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Abstract: Molecular docking is the methodology of choice for studying in silico protein-ligand
binding and for prioritizing compounds to discover new lead candidates. Traditional docking
simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of
ligands and targets. They also neglect solvation and entropic effects, which strongly limits their
predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD)
have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared
to traditional docking, MD allows the full exploration of drug-target recognition and binding from
both the mechanistic and energetic points of view (dynamic docking). Binding and unbinding kinetic
constants can also be determined. While dynamic docking is still too computationally expensive to be
routinely used in fast-paced drug discovery programs, the advent of faster computing architectures
and advanced simulation methodologies are changing this scenario. It is feasible that dynamic
docking will replace static docking approaches in the near future, leading to a major paradigm shift in
in silico drug discovery. Against this background, we review the key achievements that have paved
the way for this progress.

Keywords: protein-ligand binding; molecular dynamics; enhanced sampling; binding kinetics;
drug discovery

1. Introduction

Nowadays, molecular docking programs are extensively and routinely used in computer-aided
drug discovery, mostly in the framework of virtual-library screening (VS) campaigns [1,2]. This is
the first critical step in structure-based drug discovery (SBDD), where the new drug is identified as
the ligand that fits best into the binding pocket of the protein target [2]. In the past two decades,
researchers have produced a wealth of structural data, and constantly improved the protocols for
molecular calculations, allowing for a rapid screening of libraries containing hundreds of thousands of
compounds. However, this computational speed comes at the cost of accuracy, especially when
target rearrangements are required upon ligand binding [3,4]. Indeed, SBDD still suffers from
fundamental issues and limitations [3]. First, and foremost, flexibility is a crucial aspect for correctly
estimating the binding geometries (i.e., binding modes, or, in the docking jargon, simply “poses”) [4].
Furthermore, docking algorithms lack explicit water treatments, which are crucial for reproducing
specific drug-target complexes. Moreover, the underlying approximations do not allow a reliable
estimation of key thermodynamic observables, such as the binding free energy [3]. Finally, these
approaches provide only a static picture of the binding process, which means that they cannot estimate
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kinetic quantities. Notably, binding kinetics is becoming increasingly important for drug discovery
and development because it has emerged as a more reliable predictor of in vivo drug efficacy than
affinity [5].

All the above mentioned limitations can be addressed by molecular dynamics (MD) simulations
and related methods [3]. Thanks to the rapid development of faster architectures (mainly Graphics
Processing Unit (GPU)-based clusters) and better algorithms for high-level computations, classical MD
simulations nowadays allow the implementation of SBDD strategies that account for the structural
flexibility of drug-target systems at a fully atomistic description [3]. Additionally, provided that
simulations are long enough to cover the entire drug-binding process (i.e., from the drug fully solvated
in water to the drug-target bound state), the thermodynamics and kinetics become straightforward
products of MD approaches [3,6]. In principle, simulations lasting up to a few milliseconds are now
possible [7]. However, several different trajectories are commonly required to obtain adequate statistics
and to exhaustively sample the configurational space. This makes the whole process computationally
demanding, even when studying just a single lead compound. As such, “brute force” plain MD
simulations do not provide the efficiency that is necessary if a computational tool is to be routinely
used to identify drug candidates. This is particularly true when dealing with series of compounds in
the hit-to-lead or lead optimization steps of the drug discovery process. Several research groups have
addressed these limitations using enhanced sampling methods [8]. This class of MD-based simulative
approaches allows one to accelerate the observation of events, such as drug-target (un)binding, by
biasing the forces or altering the potential energy function. Given the availability of these theoretical
methods and ever-increasing computational power, MD simulations are well-positioned to replace the
old-fashioned view of static molecular docking with a novel concept that we call “dynamic docking”.

Herein, we begin by summarizing the theory of traditional molecular docking, highlighting the
advantages that have made it so popular over the years, and its major limitations. We then discuss
some of the many attempts to introduce MD concepts into docking frameworks. We move on to the
main concepts of solvent mapping (or co-solvent) simulations, which we consider to be the turning
point toward a fully dynamic prediction of protein-ligand interactions. Finally, we review the most
effective and promising methods for dynamic docking. We emphasize the benefits of a dynamic
description compared to the static view of binding provided by conventional docking methods.

2. Benefits and Limitations of Static Molecular Docking

Molecular docking is a well-established computational approach pertaining to SBDD [9]. It aims
to predict the 3D geometry of protein-ligand bound complexes. Kuntz and co-workers [10] reported
the first attempts at molecular docking in the early 1980s. Since then, the methodology has continued
to evolve. In contrast to the rigid body association exercises of the earliest implementations, full
flexibility for the ligand is nowadays allowed. Most recently, researchers have begun to incorporate
partial flexibility for the receptor too [11,12]. Another key feature is the exploitation of purposely
developed functions that rank the molecular docking solutions according to their binding propensity,
thus mimicking estimators of binding free energy. A typical docking algorithm is conveniently split into
two distinct steps, the posing phase and the scoring phase. Each phase targets a specific problem [13].
Table 1 provides a short list of currently available docking software.

2.1. Posing

During the posing phase, a searching algorithm, which can be either stochastic or systematic (see
Table 1), generates a set of configurations of the ligand at the receptor’s binding site. These include both
roto-translational and internal (usually conformational) degrees of freedom of the ligand. For practical
reasons, mostly due to limited computational resources, the early docking implementations commonly
dealt with a single rigid conformation of the target. However, it is inadvisable to neglect target
flexibility in docking or VS. This is because proteins are intrinsically dynamic and, most often, there is
a mutual adaption upon binding in order to maximize favourable contacts [14].
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Table 1. Examples of some of the most popular currently available docking software. For a
comprehensive list see [15].

Software Searching Algorithm Native Scoring Function 1 License

AutoDock [16] Stochastic Force-Field based Free for Academia
DOCK [17] Systematic Force-Field based Free for Academia
FlexX [18] Systematic Empirical Paid
Glide [19] Systematic Empirical Paid
GOLD [20] Stochastic Force-Field based Paid
ICM [21] Stochastic Force-Field based Paid
MOE [22] Stochastic Force-Field based Paid

1 Usually, the user can choose among several, often customizable, scoring functions. Here we report the type of
scoring functions originally developed with the docking program.

This picture of binding corresponds to the popular induced fit model proposed by Koshland
in 1958 [23]. According to a more recent interpretation of binding, proteins naturally exist in a
conformational ensemble. Upon binding, one such conformation is thermodynamically “selected”,
resulting in a change in population with respect to the equilibrium in the apo form (conformational
selection or population shift model) [24,25]. A greater understanding of protein-ligand recognition
mechanisms has prompted a gradual introduction of the receptor’s degrees of freedom in standard
docking procedures. In principle, the degrees of freedom of the receptor and ligand should be sampled
simultaneously, but the computational complexity of the problem prevents such a naïve approach.
Instead, the pragmatic strategies mirror the previously mentioned mechanisms of recognition [14].
They can be classified as either single-structure methods or ensemble methods. In single-structure
methods, the binding pocket is perturbed by on-the-fly local changes, mimicking the induced fit model.
In ensemble methods, an ensemble of previously generated conformations (either theoretically or
experimentally) is exploited in a serial docking exercise in the spirit of the population shift model.
Ensemble methods, in particular, are gaining in popularity for SBDD (see below). Despite this, the
information provided by multiple protein conformations is not always straightforward to manage,
and it must be properly handled to be effectively exploited [26–28]. Moreover, all these strategies offer
very elaborate and sometimes very involved solutions to a problem that could be naturally addressed
with MD simulations [3,6].

2.2. Scoring

In the second stage of a docking protocol, the binding modes retrieved during sampling must be
evaluated. The noncovalent association between a protein (P) and a ligand (L) to form the complex (PL):

P + L � PL (1)

is described by the equilibrium (or association) constant Ka:

Ka =
[PL]
[P][L]

=
1

Kd
(2)

The association constant, or its reciprocal dissociation constant, Kd, is related to the standard free
energy of binding as follows:

∆G
◦
b = −kBT ln(Ka C◦) = kBT ln

(
Kd
C◦

)
(3)

where kB is the Boltzmann constant and C◦ is the standard concentration. Calculating free energy
differences is not a trivial task. Together with other entropy-related quantities, free energy is
the thermodynamic observable whose estimation suffers the most from sampling limitations and
underlying approximations. From a statistical mechanics standpoint, Equation (3) translates to [29]:
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∆G
◦
b = −kBT ln

(
ZPL

ZPZL
C◦
)

(4)

where ZPL, ZP and ZL are the configurational integrals of the bound complex, the protein, and the
ligand, respectively. For each i-th species, the configurational integral Zi can be further expressed
as [29]:

Zi =
∫

e−(U(xi)+W(xi))/kBTdxi (5)

where U(xi) and W(xi) are the potential energy and the solvation free energy of the i-th component in
the configuration x. It is clear that, in order to assess the configurational integral, a proper description
of the solvent environment and exhaustive sampling are required. In other words, both (de)solvation
effects and entropy changes upon binding must be taken into account to obtain reliable free-energy
estimates. These aspects of protein-ligand binding, however, require computationally expensive
procedures that are usually precluded by molecular docking calculations. Scoring functions (Table 1)
attempt to address this problem, either by introducing several approximations (mainly in the solvent
treatment and by neglecting entropic contributions, force-field based scoring functions) or by adopting
convenient phenomenological descriptions (empirical and knowledge-based scoring functions) [30].
We note that scoring functions should not only identify the fittest binding mode from all the poses
generated by the posing algorithm, but, in a VS campaign, they should also discern binders from
non-binders (ranking problem) [31]. It is nowadays widely accepted that docking methods can identify
the experimental binding mode, at least when protein flexibility does not play a relevant role. However,
the ranking problem remains an open issue. Again, a dynamic docking framework would ensure the
proper theoretical foundation required to obtain reliable energy estimates [3,6].

3. Plugging MD into Static Modeling Frameworks

As is often the case with paradigm shifts in computational approaches, the route leading
from static to dynamic docking was not straightforward. Awareness of the need for a dynamic
description of protein-ligand interactions has grown gradually, rather than in an all-or-nothing
fashion. Several workarounds have therefore been developed, mainly based on combined docking MD
strategies. In parallel, however, boosted by the increase in computational power, researchers began
applying MD approaches to a different, albeit related, drug discovery problem. These are the so-called
solvent mapping or co-solvent MD simulations, which can nowadays be used to identify binding sites
and hot-spots on protein surfaces at a fully dynamic level.

