the wind turbine benchmark model [3].

It consists of nine wind turbines arranged in a squared grid of three rows and three columns. The
complete wind farm model consists of three main submodels: the wind and wake model, the plant
model, and the controller model, interacting as sketched in Figure 1.
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Figure 1. Block diagram of the wind farm benchmark model.

Two measuring masts are located in front of the wind turbines, one in each of the wind directions
considered in this benchmark model (e.g., 0◦ and 45◦). The wind speed is measured by these measuring
masts which are located at a distance of 10 times L in front of the wind farm. In this way, the measuring
devices are not affected by the wind turbine wakes, and are able to provide sufficiently accurate wind
speed measurements.

The farm uses generic 4.8 MW wind turbines, which are three-bladed horizontal-axis,
pitch-controlled, variable-speed wind turbines. Each of the wind turbines is described by simplified
models including control logics, variable parameters, and three states.

The wind and wake models provide the wind speed for each of the nine turbines, contained in
the vector vw, as well as for a measuring mast vw,m. They are determined starting from a certain wind
sequence (two different wind sequences are included in the simulator), and their elaboration takes into
account the delay and the interaction among the turbines depending on wind direction. In particular,
the wake effect is described as reported in [17] by means of a static deficit coefficient of 0.9. Finally, the
turbulence is modelled by an additive Gaussian white noise.

The overall plant model represents the nine wind turbines with the same submodel for each of
them. It receives as input the vw vector and the Pr vector containing the nine reference signals from
the controller. The outputs are the vectors Pg, β, ωg that contain the generated powers, the pitch
angles, and the generator speeds, respectively, for each of the nine turbines [3]. Inside the wind turbine
submodels, the current wind speed is suitably elaborated in order to compute the available power
Pw(t) and the generated power Pg(t) [2].

Finally, the wind farm controller forces each turbine to follow a reference power signal Pr(t) that
is 1/9 of the wind farm power reference. More details regarding the wind farm benchmark simulator
can be found in [2].

2.1. Wind Farm Fault Scenario and Model Parameters

Three common fault scenarios are considered [2]; they affect the output variables of the plant
system. These kinds of faults are difficult to detect considering a single wind turbine, but they can be
identified at the wind farm level.

The first fault considered represents the debris build-up on the blade surface. Its effect corresponds
to a change of the aerodynamics of the affected turbine and the consequent decreasing of the generated
power that is modelled by a scaling factor of 0.97 applied to the generated power signal. An analysis
of this kind of fault is reported in [18].

The second fault is a misalignment of one blade caused by an imperfect installation. The effect is
an offset between the actual and the measured pitch angle of the affected turbine. This fault can excite
structural modes and creates undesired vibrations that can damage the system severely. The faulty
signal involves an offset of 0.3◦ on the pitch angle.
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The third fault represents the wear and tear in the drive-train. It was demonstrated [7] that this
kind of fault is difficult to detect at the wind turbine level, and the current trend is to analyse the
frequency spectra of different vibration measurements. In this benchmark model, the fault affects
the generated power, increasing the amplitude of its oscillation by 26% of the nominal value, and the
generator speed increasing the amplitude of its oscillation by 130%.

Table 1 summarises the considered faults with a brief description of their typology and topology,
with respect to their causes and effects, which will be exploited for the fault sensitivity analysis
proposed in Section 3.2.

Table 1. The fault scenarios considered for the wind farm benchmark model.

Fault # Fault Cause Description Fault Effect

1 Blade surface debris build-up Scaling factor (aerodyn. model) Reduced generated power
2 Blade misalignment Sensor offset Measured pitch angle offset
3 Drive-train wear and tear Drive-train model params. Generator speed oscillation

Finally, Table 2 reports the parameters used in the wind farm benchmark model.

Table 2. Wind farm benchmark model parameters.

Variable Name Parameter Value

R 57.5 m
τp 1.2 rad/s
γp 1000 W
σp 10 Hz
τβ 1.6 rad/s

ωg,max 158 rad/s

3. Data-Driven Fault Diagnosis Strategies

This section introduces the fault diagnosis schemes adopted in the simulations summarised in
Section 5. Firstly, the fault diagnosis strategy is described in Section 3.1, followed by the summary of the
design of the suggested data–driven residual generation methodologies relying on fuzzy prototypes
and neural networks recalled in Sections 3.3 and 3.4, respectively.

3.1. Fault Diagnosis Scheme

In the following the discrete-time monitored systems (i.e., the faults on the input and output
measurements that are acquired from the wind farm simulator, as represented in Figure 2), are
described in the form of Equation (1):{

u(k) = u∗(k) + ũ(k) + fu(k)
y(k) = y∗(k) + ỹ(k) + fy(k)

(1)

where u∗(k) and y∗(k) are the actual unmeasurable variables, whilst u(k) and y(k) represent the sensor
measurements affected by both the measurement noise and the faults. fu(k) and fy(k) are additive
fault signals, which assume values different from zero only in the presence of faults. Note that these
terms represent equivalent fault signals that produce the same effects of the actual faults affecting the
wind farm, as described in Section 2.1.
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Figure 2. The equivalent fault and measurement error description of the system under diagnosis.

According to the EIV framework, the unmeasurable inputs and outputs u∗(k) and y∗(k) represent
the physical variables that are measured by means of input and output sensors, as depicted in Figure 2.

The same considerations hold for the measurement noise or error signals ũ(k) and ũ(k). They are
modelled as white Gaussian process additive noise terms on the actual measurements acquired
from the process under investigation, and are equivalent signals representing the actual effect of the
measurement errors. This representation is also known as the errors-in-variables (EIV) model [19].

Figure 2 shows the general scheme with the faults affecting the system under diagnosis (i.e., the wind
farm) as equivalent additive signals on the input and output measurements (sensors).

Among the different approaches to generating the residual signals available in the related
literature, the solution proposed in this work exploits two approaches. They rely on fuzzy and
neural network models, which provide on-line estimations of the fault signals fu(k) and fy(k). Hence,
as shown in Figure 3, the residuals r are represented by the estimated fault signals f̂(k) generated by
the fault estimators filtering the measured (sampled) inputs and outputs u(k) and y(k), respectively:

r(k) = f̂(k) (2)

The generic i-th signal fi(k) of the vector f(k) represents one of the components of the faults
fu(k) and fy(k) affecting one of the input or output measurement sensors. This equivalent signal
representation is used to model the actual faults of the wind farm described in Section 2.1.
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y(k)u(k)

u(k)
~

f (k)
y

y(k)
~

f (k)
u

Figure 3. The general residual generation scheme relying on fault estimators.

Figure 3 sketches the residual generation scheme that is achieved via the fault estimator system by
using the acquired input and output measurements u(k) and y(k). The fault diagnosis process requires
the FDI tasks as a first step. As the residual is equal to the estimated fault signal, it is easily performed
here by using a proper thresholding logic directly operating on the residuals, without requiring their
elaboration with any evaluation functions, as addressed for example in [16].