3.1. Combining Docking and Molecular Dynamics Simulations

The static picture provided by conventional docking methods still prevails. However, several
attempts to implement dynamic aspects of binding have been reported. These efforts are based on a
sequential combination of docking and MD. Depending on the order in which they take place, different
issues can, in principle, be addressed. For example, MD simulations that start from docking outcomes
are typically used to validate or refine results with higher-level theories or sampling approaches
(Figure 1a). In particular, two kinds of refinement can be applied. From a structural standpoint, MD
simulations can reveal unstable binding modes, helping to filter out physically unreliable docking
solutions, or even helping to identify new ones [32–34]. Here, the advantage of MD is that flexibility
is fully accounted for and induced fit effects are naturally included, albeit only afterwards. From a
different perspective, post-processing through MD can also be used to refine the energetics estimated by
scoring functions (re-scoring). Re-scoring approaches use a wide range of theoretical methods [35], but
they all differ from simple scoring functions in that the energies are computed as ensemble averages,
approaching a more rigorous description of binding. Re-scoring schemes range from partially empirical
methods such as Linear Interaction Energy (LIE [36]) through to authentic free-energy approaches such
as Free-Energy Perturbation (FEP [37]) or Thermodynamic Integration (TI [38]). Between these extremes
lies probably the most popular solution, the Molecular Mechanics-Poisson-Boltzmann Surface Area



Molecules 2017, 22, 2029 5 of 21

and Molecular Mechanics-Generalized Born Surface Area (MM-PB/GB SA) re-scoring method, which
provides a good balance between reasonable accuracy and computational costs [36]. More recently,
researchers have begun applying enhanced sampling methods in the spirit of re-scoring or re-ranking
approaches [39–42].
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increase the variability of the protein conformations [46]. 

Figure 1. Sequential combination of docking and MD simulations. (a) MD employed for rescoring or
refining docking poses; (b) MD employed for conformational ensemble generation. Docking is then
performed against multiple rigid receptor conformations.

Another widely adopted solution is to perform MD prior to docking in order to generate an
ensemble of protein conformations (Figure 1b). This is an indirect way to take into account target
flexibility in docking and VS through pre-generated discrete conformations (ensemble-based VS).
One of the earliest implementations is the “relaxed complex scheme” developed by McCammon and
co-workers [43,44]. In this framework, an extensive MD simulation of the protein in the apo form is
performed. Then, snapshots are extracted from the trajectory at regular intervals, and each of them is
targeted in the subsequent docking exercise. This approach has been extensively used in the literature,
and several variants and/or extensions have been reported [45]. However, in the context of VS, a major
problem is to appropriately choose the protein structures used to build the ensemble. Indeed, it
has been shown that an excessively large number of protein conformations may worsen rather than
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improve VS performances [27]. Cluster analysis approaches can therefore be helpful in reducing
redundancy in the conformation set and in ensuring that only significantly dissimilar structures are
included. Even in this case, enhanced sampling methods can be used to further increase the variability
of the protein conformations [46].

3.2. Fully Dynamic Solvent Mapping

Fragment-based drug design (FBDD) is another SBDD technique, which complements docking
and VS approaches in the search for new lead candidates. While docking and structure-based VS are
concerned with identifying the binding mode for full-size molecules, FBDD deals with small fragments.
Once the binding mode of such fragments is determined, a linking procedure is followed in order to join
the building blocks and reconstruct a lead-like molecule. This de novo design procedure has several
advantages over conventional strategies. It allows the exploration of novel chemical space, leading
to increased ligand efficiency. It also ensures a better tuning of the design process, hopefully leading
to higher hit rates [47]. From a computational standpoint, FBDD can also, in principle, be addressed
through molecular docking. However, notwithstanding several successful reports, it is a common
opinion that fragment docking is particularly challenging, mostly because the suboptimal performance
of scoring functions becomes highly detrimental for small fragments [47]. Indeed, fragments often
show multiple binding modes. Moreover, because of the lower affinity for the target, the boundary
between a correct and incorrect pose is much more blurred than with lead-like ligands.

Several approaches have been proposed to address computational de novo design, ranging
from the pioneering GRID program developed by Goodford [48], through to the Multiple Copy
Simultaneous Search (MCSS [49]) and related methods [50]. Carlson and co-workers recently reviewed
these and other approaches [51,52], so we will not discuss them further here. Rather, without aiming
to be exhaustive, we will focus on solvent mapping methods, which represent the first application of
fully dynamic frameworks to the prediction of protein-ligand interactions (hot-spots). In analogy to
the multiple solvent crystal structure (MSCS) method [53], where crystal structures are solved in the
presence of multiple organic solvents, solvent mapping algorithms attempt to map the propensity of
selected functional groups (probes) to bind the surface of a given target. To do so, simulations are
performed with binary or ternary solvent mixtures, and the hot-spots for each probe are identified by
measuring the occupancy of volume elements in a Cartesian grid encompassing the entire simulation
box (Figure 2).

Molecules 2017, 22, 2029 6 of 21 

 

3.2. Fully Dynamic Solvent Mapping 

Fragment-based drug design (FBDD) is another SBDD technique, which complements docking 
and VS approaches in the search for new lead candidates. While docking and structure-based VS are 
concerned with identifying the binding mode for full-size molecules, FBDD deals with small 
fragments. Once the binding mode of such fragments is determined, a linking procedure is followed 
in order to join the building blocks and reconstruct a lead-like molecule. This de novo design 
procedure has several advantages over conventional strategies. It allows the exploration of novel 
chemical space, leading to increased ligand efficiency. It also ensures a better tuning of the design 
process, hopefully leading to higher hit rates [47]. From a computational standpoint, FBDD can also, 
in principle, be addressed through molecular docking. However, notwithstanding several successful 
reports, it is a common opinion that fragment docking is particularly challenging, mostly because 
the suboptimal performance of scoring functions becomes highly detrimental for small fragments 
[47]. Indeed, fragments often show multiple binding modes. Moreover, because of the lower affinity 
for the target, the boundary between a correct and incorrect pose is much more blurred than with 
lead-like ligands. 

Several approaches have been proposed to address computational de novo design, ranging 
from the pioneering GRID program developed by Goodford [48], through to the Multiple Copy 
Simultaneous Search (MCSS [49]) and related methods [50]. Carlson and co-workers recently 
reviewed these and other approaches [51,52], so we will not discuss them further here. Rather, 
without aiming to be exhaustive, we will focus on solvent mapping methods, which represent the 
first application of fully dynamic frameworks to the prediction of protein-ligand interactions 
(hot-spots). In analogy to the multiple solvent crystal structure (MSCS) method [53], where crystal 
structures are solved in the presence of multiple organic solvents, solvent mapping algorithms 
attempt to map the propensity of selected functional groups (probes) to bind the surface of a given 
target. To do so, simulations are performed with binary or ternary solvent mixtures, and the 
hot-spots for each probe are identified by measuring the occupancy of volume elements in a 
Cartesian grid encompassing the entire simulation box (Figure 2).  

 
Figure 2. Schematic representation of hot-spots identified through solvent mapping approaches. The 
displayed co-solvent mixture is taken from [54]. 

Notably, the co-solvent/water competition is explicitly taken into account, thus providing better 
estimates of the energetics of binding with respect to simpler scoring functions. The first co-solvent 
simulation framework was developed by Barril and co-workers in 2009 [55]. In this first 
implementation, nowadays known as MDmix, the authors used an isopropanol/water binary 
mixture that corresponded approximately to a 20% volume/volume concentration. The approach 
outperformed molecular docking by naturally including full solute and solvent flexibility. It also 
allowed the binding free energy of the probes to be mapped as a continuous scalar function by 
computing the probability ratio between volume elements in the 3D space. More recently, the 

Figure 2. Schematic representation of hot-spots identified through solvent mapping approaches.
The displayed co-solvent mixture is taken from [54].

Notably, the co-solvent/water competition is explicitly taken into account, thus providing
better estimates of the energetics of binding with respect to simpler scoring functions. The first
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co-solvent simulation framework was developed by Barril and co-workers in 2009 [55]. In this first
implementation, nowadays known as MDmix, the authors used an isopropanol/water binary mixture
that corresponded approximately to a 20% volume/volume concentration. The approach outperformed
molecular docking by naturally including full solute and solvent flexibility. It also allowed the binding
free energy of the probes to be mapped as a continuous scalar function by computing the probability
ratio between volume elements in the 3D space. More recently, the framework has been extended to
other mixtures [56], and an accurate evaluation of the role of target flexibility has been addressed [57].
In contrast to MDmix, the so-called Site-Identification by Ligand Competitive Saturation (SILCS)
framework by Guvench and MacKerell originally used a propane/benzene/water ternary mixture [58].
The rationale for this choice of co-solvents was to take into account hydrophobic (propane) and
aromatic (benzene) probes, in addition to hydrophilic ones (water). Notably, repulsive potentials
were used to prevent aggregation between the highly concentrated (≈1 M) hydrophobic co-solvents.
Several other solvents were then taken into account in later implementations [59], as well as advanced
simulative techniques (grand canonical-Monte Carlo MD) [60]. The MixMD method by Carlson and
co-workers focuses instead on the use of binary mixtures of water-miscible organic solvents, thus
avoiding the use of artificial repulsive terms [61]. Meanwhile, Bakan et al. devised what is perhaps the
most rigorous energetic analysis of probe hot-spots reported to date [54]. Notably, the solvent mapping
framework is robust enough to address open issues other than binding-site detection. For example,
MixMD has been used to identify allosteric pockets [62], while cryptic site detection was recently
investigated by Favia and co-workers [63]. Finally, coarse-grained variants can also be designed. One
such application comes from Ferraro et al., who mapped cholesterol binding sites on the surface of a
homology-derived model of the serotonin transporter [64].

Because of the enormous potential of solvent mapping, and its intrinsically dynamic nature, we
consider this technique to be a milestone in computational drug discovery. Even though it cannot be
considered a direct precursor of dynamic docking methods, it nonetheless demonstrated the benefits
of MD-based methods compared to static and simplified descriptions of binding.

4. Dynamic Docking

The approaches described in the previous Section involve MD simulations either directly (such
as in solvent mapping) or indirectly (docking refinement and/or re-scoring). Dynamic docking
simulations are distinguished from these approaches by the possibility of characterizing the
protein-ligand binding process at a fully dynamic level. From a computational perspective, dynamic
docking fully exploits the advances in sampling strategies and an unprecedented computational power.
However, in analogy to static docking methods, there are two conceptual layers of complexity. The first
is related to the ability to generate binding modes, which strongly depends on the sampling strategy
used (“biased” or “unbiased”). The second layer concerns the evaluation of the reliability of the
identified “poses”. This can be achieved by estimating the free energy of binding or by relying on
statistical arguments.

4.1. Sampling Strategies

4.1.1. Biased MD Approaches

In recent years, improvements in hardware have allowed MD simulations to capture in detail the
full protein-ligand binding process (see below). However, many research groups started to explore
these events long before the required computational resources were actually available. This was made
possible by the development of smarter sampling strategies, which are nowadays known as “enhanced
sampling methods”. These methods usually fall into two general categories: those that rely on collective
variable (CV) biasing, including umbrella sampling [65], steered MD [66], and metadynamics [67], and
those based on tempering, including replica exchange MD (REMD [68]), accelerated MD (aMD [69]),
potential scaled MD [70], and multicanonical MD (McMD [71]). The main advantage of using the
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first type of method is that the sampling is enhanced toward the specific event of interest by biasing
the MD simulations along chosen CVs, which are functions of the atomic coordinates. In this way,
free-energy barriers can be efficiently crossed. However, it can be difficult to choose the right set of
CVs a priori, particularly when the system’s reaction mechanism is not yet known. In the latter case,
tempering methods seem to be more appropriate since they act by heating all degrees of freedom of
the system or by modifying the Hamiltonian [3]. Below, we highlight key examples where enhanced
sampling methods of both categories have been applied in the context of dynamic docking.

CV Biasing Methods

One of the earliest enhanced sampling methods used to characterize the ligand binding process
is the metadynamics method introduced by Laio and Parrinello in 2002 [67]. In metadynamics,
a history-dependent repulsive potential acting on a few CVs is added to the underlying dynamics,
discouraging the system from exploring previously visited regions of the CV space (Figure 3). In 2005,
Gervasio et al. conducted the first application of metadynamics to ligand binding. To the best of
our knowledge, this is the first example of dynamic docking. The authors used metadynamics to
successfully reproduce the docking geometry and the experimental binding free energy for four
complexes: β-trypsin/chlorobenzamidine, immunoglobulin McPC-603/phosphocoline, and cyclin-
dependent kinase 2 (CDK2)/staurosporine [72]. A few years later, Provasi et al. reported another
successful example of the utility of metadynamics for simulating protein-ligand binding events.
Here, they investigated the binding pathway of the nonselective antagonist naloxone to the alkaloid
binding pocket of a delta opioid receptor [73]. Notably, the authors accurately assessed the association
constant from the free-energy profile reconstructed through metadynamics. This was made possible by
efficiently sampling the ligand in the bulk region, and allowing multiple binding/unbinding events,
which are the key to accurately determining the binding free energy. To do so, they confined the
unbound state of the ligand through the use of a conical shaped restraint whose contribution to
the association constant can be taken into account analytically. Similarly, in 2013, Limongelli et al.
developed the so-called funnel metadynamics, in which the previously described confinement is
replaced by a funnel-shaped restraint, further reducing the space to explore for the ligand in the
bulk [74]. Despite the successful results in predicting the mechanism of ligand binding, metadyamics
suffers the same drawbacks of any other CV-based method, i.e., the need to choose an optimal set
of CVs [75]. Moreover, the simulation time increases exponentially with the number of CVs, and
the metadynamics performance rapidly deteriorates. This makes it difficult to accurately simulate
systems characterized by a high degree of complexity. In 2007, to overcome these difficulties, Laio et al.
developed a new method, bias-exchange metadynamics, which combines concepts of metadynamics
and replica exchange (described below) [76]. In particular, multiple metadynamics simulations
are performed in parallel and exchanged at fixed time intervals. Each replica is biased with a
time-dependent potential acting on a different CV, thus alleviating the problem of CV selection.
In 2009, Pietrucci et al. used the bias-exchange metadynamics technique to successfully describe
the binding mechanism of a small peptide to the HIV-1 protease [77]. Even though the authors
accurately computed the free energy associated with ligand binding and unbinding as a function
of 7 CVs, almost 2 µs of simulation were required to converge the free energy. Despite this, they
managed to characterize the kinetics of the binding/unbinding process using a discrete-states kinetic
model, including the relevant metastable states along the recognition pathway. Another variant of
metadynamics, reconnaissance metadynamics [78], provides a valid alternative to bias-exchange in
considering a larger set of CVs. In particular, reconnaissance metadynamics is a machine-learning
approach where the algorithm tunes the applied bias using data obtained from short MD simulations.
Compared to conventional metadynamics, this procedure relieves the user of the a priori selection
of a small number of CVs, and thus provides a way to efficiently explore previously uncharacterized
mechanisms. In 2012, Soderhjelm et al. applied reconnaissance metadynamics to identify and score
protein-ligand binding poses of the well-known trypsin-benzamidine system [78].
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(F(q)) and discouraging the system to visit already sampled states.

Tempering Methods

Of the various tempering methods, the REMD method has emerged as one of the most widely
used techniques to enhance conformational sampling [79]. In classical REMD, several replicas of
the system are simulated independently in parallel, at different temperatures. At regular intervals,
exchanges between neighboring pairs of replicas are attempted according to a Metropolis acceptance
criterion (Figure 4). Because an efficient exchange requires a significant overlap of the potential energies
sampled at adjacent temperatures, a high number of replicas is typically required for the method to be
effective. A valid alternative to temperature REMD is provided by Hamiltonian REMD (H-REMD), in
which the different replicas are simulated at the same temperature while the system’s force field is
modified. An advantage of H-REMD compared to classical REMD is the possibility of varying only
part of the Hamiltonian of the system among the replicas, improving the exchange probabilities [80].
This computational framework was adopted by Luitz et al. to obtain the correct binding modes for
protein-ligand systems through explicit solvent simulations [81]. In particular, the H-REMD approach
was based on softening the ligand-protein non-bonded interactions along the replicas in order to
prevent the sampling of irrelevant states before reaching the native binding mode. The method was
tested on three different systems: human FKBP protein (FKBP-52) in complex with the high-affinity
ligand FK506 and with the lower affinity ligand SB3, peptide-binding domain of murine MHC class 1
molecule in complex with a viral antigen. aMD is another enhanced sampling technique that does not
rely on the a priori definition of CVs. aMD speeds up the configurational space sampling by locally
adding a non-negative boost potential to the system’s potential energy. The potential energy is added
only to those regions of the potential energy that are below a certain threshold energy value, while
leaving those above this level unaltered [69]. Recently, Kappel et al. used aMD simulations to simulate
processes of ligand binding to the M3 muscarinic receptor, a G-protein-coupled receptor (GPCR) [82].
In particular, this work used long-timescale aMD simulations (hundred-nanosecond timescale) to
identify the metastable ligand-binding sites of three known molecules: the antagonist tiotropium, the
partial agonist arecoline, and the full agonist acetylcholine (Ach). Reweighting procedures recover the
canonical distribution, from which the free-energy landscape can be calculated. However, it is still
challenging to estimate the exact population for each configuration. This is because the reweighting
procedure is subject to a statistical error, especially when longer timescales are simulated. In this
work, where aMD simulations were performed on the 100–1000 ns timescale, the authors focused
on identifying metastable ligand-binding sites on the M3 receptor, in agreement with unbiased MD
simulations, in a significantly shorter time (about 80 times faster for Ach). In 2007, Kamiya et al.
provided interesting results by performing McMD simulations to successfully dock the inhibitor
tri-N-acetyl-D-glucosamine [83]. McMD is an enhanced sampling method, in which a random walk
sampling through the energy space is made possible by the bias applied to the system [71]. In the
McMD method, higher energy states and lower energy states have an equal probability of being
sampled because different temperature regions defined by the bias are simulated simultaneously.
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A merit of the McMD method is that the canonical ensemble can be reconstructed at 300 K relatively
easily by a reweighting procedure. Recently, Bekker et al. also performed long McMD simulations to
dock the inhibitor CS3 to cyclin-dependent kinase 2 [84]. To accelerate the reproduction of the native
complex, the ligand was restrained in a cylindrical region near the binding pocket. In addition, after
having identified the correct binding mode, they accurately predicted the binding free energy by TI in
accordance with the experimental data.
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4.1.2. Unbiased MD Approaches

Improvements in computer architectures (i.e., GPUs, specialized hardware such as Anton,
distributed computing networks such as GPUGRID.net) have allowed several groups to reach and
break the millisecond barrier in MD simulation timescales. Ten years ago, the research community
hoped to one day simulate a spontaneous and unrestricted drug-binding event without applying any
bias to the system. This is now possible. We stress that we consider “unbiased approaches” to include
simulative setups and protocols that do not alter the dynamics through external forces. This does not
necessarily mean that the dynamics is always continuous. As we will see later, some workarounds to
reduce the computational burden do indeed rely on discontinuous trajectories.

Brute-Force MD

The earliest attempt of using unbiased MD to reconstruct a binding event was made by Wang
and Tajkhorshid in 2008 [85]. Thanks to the presence of a strong electrostatic potential in the binding
site of the target, the mitochondrial ADP/ATP carrier, it has been possible to record the binding event
of an ADP molecule initially positioned in close proximity of the receptor to a deeply buried site.
Their seminal work paved the way to all the following efforts aimed at studying a complete and
spontaneous drug binding event through MD (see Table 2). The first example of unbiased dynamic
docking was reported by Shan et al. in 2011 [86]. The authors randomly placed two Src kinase inhibitors
within a simulation box together with their target protein and let them freely diffuse to their binding
site. The authors recorded several spontaneous binding events forming complexes nearly identical to
those resolved by X-ray crystallography. They also identified a previously unknown allosteric pocket,
highlighting the potential of these simulations as tools for standard drug discovery programs. Buch and
co-workers followed a similar path to completely reconstruct the benzamidine to trypsin binding
process in terms of pathway and related energetics. Their work produced insights into the mechanism
of association of a drug to its target without neglecting intermediate states [87]. Similar works
were then conducted for membrane receptors (the β-adrenergic GPCRs coupled to agonist and
antagonist small molecules [88] and the spontaneous binding of tiotropium and acetylcholine to
M2/M3 muscarinic receptors [89]) and, recently, for the purine nucleoside phosphorylase enzyme
and its pM inhibitor, the transition state analog DADMe-immucillin-H [90]. Similarly, researchers
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have made it feasible to use unbiased MD simulations for fragment-to-lead development [91]. Here,
in addition to reproducing all the crystallographic poses of carboxythiophene fragments present
in the X-ray structure of AmpC β-lactamase, the trajectory analysis discriminated between distinct
binding modes from both a thermodynamic and a kinetic standpoint [92]. Hence, this dynamical
approach to docking shed light on the ligand’s route to binding, helping to characterize the major
energetic barriers along this path and the factors that may influence them. These factors include
transient interactions, dehydration, ligand geometry, and so on, many of which are mistreated by
traditional docking techniques. Dynamic docking can also be used to reveal binding sites and poses
of known binders even when there is no previous knowledge of them. Dror and co-workers studied
the M2 muscarinic acetylcholine receptor along with a number of experimentally identified allosteric
modulators for which no crystal structure was available. They identified an extracellular-facing
vestibule, to which several modulators can bind, observing that the binding driving force was a set of
cation-π interactions rather than the previously proposed aromatic-aromatic contacts. Notably, their
results were validated by mutagenesis analysis and radioligand binding experiments, confirming the
predictive power of these simulations [93].

Table 2. Comparative time scales of brute force MD versus discontinuous approaches as reported
in retrospective studies. Owing to the inherent difficulties in comparing timescales of several short
trajectories, adaptive sampling is not considered in this table.