Therefore, the occurrence of the i-th fault can be simply detected via the threshold logic of
Equation (3) applied to the i-th residual ri(k):
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{
r̄i − δσri ≤ ri ≤ r̄i + δσri fault–free case

ri < r̄i − δσri or ri > r̄i + δσri faulty case
(3)

where the i-th component ri(k) of the residual vector r(k) of Equation (2) is considered a random
variable whose unknown mean r̄i and variance σ2

ri
are estimated in fault-free condition after the

acquisition of N samples, as shown by the relations of Equation (4):{
r̄i = 1

N ∑N
k=1 ri(k)

σ2
ri

= 1
N ∑N

k=1(ri(k)− r̄i)
2 (4)

The tolerance parameter δ has to be properly tuned in order to separate the fault-free from the
faulty situations. The δ value determines the trade-off between the false alarm rate and the fault
detection probability. A common choice of δ can rely on the three-sigma rule; otherwise, extensive
simulations can be performed to optimise the δ value. Note that the three-sigma rule represents a rule
of thumb, according to which, in certain problems of probability theory and mathematical statistics,
an event is considered to be practically impossible if it lies in the region of values of the normal
distribution of a random variable at a distance from its mathematical expectation of more than three
times the standard deviation. Therefore, assuming that the probability distribution function of the
diagnostic residuals ri is normally distributed, mean value r̄i and standard deviation σri , the probability
that these residual signals lies in the range between −3 σri and 3 σri assumes the value of 0.99730.
This rule easily allows for the FDI, while minimising the false alarm and the missed fault rates, and at
the same time maximising the correct FDI rate, for a suitable number of values of σri .

As a consequence of the fault detection, the fault isolation task is easily achieved by means of a
bank of estimators. As described by Equation (1), the faults are considered as equivalent signals that
affect the input measurements (i.e., fu) or the output measurements (fy).

Under these assumptions, by following the scheme of the generalised estimator configuration of
Figure 4, in order to uniquely isolate one of the input or output faults, by considering that multiple
faults cannot occur, a bank of multi-input single-output (MISO) fault estimators is used. In general, the
number of these estimators is equal to the number of faults that have to be diagnosed; i.e., in general
equal to the number of input and output measurements, r + m. Therefore, in general the i-th fault
estimator that reconstructs the fault f̂i(k) = ri(k) should be driven by the components of the input and
output signals u(k) and y(k) that are sensitive to the specific fault fi(t). Therefore, it should be clear that
the design of these fault estimators is enhanced by the fault sensitivity analysis described in Section 3.2.
For each fault case, its resulting effects on the rest of the system are analysed, and in particular the
most sensitive input and output measurements to that specific fault situation are identified. In this
way, by means of the fuzzy system and neural network tools, it will be possible to derive the dynamic
relationships between the input–output measurements and the faults, as represented by the estimator
bank of Figure 4.

Figure 4 shows this generalised fault estimator scheme, where the fault estimators are driven
only by the input–output signals selected via the fault sensitivity tool addressed in Section 3.2, so that
the relative residual ri(k) = f̂i(k) is insensitive only to the fault affecting those inputs and outputs
defined by the selector blocks. It is worth noting that multiple faults occurring at the same time could
be correctly isolated using this configuration if the fault sensitivity procedure is properly performed.
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Figure 4. The general estimator scheme for the reconstruction of the equivalent input or output faults,
fu or fy.

The capabilities of the adopted estimator bank can be summarised by means of the so-called
fault signature matrix depicted in Table 3, where each entry that is characterised by a value equal to
“1” means that the considered residual (i.e., the equivalent fault) is sensitive to the actual fault effect
(“0” otherwise), under the hypothesis mentioned above. Note that the total number of equivalent fault
signals is equal to the number of input and output measurements, i.e., r + m.

Table 3. Fault signatures for the fault estimator bank.

Residual/Fault f1 f2 . . . fr fr+1 fr+2 . . . fr+m

r1 1 0 . . . 0 0 0 . . . 0
r2 0 1 . . . 0 0 0 . . . 0
...

. . . . . .
...

rr 0 0 . . . 1 0 0 . . . 0
rr+1 0 0 . . . 0 1 0 . . . 0
rr+2 0 0 . . . 0 0 1 . . . 0

... . . .
. . .

...
rr+m 0 0 . . . 0 0 0 . . . 1

As already remarked, the fault sensitivity analysis that has to be executed before the design of
the fault estimators suggests how to select the input–output configuration for the fault estimator
bank. This input–output selection procedure, (which is briefly remarked here) will be addressed in
more detail in Section 3.2. Then, the design of the fuzzy or neural network models can be performed,
as recalled in Sections 3.3 and 3.4, respectively. Finally, the fault estimate (residual) threshold test logic
of Equation (3) allows the achievement of the fault diagnosis tasks.

Therefore, the residual analysis proposed in Section 3.2 enhances the design of the fault estimator
bank configuration described in this section.
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3.2. Fault Sensitivity Analysis for the Wind Farm System

This fault sensitivity analysis has been performed on the wind farm simulator. This tool represents
an analysis aimed at determining the most sensitive measurements with respect to the simulated fault
conditions. In practice, the assumed fault signals fi have been injected into the benchmark simulator,
assuming that only a single fault may occur in the considered plant. Then, the relative mean square
errors (RMSEs) between the fault-free and faulty measured signals are computed, so that for each fault
fi(k), the most sensitive signals (uj(k) and yl(k)) to that specific fault are selected.

In particular, this analysis is conducted on the basis of a selection algorithm that is achieved by
introducing the normalised sensitivity function Nx, defined in the form of Equation (5):

Nx =
Sx

S∗x
(5)

where:

Sx =

∥∥∥x f (k)− xn(k)
∥∥∥

2

‖xn(k)‖2
2

(6)

S∗x = max

∥∥∥x f (k)− xn(k)
∥∥∥

2

‖xn(k)‖2
2

(7)

Its value represents the effect of the considered fault case with respect to a certain measured signal
x(k). The subscripts “f” and “n” indicate the faulty and the fault-free case, respectively. Therefore, the
measurements mostly affected by the considered fault imply a value of Nx equal to “1”. Otherwise,
smaller values of Nx mean that the signal x is not practically affected by the fault. The signals
characterised by the highest value of Nx can be selected as the most sensitive measurements, and they
will be considered in the design of the fault diagnosis blocks.

The results of this sensitivity analysis are reported in Table 4 for the wind farm benchmark.
The selected signals for each fault included in the wind farm benchmark are divided as inputs
and outputs.

Table 4. Fault sensitivity and selected benchmark signals.