Author (Year) Complex Multiple
Ligands

No. of
Runs

Aggregate
Time

Productive
Runs 1

Time to
Binding

Brute Force MD

Shan et al. (2011) PP1/Src kinase y 7 115 µs 3 15.1–1.9–0.6 µs
Dasatinib/Src kinase y 4 35 µs 1 2.3 µs

Buch et al. (2011) Benzamidine/Trypsine n 495 49.5 µs 187 15–90 ns
Dror et al. (2011) Dihydroalprenolol/β2AR y 40 111.8 µs 5 NA

Alprenolol/β2AR y 10 14 µs 1 NA
Propranolol/β2AR y 21 35.7 µs 0 -

Isoprotenerol/β2AR y 1 15.0 µs 0 -
Dihydroalprenolol/β1AR y 10 55.5 µs 2 NA

Kruse et al. (2012) ACh/M3 R y 1 25 µs 1 9.5µs
Tiotropium/M3 R y 3 18 µs 0 -
Tiotropium/M2 R y 3 16.2 µs 0 -

Decherchi et al. (2015) DADMe-immucilin-H/PNP y 14 7 µs 3 340 ns

Discontinuous Approaches

Sabbadin et al. (2014) ZM241385/hA2A n 3 - 1 59 ns
T4G/hA2A n 3 - 1 62 ns
T4E/hA2A n 3 - 1 105 ns

Caffeine/hA2A n 3 - 1 15.2 ns
Cuzzolin et al. (2016) Ellagic Acid/CK2 n 3 - 0 -

SAPS/GSTP1-1 n 3 - 2 27–19 ns
Benzen-1,2-diol/PRDX5 n 3 - 3 17.4–31.2–18 ns

(S)-naproxen/HSA n 3 - 0 -
(S)-fluoxetin/LeuT n 3 - 0 -

NECA/hA2A n 3 - 0 -
Zeller et al. (2017) Oseltamivir/neuraminidase n 676 50.0 µs ~20 NA

Zanamivir/neuraminidase n 606 35.7 µs ~20 NA
1 “Productive” refers to simulations that reproduced the crystallographic pose within a given RMSD threshold.

In sum, brute force unbiased MD simulations were a striking milestone in the development of
dynamic docking. However, they also highlighted their main limitations. Indeed, the binding of a
small molecule to its binding pocket can still be considered a rare event, especially when it comes to
ligands with unfavorable on-rates (i.e., low kon). To this end, the easiest and most popular approach to
overcoming this hurdle was to place more than one ligand molecule in the simulation box, increasing
the probability of observing a binding event. This strategy may be of some help. However, multiple
long trajectories are still needed to thoroughly sample the configurational space and collect enough
statistics. Therefore, it is not surprising that most of the above-reported applications took advantage of
specialized hardware or massive computing architectures to carry out the simulations. To this end, in
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the context of unbiased simulations, several solutions have been proposed to make the use of dynamic
docking more practical and effective (see Table 2 for a comparative list). These strategies include
adaptive sampling methods, supervised approaches, and multiscale modeling, and are described in
the following subsection.

Discontinuous Approaches

Among discontinuous approaches, adaptive sampling are a class of unbiased MD methods relying
on the Markov State Model (MSM) framework [94,95]. They aim to identify undersampled states
during the binding process in order to run new simulations from these points (a process usually
termed “seeding”) so as to lower the statistical error related to thermodynamic quantities. In this way,
a few ultra-long simulations are replaced by many short ones, saving valuable computational time.
In the earliest implementations, human intervention was essential to manually select the simulation
restarting point [96]. In 2014, however, Doerr and De Fabritiis, presented an automated protocol
that reconstructed the binding process for the trypsin-benzamidine system in a totally unsupervised
fashion [97]. The automated learning method achieved a converged binding affinity one order of
magnitude faster than classical sampling. They implemented their strategy in a freely available
environment (known as HTMD [98], High Throughput MD, which is also suitable for replacing
MSM with other adaptive sampling algorithms). They thus elucidated the cooperative recognition
mechanism of ionic cofactors and substrate in the myo-inositol monophosphatate enzyme [99], and the
binding process of the lipid inhibitor ML056 to the sphingosine-1-phosphate receptor [100]. The latter
is an informative example because it describes the diffusion of the lipophilic ligand ML056 from the
bulk solvent to the membrane bilayer, prior to moving to its orthosteric binding site. Unlike other
transmembrane receptors, this binding site is not accessible from the extracellular environment.

A strikingly different approach is the supervised molecular dynamics (SuMD) protocol devised by
Sabbadin and Moro [101]. In adaptive sampling methods, seeding is used to resample under-sampled
states. In the SuMD implementation, however, simulations that are unlikely to lead to a productive
binding event are discarded on the fly by a tabu-like algorithm. During short simulation windows,
at defined time intervals, the distance between the center of masses of the ligand and the binding site is
saved and subsequently fitted in a linear function. If the slope of the resulting line is negative, it means
that the ligand is moving toward its binding site, and the simulation is evolved. Otherwise, the current
simulation is interrupted, and a new run is restarted from the last saved coordinates through velocity
reassignment. Finally, at a user-defined distance value, the supervision algorithm is switched off and
continuous dynamics is restored. The method has been tested against a number of complexes of both
globular and membrane proteins [102,103] and was effective in reproducing ligand-receptor complexes
in nanosecond-range timescales. On the other hand, its limitation is the need for a priori knowledge
of the binding site location. In principle, at least, this precludes the possibility of discovering novel
and unexplored binding sites as in brute force dynamic docking simulations. Moreover, while the
protocol has proven valuable in identifying relevant metastable states during the recognition process,
because of the discontinuous nature of the trajectories, the binding route followed by the ligand is not
necessarily close to the minimum free-energy pathway.

Similarly, multiscale approaches aim to reduce the time that a ligand spends diffusing in the
solvent probing its binding site, which is not a relevant part of the association pathway. The idea is
to limit the full atomistic resolution and computationally expensive MD simulation to those regions
that are close to the binding site. Very recently, Zeller et al. introduced a multiscale approach to
dynamic docking that allows the binding kinetics to be evaluated. As a test case, they used two H1N1
neuroaminidase inhibitors, oseltamivir and zanamivir [104]. Their implementation used Brownian
Dynamics (BD) [105] when the distance between the ligand and binding site was more than a properly
defined value. In this region, ligands and protein are treated as rigid bodies that undergo translational
and rotational diffusion in an implicit continuum solvent. When the ligand reaches the so-called
encounter surface, BD switches to all-atom MD and the solvent is treated explicitly. They succeeded in
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reproducing X-ray crystal structures. However, as they stated, this approach would be useful only in
cases where binding pathways are diffusion-controlled. The usual simulation limitations apply when
the binding involves large conformational changes. A similar MD/BD approach was proposed few
years earlier by Amaro and co-workers [106]. In such an approach, the atomistic dynamics relies on
milestoning, and the methodology is mostly suited to describe (un)binding kinetics and to compute the
corresponding rates rather than reproducing drug-target complexes. Recently, a fully automation of
the protocol led to the release of the so-called SEEKR software package, which is intended to provide a
user friendly interface to assist setup and analysis of simulations [107].

4.2. Estimation of Experimentally Accessible Observables

As with static molecular docking, sampling the experimental binding mode is necessary but
not sufficient for the exploitation of dynamic docking in prospective drug discovery. Indeed, proper
strategies are required to discriminate between stable binding modes and “false positives” (binding
modes differing from the experimental one). The false positive concept is more complex than in
conventional docking. Here, it includes both “wrong” binding modes, due to inaccuracies in the
potential energy function and/or sampling limitations, and true metastable states identified along the
recognition pathway, which may be required to reach the final bound state. Clearly, the latter adds
value to dynamic docking, and should be distinguished from the former situation. It follows that
an accurate prediction of binding free energy and kinetics is of crucial importance to evaluate which
binding mode has to be taken into account for predictive studies.

By exploiting enhanced sampling methods, biased MD approaches to dynamic docking are
naturally endowed with their own free-energy estimators. We will not discuss the advantages
and drawbacks of each approach here because the relevant details can be found elsewhere [8].
Concerning unbiased dynamic docking, the most straightforward way to assess the free-energy
difference associated with any process is to evaluate the probability ratio (ρ) between the initial and
final states. In the context of dynamic docking, where two separated molecular entities bind to form a
single complex, a correction term must be added, leading to [108,109]:

∆G
◦
b = −kBT ln

(
ρbound

ρunbound

)
− kBT ln

(
V′

V0

)
(6)

The second term on the right-hand side of Equation (6) accounts for the fact that the reference
volume (V′) in the simulations is different from the experimental volume (standard volume, V0 i.e.,
1661 Å3). It ensures a direct comparison between computational and experimental free energies
(standard free energy of binding). An equivalent strategy is followed when solvent mapping is used
to provide quantitative estimates [54,57]. Nevertheless, evaluating the free energy as a probability
ratio is extremely difficult since many transitions are required to achieve proper statistical confidence.
This is even more problematic in the context of brute force dynamic docking, where it is already
challenging to observe a single docking event. As a practical workaround, rather than an energetic
comparison of distinct binding modes, unbiased dynamic docking often relies on the statistical analysis
of the obtained trajectories. Thus, the most populated binding mode is reasonably assumed to be
the energetically preferred mode from among the ensemble of identified stable states (see Figure 5
and Table 2). A remarkable exception comes from the HTMD framework developed by De Fabritiis
and co-workers [98]. Here, by exploiting MSM and adaptive sampling, the binding pose is indeed
identified by converging the binding free energy evaluated through Equation (6).

Another obvious advantage of dynamic docking over conventional approaches is the possibility
of characterizing the mechanistic steps of the entire protein-ligand binding process. This, in principle,
allows the disclosure of potential metastable states or even allosteric pockets. It is highly relevant for
drug discovery. Moreover, provided that adequate sampling is achieved, kinetic observables such as
the association and dissociation constant (kon and koff, respectively) can also be determined (mostly
by relying on MSM approaches). This is a crucial aspect of unbiased dynamic docking because it



Molecules 2017, 22, 2029 14 of 21

expands the predictive power of computational methods applied to SBDD. Notably, the estimation of
kinetic constants is the focus of the most sophisticated approaches developed so far [90,97,98,104,107].
In particular, from a drug discovery standpoint, accurately predicting the koff can be as important
as estimating the binding free energy. This is because the dissociation of protein-ligand complexes,
which follows an exponential decay with the characteristic time τR = 1/koff (residence time), is a better
indicator of in vivo drug efficacy than the equilibrium constant [5]. Therefore, optimizing the residence
time via rational design is a breakthrough for computational drug discovery. It is nonetheless true
that computing the residence time through unbiased approaches is still a daunting problem. This is
due to the long timescales involved in the dissociation of protein-ligand complexes, which can last
from milliseconds to minutes (or more). The increasing computational power will certainly alleviate
this aspect. In addition, several workarounds have been proposed to accelerate the calculations.
These mostly rely on enhanced sampling methods and were recently reviewed elsewhere [110,111].
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4.3. Current Challenges and Future Directions

In spite of the obvious advantages provided by dynamic docking over simplified and static
descriptions, the methodology is not free from challenges and indirect limitations. First and foremost,
dynamic docking is a rather novel concept in drug design, and more validation is certainly required
to better discern the relative advantages and drawbacks among the several variants and approaches.
Indeed, to the best of our knowledge, the only prospective validation was provided by Dror and
co-workers in the context of brute force MD to study ligand binding to the M2 muscarinic acetylcholine
receptor [93]. It is foreseeable that, as soon as more powerful computational architectures will be
available, more validation studies will be performed on diversified test cases.

As already mentioned, the computational time required to accomplish dynamic docking
simulations probably remains the greatest challenge of the methodology. This aspect is particularly
relevant for industry, where speed is a mandatory requirement for any drug design program. It also
explains the reason why a number of methods have been developed to reduce as much as possible
the time needed to observe a ligand binding event or to estimate relevant observables within a
given accuracy. In this context, biased-MD approaches, which can be considered to some extent
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“old-fashioned”, are still appealing as they provide a computationally cheaper way to dynamic
docking. Again, proper prospective validations will be helpful in determining whether and to what
extent it is worth to replace static molecular docking with a fully dynamic description.

Another often overlooked difficulty is related to the generation of huge amount of data. So far,
dynamic docking has been mostly employed to study a limited number of protein-ligand complexes.
However, in the context of a paradigm shift, dynamic docking is expected to replace docking and VS.
Therefore, the disk space required to store a large number of trajectories will most certainly become a
technological challenge as serious as the computational power needed to generate the data. From a
different standpoint, dynamic docking intrinsically deals with big data, and several machine learning
approaches are already available to make optimal use of trajectories (e.g., adaptive sampling).

Finally, we wish to mention that, so far, a full integration of dynamic docking into professional
and user friendly packages is still lacking. In principle, brute force dynamic docking can be performed
with any software equipped with an MD engine, whereas in-house modifications of the original codes
and/or external plugins are required by discontinuous approaches. Concerning biased dynamic
docking, most of the widely used MD software nowadays come with their own biased MD support.
Besides, the PLUMED software [112] has played a major role in providing the most flexible plugin
to enhanced sampling and, therefore, to biased dynamic docking. These aspects are summarized
in Table 3, and reveal a further difference between dynamic and static molecular docking. Indeed,
while several software packages for static molecular docking have been available since the beginning
(Table 1), a different situation is portrayed for dynamic docking. In this case, several programs (and
combination thereof) can be exploited, but no dedicated platforms are currently reported. This also
implies that experienced MD users are needed to perform and/or analyze dynamic docking. From this
standpoint, a substantial contribution towards fully automated and user friendly protocols is provided
by the BiKi Life Sciences [113], HTMD, and SEEKR software interfaces. It is likely that these and other
software packages will ultimately lead to the paradigm shift from molecular mechanics to statistical
mechanics triggered by dynamic docking.

Table 3. Examples of MD software that can be used to perform dynamic docking simulation.

Software GPU
Support

Biased MD
Support

PLUMED 2.3
Patch Available License

MD Engines

ACEMD [114] x x x 1 Free Serial Version (for Academia)
AMBER [115] x x x Paid

CHARMM [116] x x Free Serial Version
Desmond [117] x x Free for Academia
DL_POLY [118] x x x 1 Free for Academia

GROMACS [119] x x x Free
LAMMPS [120] x x x Free

NAMD [121] x x x Free
ORAC [122] x Free
Tinker [123] x Free

Software Interfaces

BiKi Life Sciences - - - Paid
HTMD - - - Free Basic Version (for Academia)
SEEKR - - - Free

1 PLUMED is natively supported by the MD engine.

5. Conclusions and Perspectives

Since its debut in the field of molecular discovery, docking simulations have proven to be
invaluable tools for discovering new compounds of pharmaceutical interest. However, to make
sense of often-discordant experimental results, a dynamical approach is mandatory to enhance the
hit-to-lead process.
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The studies reviewed herein demonstrate how a move to dynamic docking could offer great
potential and utility in understanding how ligand and proteins cooperatively exert their mechanism
of action and in characterizing binding pathways and related observables. Indeed, due to intrinsic
limitations in treating protein flexibility and explicit solvation effects, traditional approaches have
mostly underestimated the relevance of accurately estimating the binding free energies and kinetic
constants. Because the timescales of biological events exceed those that can be commonly simulated,
the earliest biased MD approaches were the only instrument for gaining insights into mechanisms and
energetics. Nevertheless, we believe that analysis of the data generated by unbiased MD approaches
and access to the necessary computational power will be made feasible by advances in hardware
architectures and machine-learning techniques. This will transform dynamic docking into an everyday
technique for drug discovery programs.

Acknowledgments: University of Bologna, Istituto Italiano di Tecnologia, and CINECA are gratefully
acknowledged for financial support.

Conflicts of Interest: Andrea Cavalli is co-founder of BiKi Technologies, a startup company that develops methods
based on molecular dynamics and related approaches for investigating protein-ligand (un)binding.

References

1. Matter, H.; Sotriffer, C. Applications and Success Stories in Virtual Screening; Wiley-VCH Verlag GmbH & Co.,
KGaA: Weinheim, Germany, 2011; ISBN 9783527633326.

2. Jorgensen, W.L. The many roles of computation in drug discovery. Science 2004, 303, 1813–1818. [CrossRef]
[PubMed]

3. De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of Molecular Dynamics and Related Methods in
Drug Discovery. J. Med. Chem. 2016, 59, 4035–4061. [CrossRef] [PubMed]

4. Carlson, H.A. Protein flexibility and drug design: How to hit a moving target. Curr. Opin. Chem. Biol. 2002,
6, 447–452. [CrossRef]

5. Copeland, R.A. The drug–target residence time model: A 10-year retrospective. Nat. Rev. Drug Discov. 2015,
15, 87–95. [CrossRef] [PubMed]

6. De Vivo, M.; Cavalli, A. Recent advances in dynamic docking for drug discovery. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2017, 7, e1320. [CrossRef]

7. Lane, T.J.; Shukla, D.; Beauchamp, K.A.; Pande, V.S. To milliseconds and beyond: Challenges in the simulation
of protein folding. Curr. Opin. Struct. Biol. 2013, 23, 58–65. [CrossRef] [PubMed]

8. Abrams, C.; Bussi, G. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange,
and Temperature-Acceleration. Entropy 2013, 16, 163–199. [CrossRef]

9. Sousa, S.F.; Ribeiro, A.J.M.; Coimbra, J.T.S.; Neves, R.P.P.; Martins, S.A.; Moorthy, N.S.H.N.; Fernandes, P.A.;
Ramos, M.J. Protein-Ligand Docking in the New Millennium—A Retrospective of 10 Years in the Field.
Curr. Med. Chem. 2013, 20, 2296–2314. [CrossRef] [PubMed]

10. Kuntz, I.D.; Blaney, J.M.; Oatley, S.J.; Langridge, R.; Ferrin, T.E. A geometric approach to
macromolecule-ligand interactions. J. Mol. Biol. 1982, 161, 269–288. [CrossRef]

11. Lill, M.A. Efficient incorporation of protein flexibility and dynamics into molecular docking simulations.
Biochemistry 2011, 50, 6157–6169. [CrossRef] [PubMed]

12. Feixas, F.; Lindert, S.; Sinko, W.; McCammon, J.A. Exploring the role of receptor flexibility in structure-based
drug discovery. Biophys. Chem. 2014, 186, 31–45. [CrossRef] [PubMed]

13. Bottegoni, G. Protein-ligand docking. Front. Biosci. 2011, 16, 2289–2306. [CrossRef]
14. Buonfiglio, R.; Recanatini, M.; Masetti, M. Protein Flexibility in Drug Discovery: From Theory to

Computation. ChemMedChem 2015, 10, 1141–1148. [CrossRef] [PubMed]
15. Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular Docking and Structure-Based Drug Design

Strategies. Molecules 2015, 20, 13384–13421. [CrossRef] [PubMed]
16. Morris, G.M.; Goodsell, D.S.; Huey, R.; Olson, A.J. Distributed automated docking of flexible ligands to

proteins: Parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 1996, 10, 293–304. [CrossRef]
[PubMed]

http://dx.doi.org/10.1126/science.1096361
http://www.ncbi.nlm.nih.gov/pubmed/15031495
http://dx.doi.org/10.1021/acs.jmedchem.5b01684
http://www.ncbi.nlm.nih.gov/pubmed/26807648
http://dx.doi.org/10.1016/S1367-5931(02)00341-1
http://dx.doi.org/10.1038/nrd.2015.18
http://www.ncbi.nlm.nih.gov/pubmed/26678621
http://dx.doi.org/10.1002/wcms.1320
http://dx.doi.org/10.1016/j.sbi.2012.11.002
http://www.ncbi.nlm.nih.gov/pubmed/23237705
http://dx.doi.org/10.3390/e16010163
http://dx.doi.org/10.2174/0929867311320180002
http://www.ncbi.nlm.nih.gov/pubmed/23531220
http://dx.doi.org/10.1016/0022-2836(82)90153-X
http://dx.doi.org/10.1021/bi2004558
http://www.ncbi.nlm.nih.gov/pubmed/21678954
http://dx.doi.org/10.1016/j.bpc.2013.10.007
http://www.ncbi.nlm.nih.gov/pubmed/24332165
http://dx.doi.org/10.2741/3854
http://dx.doi.org/10.1002/cmdc.201500086
http://www.ncbi.nlm.nih.gov/pubmed/25891095
http://dx.doi.org/10.3390/molecules200713384
http://www.ncbi.nlm.nih.gov/pubmed/26205061
http://dx.doi.org/10.1007/BF00124499
http://www.ncbi.nlm.nih.gov/pubmed/8877701


Molecules 2017, 22, 2029 17 of 21

17. Ewing, T.J.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular
docking of flexible molecule databases. J. Comput. Aided Mol. Des. 2001, 15, 411–428. [CrossRef] [PubMed]

18. Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method using an Incremental
Construction Algorithm. J. Mol. Biol. 1996, 261, 470–489. [CrossRef] [PubMed]

19. Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.;
Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method
and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [CrossRef] [PubMed]

20. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm
for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [CrossRef] [PubMed]

21. Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM—A new method for protein modeling and design: Applications
to docking and structure prediction from the distorted native conformation. J. Comput. Chem. 1994, 15,
488–506. [CrossRef]

22. Corbeil, C.R.; Williams, C.I.; Labute, P. Variability in docking success rates due to dataset preparation.
J. Comput. Aided Mol. Des. 2012, 26, 775–786. [CrossRef] [PubMed]

23. Koshland, D.E., Jr. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc. Natl. Acad.
Sci. USA 1958, 44, 98–104. [CrossRef] [PubMed]

24. Frauenfelder, H.; Sligar, S.G.; Wolynes, P.G. The energy landscapes and motions of proteins. Science 1991,
254, 1598–1603. [CrossRef] [PubMed]

25. Monod, J.; Wyman, J.; Changeux, J.P. On the nature of allosteric transitions: A plausible model. J. Mol. Biol.
1965, 12, 88–118. [CrossRef]

26. Craig, I.R.; Essex, J.W.; Spiegel, K. Ensemble Docking into Multiple Crystallographically Derived Protein
Structures: An Evaluation Based on the Statistical Analysis of Enrichments. J. Chem. Inf. Model. 2010, 50,
511–524. [CrossRef] [PubMed]

27. Rueda, M.; Bottegoni, G.; Abagyan, R. Recipes for the Selection of Experimental Protein Conformations for
Virtual Screening. J. Chem. Inf. Model. 2010, 50, 186–193. [CrossRef] [PubMed]