Fault Case fi(k) Most Sensitive Measurements uj(k) and yl(k)

1 β2, Pg,2, β7, Pg,7, vw,m
2 β1, ωg,1, β5, ωg,5, vw,m
3 β6, Pg,6, β8, ωg,8, vw,m

As a result, the fault diagnosis blocks that are designed as shown in Figure 4 exploit the
reduced subset of input and output signals uj(k) and yl(k) of Table 4, instead of using all the system
measurements recalled in Section 2. Moreover, this leads to a noteworthy simplification of the
residual generator structure, thus also providing a decrease in the computational effort. The estimated
fault (residual) threshold test logic of Equation (3) leads to the achievement of the fault diagnosis
task. The design of the fuzzy systems and neural networks will be recalled in the next Sections 3.3
and 3.4, respectively.

Finally, it is worth noting that this sensitivity analysis can be considered a stage of the so-called
failure mode and effect analysis (FMEA) [20] which was already performed on this benchmark, as
described in Section 2.1, where the fault scenario and the effects on the system behaviour were
summarised. Indeed, this section is focused on a further sensitivity analysis. This means that the fault
causes described in Section 2.1 are modelled as equivalent input and output signals fi(k) affecting the
input and output measurements uj(k) and yl(k), respectively. In this way, the fault sensitivity analysis
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is achieved in order to determine the most sensitive input–output measurements to these equivalent
fault causes. These most sensitive measurements to faults describe the effects of the faults themselves.
Afterwards, these signals are used to design the banks exploited for both the fault reconstruction and
the fault isolation tasks addressed in Section 3.4.1.

3.3. Fuzzy System Modelling

This section describes the design of the fault estimators that is achieved by means of
Takagi–Sugeno (TS) prototypes [21]. Indeed, the unknown relationships between the measurements
acquired from the wind farm simulator and the considered faults are described by fuzzy models.
They consist of a number of rules connecting the inputs with the output of the system under diagnosis,
on the basis of a knowledge of its dynamics in form of IF =⇒ THEN relations, processed by fuzzy
reasoning [22].

The approximation of nonlinear multi-input single-output (MISO) systems (but also extension
to MIMO—multiple-input multiple-output—systems can be considered) is achieved by the TS fuzzy
reasoning, as reported, for example, in [23,24]. According to the TS modelling approach, the consequents
become crisp functions of the input, while the antecedents remain fuzzy propositions; therefore, the
fuzzy rule takes the form of Equation (8) [21]:

Ri : IF (fuzzy combination of inputs) THEN output = gi(inputs) (8)

where i indicates the number of rules, with i = 1, . . . , nC. The antecedent does not differ from the
Mamdani rules, with a combined membership function λi(x) that considers the logical connectives
expressed by linguistic propositions. The rule consequent functions gi have a defined structure: it is
the instance of parametrised function in affine form:

hi = aT
i x + bi (9)

where ai is a parameter vector and bi is a scalar offset, while hi is the i-th rule output. The number
of rules is supposedly equal to the number of clusters nC used for partitioning the data into regions
where local affine relations can be assumed [22]. Furthermore, the antecedent of each rule defines the
degree of fulfilment for the corresponding consequent model, so that the rule global model can be seen
as a fuzzy composition of local affine models.

Thus, the TS inference takes the form of the simple algebraic expression of Equation (10):

f̂ =
∑nC

i=1 λi(x) hi

∑nC
i=1 λi(x)

(10)

According to this description, the estimated fault f̂ is the weighted average of affine functions of the
measured input and output signals, where the weights are the combined degree of fulfilment of the
system input and output measurements u(k) and y(k).

It is worth noting that the nonlinear system under diagnosis has a dynamic behaviour; therefore,
the considered model input vector x can contain the current as well as the previous samples of the
process input and output measurements u(k) and y(k).

Indeed, in order to introduce the time dependence into the model of Equation (8), the consequents
are considered as discrete-time linear autoregressive models with exogenous input (ARX) of order o,
in which the regressor vector takes the form of Equation (11):

x(k) =
[
yj1(k− 1), . . . , yj1(k− o), . . . , yjl (k− 1), . . . , yjl (k− o),

uh1(k), . . . , uh1(k− o), . . . , uhp(k), . . . , uhp(k− o)
]T (11)
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where uhp and yjl are the actual system input and output vectors, whose subscript indices jl and hp

depend on the fault sensitivity selection procedure of Section 3.2, with 1 ≤ jl ≤ m and 1 ≤ hp ≤ r,
where r is the number of inputs u(k) and m the number of outputs y(k). k is the time step,
with k = 1, 2, . . . , N. The affine parameters of Equation (9) can be grouped as in the expression
of Equation (12):

ai =
[
α
(i)
1, j1

, . . . , α
(i)
o, j1

, . . . , α
(i)
1, jl

, . . . , α
(i)
o, jl

, δ
(i)
1, h1

, . . . , δ
(i)
o, h1

, · · · , δ
(i)
1, hp

, . . . , δ
(i)
o, hp

]T
(12)

where the α
(i)
s coefficients are associated to the output samples, and the δ

(i)
q are associated to the

input samples.
An effective approach to the design of a fuzzy inference system (FIS) as approximator of a complex

nonlinear system begins with the partitioning of the available data into subsets characterised by simpler
(affine) behaviour. A cluster can be defined as a group of data that are more similar to each other
rather than to the members of another cluster. The similarity among data can be expressed in terms of
their distance from a particular item, exploited as the cluster prototype. Fuzzy clustering provides
an effective tool to obtain a partitioning of data in which the transitions among subsets are smooth,
rather than abrupt.

Indeed, fuzzy clustering allows an item to belong to several clusters simultaneously, with different
degrees of fulfilment, whereas the classic crisp clustering relies on mutually exclusive subsets. Different
clustering methods have been proposed in the literature; see e.g., the review [25], or more recent
works [26,27].

Typically, the available data consist of noisy measurements acquired from the system under
diagnosis. They are grouped into the data matrix Z, whose columns are the vectors z containing the
measurements of a single observation of the monitored process:

Z =

 z11 . . . z1N
...

. . .
...

zn1 . . . znN

 (13)

where n is the data dimension, and N is the number of available observations.
Most fuzzy clustering algorithms are based on the optimisation of the c-means goal function

J (Z, U, V) performed as follows:

• the data matrix Z of Equation (13) is defined;
• the so-called fuzzy partition matrix U = [µik] is defined, which contains the values of the

membership function for the couple i-th measurement/k-th cluster;
• the vector V = [v1, . . . , vnC ] containing the cluster prototypes is defined; they have to be

determined and represent the centres from which the distance of each measurement is computed.

The widespread c-means goal function adopted in this work was formulated in [28] and is defined
in the form of Equation (14):

J (Z, U, V) =
nC

∑
i=1

N

∑
k=1

(µik)
m D2

ikA (14)

m > 1 being the weighting exponent, and:

D2
ik A = ‖zk − vi‖2

A = (zk − vi)
TA(zk − vi) (15)

the squared inner product distance norm, with i = 1, . . . , nC and k = 1, . . . , N. The matrix A
determines the cluster shape.