28. Bottegoni, G.; Rocchia, W.; Rueda, M.; Abagyan, R.; Cavalli, A. Systematic Exploitation of Multiple Receptor
Conformations for Virtual Ligand Screening. PLoS ONE 2011, 6, e18845. [CrossRef] [PubMed]

29. Gilson, M.K.; Given, J.A.; Bush, B.L.; McCammon, J.A. The statistical-thermodynamic basis for computation
of binding affinities: A critical review. Biophys. J. 1997, 72, 1047–1069. [CrossRef]

30. Liu, J.; Wang, R. Classification of Current Scoring Functions. J. Chem. Inf. Model. 2015, 55, 475–482. [CrossRef]
[PubMed]

31. Guedes, I.A.; de Magalhães, C.S.; Dardenne, L.E. Receptor–ligand molecular docking. Biophys. Rev. 2014, 6,
75–87. [CrossRef] [PubMed]

32. Cavalli, A.; Bottegoni, G.; Raco, C.; De Vivo, M.; Recanatini, M. A computational study of the binding of
propidium to the peripheral anionic site of human acetylcholinesterase. J. Med. Chem. 2004, 47, 3991–3999.
[CrossRef] [PubMed]

33. Perdih, A.; Hrast, M.; Pureber, K.; Barreteau, H.; Grdadolnik, S.G.; Kocjan, D.; Gobec, S.; Solmajer, T.;
Wolber, G. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the
bacterial Mur ligases (MurC–MurF): Experimental and computational characterization. J. Comput. Aided
Mol. Des. 2015, 29, 541–560. [CrossRef] [PubMed]

34. Sakano, T.; Mahamood, M.I.; Yamashita, T.; Fujitani, H. Molecular dynamics analysis to evaluate docking
pose prediction. Biophys. Physicobiol. 2016, 13, 181–194. [CrossRef] [PubMed]

35. Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug
design. Med. Res. Rev. 2006, 26, 531–568. [CrossRef] [PubMed]

36. Decherchi, S.; Masetti, M.; Vyalov, I.; Rocchia, W. Implicit solvent methods for free energy estimation. Eur. J.
Med. Chem. 2015, 91, 27–42. [CrossRef] [PubMed]

37. Zwanzig, R.W. High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases.
J. Chem. Phys. 1954, 22, 1420–1426. [CrossRef]

38. Kirkwood, J.G. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys. 1935, 3, 300–313. [CrossRef]
39. Masetti, M.; Cavalli, A.; Recanatini, M.; Gervasio, F.L. Exploring complex protein-ligand recognition

mechanisms with coarse metadynamics. J. Phys. Chem. B 2009, 113, 4807–4816. [CrossRef] [PubMed]

http://dx.doi.org/10.1023/A:1011115820450
http://www.ncbi.nlm.nih.gov/pubmed/11394736
http://dx.doi.org/10.1006/jmbi.1996.0477
http://www.ncbi.nlm.nih.gov/pubmed/8780787
http://dx.doi.org/10.1021/jm0306430
http://www.ncbi.nlm.nih.gov/pubmed/15027865
http://dx.doi.org/10.1006/jmbi.1996.0897
http://www.ncbi.nlm.nih.gov/pubmed/9126849
http://dx.doi.org/10.1002/jcc.540150503
http://dx.doi.org/10.1007/s10822-012-9570-1
http://www.ncbi.nlm.nih.gov/pubmed/22566074
http://dx.doi.org/10.1073/pnas.44.2.98
http://www.ncbi.nlm.nih.gov/pubmed/16590179
http://dx.doi.org/10.1126/science.1749933
http://www.ncbi.nlm.nih.gov/pubmed/1749933
http://dx.doi.org/10.1016/S0022-2836(65)80285-6
http://dx.doi.org/10.1021/ci900407c
http://www.ncbi.nlm.nih.gov/pubmed/20222690
http://dx.doi.org/10.1021/ci9003943
http://www.ncbi.nlm.nih.gov/pubmed/20000587
http://dx.doi.org/10.1371/journal.pone.0018845
http://www.ncbi.nlm.nih.gov/pubmed/21625529
http://dx.doi.org/10.1016/S0006-3495(97)78756-3
http://dx.doi.org/10.1021/ci500731a
http://www.ncbi.nlm.nih.gov/pubmed/25647463
http://dx.doi.org/10.1007/s12551-013-0130-2
http://www.ncbi.nlm.nih.gov/pubmed/28509958
http://dx.doi.org/10.1021/jm040787u
http://www.ncbi.nlm.nih.gov/pubmed/15267237
http://dx.doi.org/10.1007/s10822-015-9843-6
http://www.ncbi.nlm.nih.gov/pubmed/25851408
http://dx.doi.org/10.2142/biophysico.13.0_181
http://www.ncbi.nlm.nih.gov/pubmed/27924273
http://dx.doi.org/10.1002/med.20067
http://www.ncbi.nlm.nih.gov/pubmed/16758486
http://dx.doi.org/10.1016/j.ejmech.2014.08.064
http://www.ncbi.nlm.nih.gov/pubmed/25193298
http://dx.doi.org/10.1063/1.1740409
http://dx.doi.org/10.1063/1.1749657
http://dx.doi.org/10.1021/jp803936q
http://www.ncbi.nlm.nih.gov/pubmed/19298042


Molecules 2017, 22, 2029 18 of 21

40. Colizzi, F.; Perozzo, R.; Scapozza, L.; Recanatini, M.; Cavalli, A. Single-Molecule Pulling Simulations Can
Discern Active from Inactive Enzyme Inhibitors. J. Am. Chem. Soc. 2010, 132, 7361–7371. [CrossRef]
[PubMed]

41. Kalyaanamoorthy, S.; Chen, Y.-P.P. A steered molecular dynamics mediated hit discovery for histone
deacetylases. Phys. Chem. Chem. Phys. 2014, 16, 3777. [CrossRef] [PubMed]

42. Ruiz-Carmona, S.; Schmidtke, P.; Luque, F.J.; Baker, L.; Matassova, N.; Davis, B.; Roughley, S.; Murray, J.;
Hubbard, R.; Barril, X. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem.
2016, 9, 201–206. [CrossRef] [PubMed]

43. Amaro, R.E.; Baron, R.; McCammon, J.A. An improved relaxed complex scheme for receptor flexibility in
computer-aided drug design. J. Comput. Aided Mol. Des. 2008, 22, 693–705. [CrossRef] [PubMed]

44. Lin, J.H.; Perryman, A.L.; Schames, J.R.; McCammon, J.A. Computational drug design accommodating
receptor flexibility: The relaxed complex scheme. J. Am. Chem. Soc. 2002, 124, 5632–5633. [CrossRef]
[PubMed]

45. Masetti, M.; Cavalli, A.; Recanatini, M. Modeling the hERG potassium channel in a phospholipid bilayer:
Molecular dynamics and drug docking studies. J. Comput. Chem. 2008, 29, 795–808. [CrossRef] [PubMed]

46. Buonfiglio, R.; Ferraro, M.; Falchi, F.; Cavalli, A.; Masetti, M.; Recanatini, M. Collecting and Assessing
Human Lactate Dehydrogenase-A Conformations for Structure-Based Virtual Screening. J. Chem. Inf. Model.
2013, 53, 2792–2797. [CrossRef] [PubMed]

47. Loving, K.; Alberts, I.; Sherman, W. Computational Approaches for Fragment-Based and De Novo Design.
Curr. Top. Med. Chem. 2010, 10, 14–32. [CrossRef] [PubMed]

48. Goodford, P.J. A computational procedure for determining energetically favorable binding sites on
biologically important macromolecules. J. Med. Chem. 1985, 28, 849–857. [CrossRef] [PubMed]

49. Miranker, A.; Karplus, M. Functionality maps of binding sites: A multiple copy simultaneous search method.
Proteins Struct. Funct. Genet. 1991, 11, 29–34. [CrossRef] [PubMed]

50. Carlson, H.A.; Masukawa, K.M.; Rubins, K.; Bushman, F.D.; Jorgensen, W.L.; Lins, R.D.; Briggs, J.M.;
McCammon, J.A. Developing a Dynamic Pharmacophore Model for HIV-1 Integrase. J. Med. Chem. 2000, 43,
2100–2114. [CrossRef] [PubMed]

51. Lexa, K.W.; Carlson, H.A. Protein flexibility in docking and surface mapping. Q. Rev. Biophys. 2012, 45,
301–343. [CrossRef] [PubMed]

52. Ghanakota, P.; Carlson, H.A. Driving Structure-Based Drug Discovery through Cosolvent Molecular
Dynamics. J. Med. Chem. 2016, 59, 10383–10399. [CrossRef] [PubMed]

53. Allen, K.N.; Bellamacina, C.R.; Ding, X.; Jeffery, C.J.; Mattos, C.; Petsko, G.A.; Ringe, D. An Experimental
Approach to Mapping the Binding Surfaces of Crystalline Proteins. J. Phys. Chem. 1996, 100, 2605–2611.
[CrossRef]

54. Bakan, A.; Nevins, N.; Lakdawala, A.S.; Bahar, I. Druggability Assessment of Allosteric Proteins by Dynamics
Simulations in the Presence of Probe Molecules. J. Chem. Theory Comput. 2012, 8, 2435–2447. [CrossRef]
[PubMed]

55. Seco, J.; Luque, F.J.; Barril, X. Binding site detection and druggability index from first principles. J. Med. Chem.
2009, 52, 2363–2371. [CrossRef] [PubMed]

56. Alvarez-Garcia, D.; Barril, X. Molecular simulations with solvent competition quantify water displaceability
and provide accurate interaction maps of protein binding sites. J. Med. Chem. 2014, 57, 8530–8539. [CrossRef]
[PubMed]

57. Alvarez-Garcia, D.; Barril, X. Relationship between Protein Flexibility and Binding: Lessons for
Structure-Based Drug Design. J. Chem. Theory Comput. 2014, 10, 2608. [CrossRef] [PubMed]

58. Guvench, O.; MacKerell, A.D. Computational Fragment-Based Binding Site Identification by Ligand
Competitive Saturation. PLoS Comput. Biol. 2009, 5, e1000435. [CrossRef] [PubMed]

59. Raman, E.P.; Yu, W.; Lakkaraju, S.K.; MacKerell, A.D. Inclusion of Multiple Fragment Types in the Site
Identification by Ligand Competitive Saturation (SILCS) Approach. J. Chem. Inf. Model. 2013, 53, 3384–3398.
[CrossRef] [PubMed]