The minimisation algorithm exploits a series of Picard’s iterations that updates the cluster
prototypes V and of the partition matrix U, until a stop criterion is met [22]. Note that in numerical
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analysis, fixed-point iteration is a method of computing fixed points of iterated functions. Solving
a problem in this way is called Picard iteration, Picard’s method, or the Picard iterative process.

An important point concerns the determination of the optimal number of clusters nC, since the
clustering algorithm assumes a suitable number of clusters, regardless of whether or not they are
actually present in the data. Once the partition matrix U has been estimated, the antecedent degrees of
fulfilment µik in U are easily estimated by interpolation or curve fitting methods [22].

3.3.1. Fuzzy Model Parameter Estimation

After the determination of U and V, the design of the FIS can be considered as system identification
problem since it requires the estimation of the consequent parameters ai and bi of Equation (9) in
a noisy environment. The identification scheme adopted in this work was proposed by the same
authors in [15] and successfully exploited in the approximation of nonlinear functions through the
piecewise affine models (as shown, e.g., in [19]). This approach is based on the minimisation of the
prediction errors of the individual TS local models considered as nC independent problems. Moreover,
their solutions rely on the so-called Frisch scheme [29] that is usually exploited in connection with the
identification EIV models [19]. This assumption is motivated by the relations of Equation (1), where the
input and output measurements are affected by both noise and fault effects.

In fact, the discrete-time dynamic model already represented in Figure 2 is considered in the
EIV framework; the noise is supposed to affect the inputs u as well as the output measurements
y as additive signals ũ and ỹ on the noise-free unmeasurable quantities u∗ and y∗, in the form of
Equation (16): {

u(k) = u∗(k) + ũ(k)
y(k) = y∗(k) + ỹ(k)

(16)

Therefore, by considering the i-th TS consequent of the type of Equation (10) and the associated
local ARX model of order o with the regressors grouped into the vector x as in Equation (11),
the acquisition of Ni noisy measurement of input and output samples collected into the vector x
permits the construction of the i-th data matrix X(i) defined as:

X(i) =


f (k) xT(k) 1

f (k + 1) xT(k + 1) 1
...

...
...

f (k + Ni − 1) xT(k + Ni − 1) 1

 (17)

with reference to the generic fault signal f (k). The i-th covariance matrix Σ(i) from the acquired data
can be computed as:

Σ(i) = X(i)T
X(i) ≥ 0 (18)

that is a positive-definite matrix consisting of the sum of two terms:

Σ(i) = Σ(i)∗ + ¯̃Σ(i) (19)

where Σ(i)∗ refers to the noise free signals, while ¯̃Σ(i) is the noise covariance matrix, which depends on
the unknown noise variances ¯̃σf and ¯̃σx through the expression:

¯̃Σ(i) = diag
[

¯̃σf I, ¯̃σx I, 0
]

(20)

The solution of the identification problem mentioned above requires the estimation of ¯̃σf and ¯̃σx,
which can be performed solving the expression in the form of Equation (21):
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Σ(i)∗ = Σ(i) − Σ̃
(i) (21)

with:
Σ̃
(i)

= diag
[
σ̃f I, σ̃x I, 0

]
(22)

in the unknown variables σ̃x and σ̃f .
In case all the assumptions regarding the Frisch scheme [15] are satisfied, there exists one

common point belonging to all the surfaces Γ(i) = 0 determined as the root locus of Equation (21),
which represents the actual noise variance values

(
¯̃σx, ¯̃σf

)
. However, in real cases, the Frisch

assumptions are commonly violated, so a unique solution cannot be obtained. In these situations, the
identification aims at finding the nearest point of all the surfaces. More details regarding this issue can
be found, e.g., in [19,29].

After the computation of the variances, the covariance noise matrix can be built as in Equation (20),
and the linear parameters in each cluster (therefore in each TS consequent) can be finally determined
as a solution of the following expression:

(
Σ(i) − ¯̃Σ(i))ai = 0 (23)

3.4. Neural Network Modelling

Alongside the fuzzy models, a different data-driven approach based on neural networks, has
been proposed in order to implement the fault diagnosis block for estimating the generic fault signal
f (k). In this section, after a brief introduction on the general structure, the properties, functioning, and
architecture of a neural network are recalled. They will be exploited to implement the neural network
fault estimators of Figure 4.

In this work, a set of neural network estimators is designed and trained in order to reproduce the
behaviour of the faults affecting the system under investigation, thus accomplishing the modelling
and identification task. The structure of the i-th single neuron [30] is also called a perceptron. It features
a MISO system where the output yi is computed as a function f of the weighted sum vi of all the
ni neuron inputs ui,1, . . . , ui,ni , with the associated weights wi,1, . . . , wi,ni . The function f —called the
activation function—represents the engine of the neuron.

A structural categorisation of neural networks concerns the way in which their elements are
connected to each other [31]. In a feed-forward network (also called multilayer perceptron), neurons are
grouped into unidirectional layers.

On the other hand, recurrent networks [32] are multilayer networks in which the output of some
neurons is fed back to neurons belonging to previous layers, and thus the information flows in forward
as well as in backward directions, allowing a dynamic memory inside the network.

A noteworthy intermediate solution is provided by the multilayer perceptron with a tapped delay
line, which is a feed-forward network whose inputs come from a delay line. This kind of network
represents a suitable tool to model or predict unknown functions. In particular, the NN-NARX belongs
to this latter category, as its inputs are delayed samples of the system inputs and outputs. Indeed,
if properly trained, a NN-NARX can reconstruct an unknown function with arbitrary accuracy on the
basis of the acquired past measurements of system inputs and outputs.

Generally speaking, considering a MISO system, the elaborations of the NN-NARX follow the
law described by the relation of Equation (24):

f̂ (k) = fnet

(
uh1(k− 1), . . . , uh1(k− du), . . . , uhp(k− 1), . . . , uhp(k− du)

yj1(k− 1), . . . , yj1(k− dy), . . . , yjl (k− 1), . . . , yjl (k− dy)
) (24)

where f̂ (k) is the estimation of the generic i-th fault, whilst uhp(·) and yjl (·) are the hp-th and jl-th
measured system inputs and outputs, respectively, properly selected according to the fault sensitivity
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procedure of Section 3.2, with 1 ≤ jl ≤ m and 1 ≤ hp ≤ r, where r is the number of inputs u(k) and m
the number of outputs , y(k). k is the time step, whilst du and dy are the number of delays for the input
and the output signals, respectively. fnet is the function realized by the network, which depends on the
layer architecture, the number of neurons, their weights, and their activation functions. The general
fault estimation task of this NN-NARX used as fault estimator for fault diagnosis is depicted in
Figure 5.

Input sensors Output sensors

Wind
farm

NARX
neural

network

u(k) y(k)

Signal
selector

&
tapped
delay
times

y(k)

u(k)

u (k-1)
j

u (k-n  )
j u r(k) = f (k)

i

NARX neural network

^

y (t-1)
l

y (t-n  )
l y

Figure 5. The nonlinear autoregressive neural network with exogenus input topology (NN–NARX)
used to reconstruct of the general fault signal f̂i(k).

The design parameters of the overall architecture are represented by its number of neurons and
the connections between layers, whilst the values of the weights inside each neuron are derived from
the neural network training algorithm.

A NN-NARX is a learning system requiring an initial training procedure that adjusts the weights
to improve the network performance. When the network task is the estimation of a nonlinear function,
the training is performed by presenting a set of examples of proper behaviour to the network, consisting
of the inputs uj(·) and yl(·) (patterns), and the desired output fi(·) (target) for the relative inputs.

The training phase objective is the minimisation of a performance function E, which depends on
the weight vector w.

Generally speaking, considering a number P of available example patterns consisting of the
input–target pairs (up, tp), with p = 1, . . . , N, defining ŷp the output generated by the network fed by
up, the p-th error vector can be expressed as:

ep = [tp − ŷp] =
[
ep,1, . . . , ep,m

]T (25)

with p = 1, . . . , N, and m the general number of outputs of the neural network. Furthermore,
the overall error vector ē collects each ep:

ē = [e1,1, . . . , e1,m, . . . , eP,1, . . . , eP,m]
T (26)

Consequently, the performance function becomes:

E(w) =
1
N

N

∑
p=1

(ti − ŷi)
2 =

1
N

N

∑
p=1

m

∑
j=1

e2
p,j (27)
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where the dependence of E by the N parameters grouped in the vector w = [w1, . . . , wN ]
T is implicit

in the generated output ŷp = ŷp(w).
Standard numerical optimisation algorithms can be used to update the parameters, in order to

minimise E. Among these, the most common are iterative, and make use of characteristic matrices such
as the gradient g (or the Hessian H) of the performance function, or the Jacobian J of the estimation
error. These training algorithms update the parameters of the neural network until a stop criterion
is met and use the updating rules of the most common optimisation algorithms (i.e., the gradient
descent, the Newton, the Gauss–Newton, and the Levenberg–Marquardt algorithm) [33].

Finally, as shown in Section 5, the neural network fault estimator blocks have been trained
exploiting the Levenberg–Marquardt method [34], which uses the back-propagation training technique.

3.4.1. Fault Diagnosis Design Procedure

The complete design flow relying on both fuzzy systems and neural networks used as fault
estimators for fault diagnosis is summarised in Figure 6.

Data acquisition Data acquisition

Fault sensitivity
analysis

Fault sensitivity
analysis

Fuzzy
clustering

Back
propagation

TS model
parameter

identification

NN
weights

computation

Bank design
for fault isolation

Bank design
for fault isolation

Fault diagnosis Fault diagnosis

Signal   selection Signal   selection

Fuzzy estimator design Neural network design

Bank   design Bank   design

Fault estimate thresholds Fault estimate thresholds

Figure 6. Neural networks and fuzzy model similarity in the general design procedure. NN: neural
network; TS: Takagi–Sugeno.

Note that the schemes summarised in Figure 6 highlight some similarities between the fuzzy
system and the neural network prototypes. The logic schemes of Figure 6 aim only at showing the
general procedure used for the design of the fault diagnosis schemes, which are based on both the
neural networks and the fuzzy models. Moreover, common steps exploited in both the neural network
and fuzzy model fault diagnosis system design are shown.

Finally, it is worth noting that the design flow sketched in Figure 6 assumes that only single
faults affect the process under diagnosis. However, the structure of the fault estimator bank shown in
Table 3, and the input selection procedure highlighted in Section 3.2 allows the isolation of multiple
and simultaneous faults.
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4. Model-Based Fault Diagnosis Method

This section recalls the purely nonlinear fault diagnosis scheme that represents a model-based
approach mainly used for comparison purposes, as summarised in Section 5. In particular, this method
is based on analytical physical law modelling and partially on the parameter estimation of some
coefficients describing this mathematical relation.

The proposed fault diagnosis scheme consists of three phases. The first step regards the estimation
of the nonlinear disturbance distribution functions, which are required for the design of the nonlinear
adaptive filter for fault estimation. The fault reconstruction is thus exploited for the diagnosis of faults
in the measured signals.

In order to achieve a robust and effective fault diagnosis solution, the fault estimations must be
decoupled from the disturbances acting on the system. Section 2 highlighted that these disturbances
are represented by two effects. The first derives from the wind signal affecting the i-th wind turbine
model of the wind farm through its power coefficient Cp [2]. The decoupling of this effect was already
investigated in [12], but applied to a single wind turbine. It will be used here and applied to the wind
turbine models of the wind farm. The second disturbance effect is due to the interactions among the
wind turbines of the wind farm, and represented by the wind wakes [2].

Solutions dealing with the first disturbance term were based on the estimation of both the wind
turbine power coefficient Cp values and the wind speed vw(t). Regarding the wind wakes, a novel
strategy based on a nonlinear design scheme is proposed here. In particular, as for the decoupling of the
wind speed vw(t) addressed in [12], this approach requires the analytical knowledge of the nonlinear
disturbance distribution relation of the unknown inputs represented by the wake effects. In more
detail (as shown in [12]), the power coefficient Cp-map appearing in the wind turbine aerodynamic
models of the wind farm was estimated by means of a two-dimensional polynomial representation,
which was a function of the tip-speed ratio λ and the blade pitch angles β [35].

Once the disturbance description has been obtained in analytical form, the second stage of
the fault diagnosis system design is based on the development of the nonlinear fault diagnosis
filters. Their structure is obtained by exploiting a disturbance decoupling scheme belonging to the
NLGA framework [36]. A coordinate transformation, highlighting a subsystem affected by the fault
and decoupled by the disturbances, represents the starting point to design adaptive filters for fault
estimation. By means of this NLGA approach, the fault estimate is decoupled from the disturbance
d, which in this work is represented by the wake effects of the wind turbines affecting the i-th wind
turbine of the wind farm.

Therefore, the proposed approach is applied to the general nonlinear model in the form of
Equation (28): {

ẋ = n(x) + g(x) c + `(x) f + pd(x) d
y = h(x)

(28)

where the state vector x ∈ X (an open subset of R`n ), c(t) ∈ R`c is the control input vector, f (t) ∈ R is
the fault, d(t) ∈ R`d is the disturbance vector, and y ∈ R`m is the output vector. n(x), `(x), the columns
of g(x), and pd(x) are smooth vector fields, with h(x) a smooth map.