60. Lakkaraju, S.K.; Raman, E.P.; Yu, W.; MacKerell, A.D. Sampling of Organic Solutes in Aqueous and
Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte
Carlo-Molecular Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 2281–2290. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja100259r
http://www.ncbi.nlm.nih.gov/pubmed/20462212
http://dx.doi.org/10.1039/c3cp53511h
http://www.ncbi.nlm.nih.gov/pubmed/24429775
http://dx.doi.org/10.1038/nchem.2660
http://www.ncbi.nlm.nih.gov/pubmed/28221352
http://dx.doi.org/10.1007/s10822-007-9159-2
http://www.ncbi.nlm.nih.gov/pubmed/18196463
http://dx.doi.org/10.1021/ja0260162
http://www.ncbi.nlm.nih.gov/pubmed/12010024
http://dx.doi.org/10.1002/jcc.20842
http://www.ncbi.nlm.nih.gov/pubmed/17926340
http://dx.doi.org/10.1021/ci400543y
http://www.ncbi.nlm.nih.gov/pubmed/24138094
http://dx.doi.org/10.2174/156802610790232305
http://www.ncbi.nlm.nih.gov/pubmed/19929832
http://dx.doi.org/10.1021/jm00145a002
http://www.ncbi.nlm.nih.gov/pubmed/3892003
http://dx.doi.org/10.1002/prot.340110104
http://www.ncbi.nlm.nih.gov/pubmed/1961699
http://dx.doi.org/10.1021/jm990322h
http://www.ncbi.nlm.nih.gov/pubmed/10841789
http://dx.doi.org/10.1017/S0033583512000066
http://www.ncbi.nlm.nih.gov/pubmed/22569329
http://dx.doi.org/10.1021/acs.jmedchem.6b00399
http://www.ncbi.nlm.nih.gov/pubmed/27486927
http://dx.doi.org/10.1021/jp952516o
http://dx.doi.org/10.1021/ct300117j
http://www.ncbi.nlm.nih.gov/pubmed/22798729
http://dx.doi.org/10.1021/jm801385d
http://www.ncbi.nlm.nih.gov/pubmed/19296650
http://dx.doi.org/10.1021/jm5010418
http://www.ncbi.nlm.nih.gov/pubmed/25275946
http://dx.doi.org/10.1021/ct500182z
http://www.ncbi.nlm.nih.gov/pubmed/26580781
http://dx.doi.org/10.1371/journal.pcbi.1000435
http://www.ncbi.nlm.nih.gov/pubmed/19593374
http://dx.doi.org/10.1021/ci4005628
http://www.ncbi.nlm.nih.gov/pubmed/24245913
http://dx.doi.org/10.1021/ct500201y
http://www.ncbi.nlm.nih.gov/pubmed/24932136


Molecules 2017, 22, 2029 19 of 21

61. Lexa, K.W.; Carlson, H.A. Full protein flexibility is essential for proper hot-spot mapping. J. Am. Chem. Soc.
2011, 133, 200–202. [CrossRef] [PubMed]

62. Ghanakota, P.; Carlson, H.A. Moving beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
J. Phys. Chem. B 2016, 120, 8685–8695. [CrossRef] [PubMed]

63. Kimura, S.R.; Hu, H.P.; Ruvinsky, A.M.; Sherman, W.; Favia, A.D. Deciphering Cryptic Binding Sites on
Proteins by Mixed-Solvent Molecular Dynamics. J. Chem. Inf. Model. 2017, 57, 1388–1401. [CrossRef]
[PubMed]

64. Ferraro, M.; Masetti, M.; Recanatini, M.; Cavalli, A.; Bottegoni, G. Mapping cholesterol interaction sites on
serotonin transporter through coarse-grained molecular dynamics. PLoS ONE 2016, 11, e0166196. [CrossRef]
[PubMed]

65. Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation:
Umbrella sampling. J. Comput. Phys. 1977, 23, 187–199. [CrossRef]

66. Grubmüller, H.; Heymann, B.; Tavan, P. Ligand binding: Molecular mechanics calculation of the
streptavidin-biotin rupture force. Science 1996, 271, 997–999. [CrossRef] [PubMed]

67. Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 2002, 99, 12562–12566.
[CrossRef] [PubMed]

68. Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett.
1999, 314, 141–151. [CrossRef]

69. Hamelberg, D.; Mongan, J.; McCammon, J.A. Accelerated molecular dynamics: A promising and efficient
simulation method for biomolecules. J. Chem. Phys. 2004, 120, 11919–11929. [CrossRef] [PubMed]

70. Mark, A.E.; van Gunsteren, W.F.; Berendsen, H.J.C. Calculation of relative free energy via indirect pathways.
J. Chem. Phys. 1991, 94, 3808–3816. [CrossRef]

71. Nakajima, N.; Nakamura, H.; Kidera, A. Multicanonical Ensemble Generated by Molecular Dynamics
Simulation for Enhanced Conformational Sampling of Peptides. J. Phys. Chem. B 1997, 101, 817–824.
[CrossRef]

72. Gervasio, F.L.; Laio, A.; Parrinello, M. Flexible docking in solution using metadynamics. J. Am. Chem. Soc.
2005, 127, 2600–2607. [CrossRef] [PubMed]

73. Provasi, D.; Bortolato, A.; Filizola, M. Exploring molecular mechanisms of ligand recognition by opioid
receptors with metadynamics. Biochemistry 2009, 48, 10020–10029. [CrossRef] [PubMed]

74. Limongelli, V.; Bonomi, M.; Parrinello, M. Funnel metadynamics as accurate binding free-energy method.
Proc. Natl. Acad. Sci. USA 2013, 110, 6358–6363. [CrossRef] [PubMed]

75. Laio, A.; Gervasio, F.L. Metadynamics: A method to simulate rare events and reconstruct the free energy in
biophysics, chemistry and material science. Rep. Prog. Phys. 2008, 71, 126601. [CrossRef]

76. Piana, S.; Laio, A. A Bias-Exchange Approach to Protein Folding. J. Phys. Chem. B 2007, 111, 4553–4559.
[CrossRef] [PubMed]

77. Pietrucci, F.; Marinelli, F.; Carloni, P.; Laio, A. Substrate binding mechanism of HIV-1 protease from
explicit-solvent atomistic simulations. J. Am. Chem. Soc. 2009, 131, 11811–11818. [CrossRef] [PubMed]

78. Soderhjelm, P.; Tribello, G.A.; Parrinello, M. Locating binding poses in protein-ligand systems using
reconnaissance metadynamics. Proc. Natl. Acad. Sci. USA 2012, 109, 5170–5175. [CrossRef] [PubMed]

79. Yoshida, K.; Yamaguchi, T.; Okamoto, Y. Replica-exchange molecular dynamics simulation of small peptide
in water and in ethanol. Chem. Phys. Lett. 2005, 412, 280–284. [CrossRef]

80. Ostermeir, K.; Zacharias, M. Advanced replica-exchange sampling to study the flexibility and plasticity of
peptides and proteins. Biochim. Biophys. Acta 2013, 1834, 847–853. [CrossRef] [PubMed]

81. Luitz, M.P.; Zacharias, M. Protein-ligand docking using Hamiltonian replica exchange simulations with soft
core potentials. J. Chem. Inf. Model. 2014, 54, 1669–1675. [CrossRef] [PubMed]

82. Kappel, K.; Miao, Y.; McCammon, J.A. Accelerated molecular dynamics simulations of ligand binding to a
muscarinic G-protein-coupled receptor. Q. Rev. Biophys. 2015, 48, 479–487. [CrossRef] [PubMed]

83. Kamiya, N.; Yonezawa, Y.; Nakamura, H.; Higo, J. Protein-inhibitor flexible docking by a multicanonical
sampling: Native complex structure with the lowest free energy and a free-energy barrier distinguishing the
native complex from the others. Proteins Struct. Funct. Bioinform. 2007, 70, 41–53. [CrossRef] [PubMed]

84. Bekker, G.-J.; Kamiya, N.; Araki, M.; Fukuda, I.; Okuno, Y.; Nakamura, H. Accurate Prediction of Complex
Structure and Affinity for a Flexible Protein Receptor and Its Inhibitor. J. Chem. Theory Comput. 2017, 13,
2389–2399. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja1079332
http://www.ncbi.nlm.nih.gov/pubmed/21158470
http://dx.doi.org/10.1021/acs.jpcb.6b03515
http://www.ncbi.nlm.nih.gov/pubmed/27258368
http://dx.doi.org/10.1021/acs.jcim.6b00623
http://www.ncbi.nlm.nih.gov/pubmed/28537745
http://dx.doi.org/10.1371/journal.pone.0166196
http://www.ncbi.nlm.nih.gov/pubmed/27907003
http://dx.doi.org/10.1016/0021-9991(77)90121-8
http://dx.doi.org/10.1126/science.271.5251.997
http://www.ncbi.nlm.nih.gov/pubmed/8584939
http://dx.doi.org/10.1073/pnas.202427399
http://www.ncbi.nlm.nih.gov/pubmed/12271136
http://dx.doi.org/10.1016/S0009-2614(99)01123-9
http://dx.doi.org/10.1063/1.1755656
http://www.ncbi.nlm.nih.gov/pubmed/15268227
http://dx.doi.org/10.1063/1.459753
http://dx.doi.org/10.1021/jp962142e
http://dx.doi.org/10.1021/ja0445950
http://www.ncbi.nlm.nih.gov/pubmed/15725015
http://dx.doi.org/10.1021/bi901494n
http://www.ncbi.nlm.nih.gov/pubmed/19785461
http://dx.doi.org/10.1073/pnas.1303186110
http://www.ncbi.nlm.nih.gov/pubmed/23553839
http://dx.doi.org/10.1088/0034-4885/71/12/126601
http://dx.doi.org/10.1021/jp067873l
http://www.ncbi.nlm.nih.gov/pubmed/17419610
http://dx.doi.org/10.1021/ja903045y
http://www.ncbi.nlm.nih.gov/pubmed/19645490
http://dx.doi.org/10.1073/pnas.1201940109
http://www.ncbi.nlm.nih.gov/pubmed/22440749
http://dx.doi.org/10.1016/j.cplett.2005.06.114
http://dx.doi.org/10.1016/j.bbapap.2012.12.016
http://www.ncbi.nlm.nih.gov/pubmed/23298543
http://dx.doi.org/10.1021/ci500296f
http://www.ncbi.nlm.nih.gov/pubmed/24855894
http://dx.doi.org/10.1017/S0033583515000153
http://www.ncbi.nlm.nih.gov/pubmed/26537408
http://dx.doi.org/10.1002/prot.21409
http://www.ncbi.nlm.nih.gov/pubmed/17636570
http://dx.doi.org/10.1021/acs.jctc.6b01127
http://www.ncbi.nlm.nih.gov/pubmed/28482660


Molecules 2017, 22, 2029 20 of 21

85. Wang, Y.; Tajkhorshid, E. Electrostatic funneling of substrate in mitochondrial inner membrane carriers.
Proc. Natl. Acad. Sci. USA 2008, 105, 9598–9603. [CrossRef] [PubMed]

86. Shan, Y.; Kim, E.T.; Eastwood, M.P.; Dror, R.O.; Seeliger, M.A.; Shaw, D.E. How Does a Drug Molecule Find
Its Target Binding Site? J. Am. Chem. Soc. 2011, 133, 9181–9183. [CrossRef] [PubMed]

87. Buch, I.; Giorgino, T.; De Fabritiis, G. Complete reconstruction of an enzyme-inhibitor binding process by
molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2011, 108, 10184–10189. [CrossRef] [PubMed]