The development of the NLGA strategy for the design of the estimator for the fault f with the
decoupling of the disturbance d is based on the procedure presented in [37]. It was shown that the
considered NLGA scheme extended to the fault diagnosis problem is based on a coordinate change in
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the state space and in the output space, such that by using the new (local) state and output coordinates
(x̄, ȳ), the system of Equation (28) is transformed into [37]:

˙̄x1 = n1(x̄1, x̄2) + g1(x̄1, x̄2) c + `1(x̄1, x̄2, x̄3) f
˙̄x2 = n2(x̄1, x̄2, x̄3) + g2(x̄1, x̄2, x̄3) c+

+`2(x̄1, x̄2, x̄3) f + p2(x̄1, x̄2, x̄3) d
˙̄x3 = n3(x̄1, x̄2, x̄3) + g3(x̄1, x̄2, x̄3) c+

+`3(x̄1, x̄2, x̄3) f + p3(x̄1, x̄2, x̄3) d
ȳ1 = h(x̄1)

ȳ2 = x̄2

(29)

with `1(x̄1, x̄2, x̄3) not identically zero. As remarked in [37], this procedure yields to the observable
x̄1 subsystem of Equation (29) that—if it exists—is affected by the faults f , and not affected by
disturbances d.

This transformation can be applied to the system of Equation (28), if and only if some fault
detectability conditions are satisfied [37]. The system of Equation (28) in the new reference frame is
decomposed into three subsystems of Equation (29), where the first one (the so-called x̄1-subsystem)
is always decoupled from the disturbances d and affected by the faults f , described in the form of
Equation (30): {

˙̄x1 = n1(x̄1, ȳ2) + g1(x̄1, ȳ2) c + `1(x̄1, ȳ2, x̄3) f
ȳ1 = h(x̄1)

(30)

where—as the state x̄2 in Equation (29) is assumed to be measured—the variable x̄2 in Equation (30) is
considered as independent input, and denoted with ȳ2.

The proposed NLGA adaptive filter is based on the least-squares algorithm with forgetting factor
described by the adaptation law of Equation (31):{

Ṗ = β P− 1
N2 P2M̆2

1, P (0) = P0 > 0
˙̂f = P ε M̆1, f̂ (0) = 0

(31)

with Equation (32) representing the output estimation, and the corresponding normalised
estimation error: {

ˆ̄y1s = M̆1 f̂ + M̆2 + λ ˘̄y1s
ε = 1

N2 (ȳ1s − ˆ̄y1s)
(32)

where all the involved variables of the adaptive filter are scalar. In particular, λ > 0 is a parameter
related to the bandwidth of the filter, β ≥ 0 is the forgetting factor, and N2 = 1 + M̆2

1 is the
normalisation factor of the least-squares algorithm. Moreover, the proposed adaptive filter adopts
the signals M̆1, M̆2, ˘̄y1s which are obtained by means of a low-pass filtering of the signals M1, M2, ȳ1s
as follows: 

˙̆M1 = −λ M̆1 + M1, M̆1(0) = 0
˙̆M2 = −λ M̆2 + M2, M̆2(0) = 0
˙̄̆y1s = −λ ˘̄y1s + ȳ1s, ˘̄y1s(0) = 0

(33)

The considered adaptive filter is described by the systems of Equations (31)–(33). In [37] it
was shown that this adaptive filter provides an estimation f̂ (t) that asymptotically converges to the
magnitude of the actual fault f .

This completes the design of the fault diagnosis methodology based on NLGA adaptive filters,
whose results will be shown in Section 5.
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5. Simulation Results

The following simulations refer to the wind farm benchmark model when the fault diagnosis
schemes based on the fuzzy and neural network fault estimators are designed.

The mean wind sequence driving all the simulations covers the most common operative range
from 5 m/s up to 15 m/s, with a peak value of about 23 m/s. The wind and wake submodel described
in Section 2 processes this sequence in order to generate the actual wind speed signal for all the
turbines of the wind farm and for both the measurement musts associated with the two wind scenarios
provided by the benchmark model, as shown in Section 2, also considering the disturbances and the
interaction among turbines. Figure 7 depicts the leading wind sequence.

Figure 7. The mean wind speed sequence driving the simulations of the wind farm.

The available data consist of 440,000 samples of input–output measurements, acquired with
a sampling rate of 100 Hz.

The three proposed faults described in Section 2 affect different wind turbines at different times,
by influencing the measured variables u(k) and y(k), and in particular the signals βi, ωg,i, Pg,i related
with the i-th wind turbine of the wind farm. These faults are difficult to detect at the wind turbine level.
However, they can be more easily detected at the wind farm level by comparing the performance of
different wind turbines. Table 5 shows the affected turbines per fault, together with the occurrence time.

Table 5. Faulty turbines (#, row and column indices) and fault activation times.

Fault # Affected Turbine: (i, j) Time (s)

1 # 7: (3, 1) 1000–1100
# 2: (1, 2) 3000–3100

2 # 1: (1, 1) 1300–1400
# 5: (2, 2) 3300–3400

3 # 6: (2, 3) 1600–1700
# 8: (3, 2) 3600–3700

These faults are simulated for the three cases of Table 1 and under the assumptions described
in Section 2.1. Note that the turbines in Table 5 are also denoted by means of their row and column
indices in the coordinate system, as reported in [2].

5.1. Fuzzy Estimator Results

The fuzzy fault estimators described in Section 3.3 are designed by selecting a number of
nC = 5 clusters and o = 3 delays on the input and output regressors, related to the signals selected by
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the fault sensitivity analysis proposed in Section 3.1. On the other hand, the optimal number of nC and
o has been determined via extensive simulations that are exploited for minimising the cost function of
Equation (14).

The TS models exploit Gaussian membership functions. Afterwards, the fault estimators are
organised into a dedicated observer scheme of Section 3.1 that allows for the isolation of the three
faults affecting the wind farm benchmark model described in Section 2.1.

Firstly, the capabilities of these three fuzzy fault estimators are evaluated in terms of RMSE,
defined as the percent difference between the measurements and the estimation, computed in fault-free
conditions. This index can be considered as the measure of the percentage of the data not correctly
reconstructed by the estimator. As highlighted in Table 6, although this index increases when computed
on data which are not used in the estimation phase (i.e., validation and test data sets), the percentage
is always smaller than 5%, thus featuring a good modelling capability.

Table 6. Relative mean square error (RMSE) of the fuzzy fault estimators.

Data Set RMSE (%)
Fault 1 Estimator Fault 2 Estimator Fault 3 Estimator

Estimation 0.0090 0.0087 0.0092
Validation 0.0103 0.0101 0.0105

Test 0.0108 0.0103 0.0109

Then, the detection of the three faults is achieved by means of the residuals ri(k) = f̂i(k) generated
by the fault estimators, after the proper tuning of the threshold parameter δ. In particular, Figure 8
highlights the residual r1(k) relative to the fault 1 estimator, whose value is bounded by the thresholds
when the fault is not active, while it is significantly over the threshold when the fault occurs on the
two different turbines. Similar results are achieved by the fault 2 and 3 estimators, whose residuals
r2(k) and r3(k) are depicted in Figures 9 and 10, respectively.
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Figure 8. Fault 1 estimator residual r1(k) (continuous lines) and its threshold level (dotted line).



Energies 2017, 10, 866 20 of 26

Time (s)

r (k)
2

Estimation of the fault 2: f (k)
^
2

0 1000 2000 3000 4000

0

0.1

0.2

0.3

[°]

Figure 9. Fault 2 estimator residual r2(k) (continuous lines) and its threshold level (dotted line).
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Figure 10. Fault 3 estimator residual r3(k) (continuous lines) and its threshold level (dotted line).

5.2. Neural Network Estimator Results

In the same way as the fuzzy estimator approach, three NN-NARX described in Section 3.4 have
been designed to estimate the nonlinear behaviour between the measurements selected by the fault
sensitivity analysis of Section 3.2 and the considered fault cases. The selected architecture of the
networks involves three layers; namely the input, the hidden, and the output layers. The number of
neurons in the hidden layer has been fixed to nh = 16. The value of du = dy = 5 has been chosen for
the input–output delays. Similarly to the fuzzy models, the neural networks modelling capabilities
have been tested in terms of RMSE and the results are reported in Table 7 in fault-free conditions for
three different data sets (training, validation, and test). Additionally, in this case, a trial and error
procedure is used to determine the optimal number of the delays du and dy, as well as the number of
the neural network neurons, which leads to the minimisation of the cost function of Equation (27).

Table 7. Neural network performance in terms of RMSE %.

Fault Estimator # 1 2 3

RMSE % (training set) 0.0089 0.0091 0.0092
RMSE % (validation set) 0.0091 0.0093 0.0095

RMSE % (test set) 0.0106 0.0104 0.0123
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Note that three different data sets have been exploited in Table 7. In fact, in order to verify and
validate the achieved results, different data sets have to be used. The wind farm benchmark is able to
generate different data sequences for each simulation, as described in Section 2.

The fault detection task is achieved by comparing the residual with a fixed optimised threshold,
as for the case of the fuzzy estimators, as reported in Table 8.

Table 8. The optimal values of the parameter δ used for fault diagnosis purposes by the designed
residual generators.

Residual ri(k) = f̂i(k) δ for the Fuzzy Estimators δ for the Neural Network Estimators

1 2.15 2.34
2 2.23 2.45
3 2.34 2.89

5.3. Fault Diagnosis NLGA Simulations

This section describes the design and the simulations of the NLGA adaptive filters applied to the
wind park benchmark. In particular, the results achieved from the estimation of the disturbance terms
appearing in Equation (28) are firstly presented. Once the disturbance decoupling has been achieved,
the performances of the NLGA fault estimators are reported.

In more detail, the i-th Cp-map entering into the aerodynamic model of each of the nine wind
turbines of the wind farm described in Section 2 has been approximated by using a two-dimensional
polynomial in the form of Equation (34):

Ĉp (λi, βi) = 0.010 λ2
i + 0.0003 λ3

i βi − 0.0013 λ3
i (34)

for the i-th turbine of the wind park. More details can be found in [35]. By following the same
procedure, the second disturbance term representing the pd(x) function in Equation (28) is described
by the polynomial Ĉpi representing the wind wake from the j-th turbine of the park affecting the
i-th turbine:

pd(x) = 0.0027 λ2
j β j − 0.0011 λ2

j (35)

with i 6= j. In general, note that the expression of both the Ĉpi -map and the disturbance term pd(x) in
Equation (35) depend on the i-th wind turbine of the wind farm.

The suggested scheme provides the analytical description of the disturbance effects due to all
uncertainties, and not only the errors due to Cp entry changes and the wind wake interferences among
the wind turbines. However, since these terms are used for the fault estimation filter design, any
kind of uncertainty must be modelled. A similar approach was proposed, for example, in [16], but
developed only for linear state-space models. Under these considerations, the uncertainty distribution
description pd(x) for the nonlinear model of Equation (28) is identified using the input–output data
from the wind turbines of the wind farm. The general assumption holding for this case is that the
model–reality mismatch is varying more slowly than the disturbance signals, such as d. Another
important point regards the fact that the pd(x) estimation aims at describing the structure of the
uncertainty, which should not depend on the wind size uncertainty. Only the so-called “directions” of
the disturbance represent the important effect for disturbance decoupling (i.e., the pd(x) term), and
not the “amplitude” of the uncertainty (i.e., the size of the disturbance d).

The designed NLGA adaptive filters of Equations (31)–(33) provide the estimate of the magnitude
of the different faults acting on the the wind farm benchmark, as shown in Section 4. With reference
to the overall input–affine model of the wind farm described in Section 2, the following terms can
be determined:
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n(x) =

[
− ρ A

2 J 0.0010 R3 x2
1 −

1
J x2

−pgen x2

]
(36)

g(x) =

[
0 ρ A

2 J 0.0003 R3 x2
2

pgen 0

]
(37)

and:

`(x) =

[
0 ρ A

2 J 0.0003 R3 x2
1

0 0.0001

]
(38)

with reference to the i-th turbine, with the understanding that the subscript i is dropped. Moreover,
pd(x) is defined as:

pd(x) =

[
ρ A
2 J 0.0010 R2 x1 0.0011

0.0002 ρ A
2 J 0.0027 x2

]
(39)

In the case of the model of Equation (28), and recalling Equations (37)–(39), it results that:

S0 = P̄ = cl (pd(x)) ≡ pd(x) (40)

If ker {dh} = ∅, it follows that ΣP
∗ = P̄ as S̄0 ∩ ker {dh} = ∅. On the other hand, it is necessary to

compute the expression
(
ΣP
∗
)⊥

= (P̄)⊥. However, for the case under investigation, the determination

of the codistribution
(
ΣP
∗
)⊥

= (P̄)⊥ is enhanced due to the structure of Equation (40).
Finally, as an example, the design of the NLGA adaptive filter for the reconstruction of the fault

case 2 is based on the expression of Equation (41):

˙̄y1s = M1 · f + M2 (41)

where: {
M1 = 0.8 x2

1 − 0.036 x1

M2 = 1.02 x2
2 + 15.7 x2 − 0.3 x3

1 + 0.77 x2
1

(42)

The design of the NLGA adaptive filters for the reconstruction of the faults for cases 1 and 3
is based on a different selection of the vector of Equation (38), which leads to other expressions for
the filter of Equation (41). As an example, for the fault case 2 described in Section 2.1, the nonlinear
filter for the reconstruction of f2 decoupled from the disturbance d representing the effect of both the
wind vw(t) and the wake vw, m signals has the form of Equation (31). After a suitable choice of the
parameters in Equations (31)–(33), the nonlinear filter provided an accurate estimate f̂2(k) of the fault
size, with minimal detection delay.

Finally, the model capabilities of the three NLGA estimators with disturbance decoupling are also
evaluated in terms of RMSE % (as summarised in Table 9), thus demonstrating the superiority of the
model-based approach with respect to the data-driven methods.

Table 9. RMSE of the nonlinear differential geometric approach (NLGA) fault estimator with
disturbance decoupling.

Fault Case Fault 1 Estimator Fault 2 Estimator Fault 3 Estimator

RMSE (%) 0.0007 0.0008 0.0009

The results achieved in Table 9 highlight the efficacy of the NLGA methodology with disturbance
decoupling with respect to both the fuzzy and the neural network estimators.
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5.4. Validation and Comparative Analysis

The evaluation of the performances of the considered fault diagnosis strategies is based on the
computation of the following indices:

• False Alarm Rate (FAR): the ratio between the number of wrongly detected faults and the number
of simulated faults;

• Missed Fault Rate (MFR): the ratio between the total number of missed faults (detection/isolation)
and the number of simulated faults;

• True Fault diagnosis Rate (TFR): the ratio between the number of correctly detected/isolated
faults and the number of simulated faults (complementary to MFR);

• Mean Fault diagnosis Delay (MFD): the delay time between the fault occurrence and the fault
detection/isolation.

A proper Monte-Carlo analysis has been performed in order to compute these indices and to test
the robustness of the considered fault diagnosis schemes. Indeed, the Monte-Carlo tool is useful at
these stages, as the efficacy of the diagnosis depends on both the model approximation capabilities
and the measurement errors.

In particular, extensive simulations based on a set of 10,000 Monte-Carlo runs has been executed,
during which realistic wind turbine uncertainties have been considered. Some meaningful variables
have been modelled as Gaussian white stochastic processes with nominal values and standard
deviations corresponding to realistic error values, and are summarised in Table 10.

Table 10. Monte-Carlo analysis parameter variations.

Parameter Nominal Value Error Value

ρ 1.225 kg/m3 ±20%
J 7.794 × 106 kg/m3 ±30%

Cp Cp0 ±50%

The comparative analysis results are reported in Table 11. In particular, the different approaches
to the fault diagnosis of the wind farm benchmark model, i.e., the fuzzy filters (FF), the neural network
filters (NNF), and the NLGA adaptive filters (NLGA-AF) for fault estimation are shown.

Table 11. Comparison of the fault diagnosis results with the different fault diagnosis strategies.
FF: fuzzy filter; IPE: interval parity equation; NLGA-AF: NLGA adaptive filter; NNF: neural network
filter; CBD: CUSUM–based detection.

Fault Case Index FF NNF NLGA-AF CBD IPE

1 FAR 0.0010 0.0010 0.0006 0.0013 0.0024
MFR 0.0010 0.0010 0.0007 0.0000 0.0005
TFR 0.9990 0.9990 0.9994 0.9999 0.9995

MFD (s) 0.02 0.01 0.007 4.7 1.1

2 FAR 0.0010 0.2280 0.0004 0.0111 0.0015
MFR 0.0030 0.0010 0.0005 0.0015 0.0005
TFR 0.9970 0.9990 0.9996 0.9985 0.9995

MFD (s) 0.08 0.08 0.008 ND 12.4

3 FAR 0.0030 0.0010 0.0005 0.0055 0.0007
MFR 0.0080 0.0010 0.0006 0.0000 0.0010
TFR 0.9920 0.9990 0.9995 0.9999 0.9990

MFD (s) 0.02 0.01 0.006 13.1 15.2

As remarked in Section 1, two different FDI methodologies are considered here for comparison
purposes and they are selected from the contributions submitted for the international competition on
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FDI and FTC of wind turbines and wind farms [8]. In particular, the CUSUM–Based Detection (CBD)
scheme proposed in [9] and the interval parity equation (IPE) method presented in [10] are considered.
Their performances are extrapolated by the results presented in [8].

With reference to the solutions proposed in this work, the results show the overall efficacy of
the proposed fault diagnosis solutions. In general, both the FF and NNF for fault estimation seem to
achieve quite interesting results, and they have a noteworthy performance level considering the MFD.
Additionally, the FAR and MFR are quite low, and particularly in neural networks present very low
values of MFR for all the considered faults. However, optimisation stages are required for both the
FF and NNF fault diagnosis design, for example for the selection of the optimal thresholds. On the
other hand, the NLGA-AF show optimal results, with respect to the MFD index and the least TFR,
with respect to FF and NNF. However, the design complexity of NLGA-AF is much higher than the
other approaches, and in some cases the analytic solution cannot be determined.

The achieved results also lead to further considerations: the proper choice of the design parameters
can lead to the least FAR and MFR, with very high TDR, and minimal MFD. Moreover, the Monte-Carlo
analysis validates the robustness and the estimation convergence properties of the proposed FF and
NNF fault diagnosis schemes, with respect to error, noise, and uncertainty.

On the other hand, with respect to the two top FDI solutions selected in [8], both the CBD and IPE
present higher MFD and FAR than the FF and NNF methods, but in some cases, better TFR and MFR.

Note finally that all optimisation procedures, i.e., the training of the neural networks and the
estimation of the fuzzy models, are performed off-line. On the other hand, the implementation of the
achieved fuzzy or neural estimators used for the fault estimation tasks can be directly implemented as
nonlinear difference (discrete-time) equations, as described e.g., for the fuzzy systems in [38,39].

6. Conclusions

The paper proposed different solutions to the problem of earlier fault detection and diagnosis with
application to a wind farm benchmark. The proposed design was based on fault estimators relying on
data-driven approaches, as they represented effective tools for coping with a poor analytical knowledge
of the system dynamics, together with noise and disturbances. In particular, the data-driven proposed
solutions exploited fuzzy systems and neural networks used to describe the strongly nonlinear
relationships between the wind farm measurements and its faults. The chosen fuzzy prototype
and network architecture belongs to the nonlinear autoregressive with exogenous input topology,
as it can represent an arbitrary approximation of any nonlinear dynamic functions. The developed
fault diagnosis schemes were tested by means of a high-fidelity benchmark model that simulated the
normal and the faulty behaviour of a wind farm system. The achieved performances were compared
with those of a different fault diagnosis strategy, based on analytical modelling of the physical laws, and
relying on a nonlinear disturbance decoupling methodology. This comparison is important because the
considered strategies rely on different model assumptions. Moreover, a Monte-Carlo analysis served to
analyse the robustness and reliability features of the proposed methodologies against typical parameter
uncertainties and disturbances. Comparisons with respect to different solutions selected from the
related literature were also considered. Further works will address the analysis of the performance of
the developed fault diagnosis strategies when used also for active fault tolerant control schemes, and
possibly with application to real wind turbine systems.
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