88. Dror, R.O.; Pan, A.C.; Arlow, D.H.; Borhani, D.W.; Maragakis, P.; Shan, Y.; Xu, H.; Shaw, D.E. Pathway
and mechanism of drug binding to G-protein-coupled receptors. Proc. Natl. Acad. Sci. USA 2011, 108,
13118–13123. [CrossRef] [PubMed]

89. Kruse, A.C.; Hu, J.; Pan, A.C.; Arlow, D.H.; Rosenbaum, D.M.; Rosemond, E.; Green, H.F.; Liu, T.; Chae, P.S.;
Dror, R.O.; et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012, 482,
552–556. [CrossRef] [PubMed]

90. Decherchi, S.; Berteotti, A.; Bottegoni, G.; Rocchia, W.; Cavalli, A. The ligand binding mechanism to purine
nucleoside phosphorylase elucidated via molecular dynamics and machine learning. Nat. Commun. 2015, 6,
6155. [CrossRef] [PubMed]

91. Ferruz, N.; Harvey, M.J.; Mestres, J.; De Fabritiis, G. Insights from Fragment Hit Binding Assays by Molecular
Simulations. J. Chem. Inf. Model. 2015, 55, 2200–2205. [CrossRef] [PubMed]

92. Bisignano, P.; Doerr, S.; Harvey, M.J.; Favia, A.D.; Cavalli, A.; De Fabritiis, G. Kinetic characterization of
fragment binding in AmpC β-lactamase by high-throughput molecular simulations. J. Chem. Inf. Model.
2014, 54, 362–366. [CrossRef] [PubMed]

93. Dror, R.O.; Green, H.F.; Valant, C.; Borhani, D.W.; Valcourt, J.R.; Pan, A.C.; Arlow, D.H.; Canals, M.; Lane, J.R.;
Rahmani, R.; et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs.
Nature 2013, 2–9. [CrossRef] [PubMed]

94. Pande, V.S.; Beauchamp, K.; Bowman, G.R. Everything you wanted to know about Markov State Models but
were afraid to ask. Methods 2010, 52, 99–105. [CrossRef] [PubMed]

95. Chodera, J.D.; Noé, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol.
2014, 25, 135–144. [CrossRef] [PubMed]

96. Plattner, N.; Noé, F. Protein conformational plasticity and complex ligand-binding kinetics explored by
atomistic simulations and Markov models. Nat. Commun. 2015, 6, 7653. [CrossRef] [PubMed]

97. Doerr, S.; De Fabritiis, G. On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput
Molecular Simulations. J. Chem. Theory Comput. 2014, 10, 2064–2069. [CrossRef] [PubMed]

98. Doerr, S.; Harvey, M.J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular
Discovery. J. Chem. Theory Comput. 2016, 12, 1845–1852. [CrossRef] [PubMed]

99. Ferruz, N.; Tresadern, G.; Pineda-Lucena, A.; De Fabritiis, G. Multibody cofactor and substrate molecular
recognition in the myo-inositol monophosphatase enzyme. Sci. Rep. 2016, 6, 30275. [CrossRef] [PubMed]

100. Stanley, N.; Pardo, L.; Fabritiis, G. De The pathway of ligand entry from the membrane bilayer to a lipid G
protein-coupled receptor. Sci. Rep. 2016, 6, 22639. [CrossRef] [PubMed]

101. Sabbadin, D.; Moro, S. Supervised Molecular Dynamics (SuMD) as a Helpful Tool To Depict GPCR–Ligand
Recognition Pathway in a Nanosecond Time Scale. J. Chem. Inf. Model. 2014, 54, 372–376. [CrossRef]
[PubMed]

102. Cuzzolin, A.; Sturlese, M.; Deganutti, G.; Salmaso, V.; Sabbadin, D.; Ciancetta, A.; Moro, S. Deciphering
the Complexity of Ligand-Protein Recognition Pathways Using Supervised Molecular Dynamics (SuMD)
Simulations. J. Chem. Inf. Model. 2016, 56, 687–705. [CrossRef] [PubMed]

103. Sabbadin, D.; Ciancetta, A.; Deganutti, G.; Cuzzolin, A.; Moro, S. Exploring the recognition pathway at the
human A2A adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics
simulations. Med. Chem. Commun. 2015, 6, 1081–1085. [CrossRef]

104. Zeller, F.; Luitz, M.P.; Bomblies, R.; Zacharias, M. Multiscale Simulation of Receptor–Drug Association
Kinetics: Application to Neuraminidase Inhibitors. J. Chem. Theory Comput. 2017, 13, 5097–5105. [CrossRef]
[PubMed]

105. Ermak, D.L.; McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69,
1352–1360. [CrossRef]

106. Votapka, L.W.; Amaro, R.E. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular
Dynamics and Milestoning. PLOS Comput. Biol. 2015, 11, e1004381. [CrossRef] [PubMed]

http://dx.doi.org/10.1073/pnas.0801786105
http://www.ncbi.nlm.nih.gov/pubmed/18621725
http://dx.doi.org/10.1021/ja202726y
http://www.ncbi.nlm.nih.gov/pubmed/21545110
http://dx.doi.org/10.1073/pnas.1103547108
http://www.ncbi.nlm.nih.gov/pubmed/21646537
http://dx.doi.org/10.1073/pnas.1104614108
http://www.ncbi.nlm.nih.gov/pubmed/21778406
http://dx.doi.org/10.1038/nature10867
http://www.ncbi.nlm.nih.gov/pubmed/22358844
http://dx.doi.org/10.1038/ncomms7155
http://www.ncbi.nlm.nih.gov/pubmed/25625196
http://dx.doi.org/10.1021/acs.jcim.5b00453
http://www.ncbi.nlm.nih.gov/pubmed/26376295
http://dx.doi.org/10.1021/ci4006063
http://www.ncbi.nlm.nih.gov/pubmed/24444037
http://dx.doi.org/10.1038/nature12595
http://www.ncbi.nlm.nih.gov/pubmed/24121438
http://dx.doi.org/10.1016/j.ymeth.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20570730
http://dx.doi.org/10.1016/j.sbi.2014.04.002
http://www.ncbi.nlm.nih.gov/pubmed/24836551
http://dx.doi.org/10.1038/ncomms8653
http://www.ncbi.nlm.nih.gov/pubmed/26134632
http://dx.doi.org/10.1021/ct400919u
http://www.ncbi.nlm.nih.gov/pubmed/26580533
http://dx.doi.org/10.1021/acs.jctc.6b00049
http://www.ncbi.nlm.nih.gov/pubmed/26949976
http://dx.doi.org/10.1038/srep30275
http://www.ncbi.nlm.nih.gov/pubmed/27440438
http://dx.doi.org/10.1038/srep22639
http://www.ncbi.nlm.nih.gov/pubmed/26940769
http://dx.doi.org/10.1021/ci400766b
http://www.ncbi.nlm.nih.gov/pubmed/24456045
http://dx.doi.org/10.1021/acs.jcim.5b00702
http://www.ncbi.nlm.nih.gov/pubmed/27019343
http://dx.doi.org/10.1039/C5MD00016E
http://dx.doi.org/10.1021/acs.jctc.7b00631
http://www.ncbi.nlm.nih.gov/pubmed/28820938
http://dx.doi.org/10.1063/1.436761
http://dx.doi.org/10.1371/journal.pcbi.1004381
http://www.ncbi.nlm.nih.gov/pubmed/26505480


Molecules 2017, 22, 2029 21 of 21

107. Votapka, L.W.; Jagger, B.R.; Heyneman, A.L.; Amaro, R.E. SEEKR: Simulation Enabled Estimation of Kinetic
Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine
Binding. J. Phys. Chem. B 2017, 121, 3597–3606. [CrossRef] [PubMed]

108. General, I.J. A Note on the Standard State’s Binding Free Energy. J. Chem. Theory Comput. 2010, 6, 2520–2524.
[CrossRef] [PubMed]

109. Baron, R.; McCammon, J.A. Molecular Recognition and Ligand Association. Annu. Rev. Phys. Chem. 2013, 64,
151–175. [CrossRef] [PubMed]

110. Bernetti, M.; Cavalli, A.; Mollica, L. Protein–ligand (un)binding kinetics as a new paradigm for drug
discovery at the crossroad between experiments and modelling. Med. Chem. Commun. 2017, 8, 534–550.
[CrossRef]

111. Deganutti, G.; Moro, S. Estimation of kinetic and thermodynamic ligand-binding parameters using
computational strategies. Future Med. Chem. 2017, 9, 507–523. [CrossRef] [PubMed]

112. Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird.
Comput. Phys. Commun. 2014, 185, 604–613. [CrossRef]

113. BiKi Technologies. Available online: http://www.bikitech.com/ (accessed on 16 November 2017).
114. Harvey, M.J.; Giupponi, G.; Fabritiis, G. De ACEMD: Accelerating Biomolecular Dynamics in the

Microsecond Time Scale. J. Chem. Theory Comput. 2009, 5, 1632–1639. [CrossRef] [PubMed]
115. Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package.

Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 198–210. [CrossRef]
116. Brooks, B.R.; Brooks, C.L.; Mackerell, A.D.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.;

Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30,
1545–1614. [CrossRef] [PubMed]

117. Guo, Z.; Mohanty, U.; Noehre, J.; Sawyer, T.K.; Sherman, W.; Krilov, G. Probing the α-Helical Structural
Stability of Stapled p53 Peptides: Molecular Dynamics Simulations and Analysis. Chem. Biol. Drug Des.
2010, 75, 348–359. [CrossRef] [PubMed]

118. Todorov, I.T.; Smith, W.; Trachenko, K.; Dove, M.T. DL_POLY_3: New dimensions in molecular dynamics
simulations via massive parallelism. J. Mater. Chem. 2006, 16, 1911. [CrossRef]

119. Pronk, S.; Páll, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.;
van der Spoel, D.; et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular
simulation toolkit. Bioinformatics 2013, 29, 845–854. [CrossRef] [PubMed]

120. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19.
[CrossRef]

121. Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.;
Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781–1802. [CrossRef]
[PubMed]

122. Procacci, P. Hybrid MPI/OpenMP Implementation of the ORAC Molecular Dynamics Program for
Generalized Ensemble and Fast Switching Alchemical Simulations. J. Chem. Inf. Model. 2016, 56, 1117–1121.
[CrossRef] [PubMed]

123. Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J.W.; Ren, P. Polarizable Atomic Multipole-Based AMOEBA
Force Field for Proteins. J. Chem. Theory Comput. 2013, 9, 4046–4063. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.jpcb.6b09388
http://www.ncbi.nlm.nih.gov/pubmed/28191969
http://dx.doi.org/10.1021/ct100255z
http://www.ncbi.nlm.nih.gov/pubmed/26613503
http://dx.doi.org/10.1146/annurev-physchem-040412-110047
http://www.ncbi.nlm.nih.gov/pubmed/23473376
http://dx.doi.org/10.1039/C6MD00581K
http://dx.doi.org/10.4155/fmc-2016-0224
http://www.ncbi.nlm.nih.gov/pubmed/28362130
http://dx.doi.org/10.1016/j.cpc.2013.09.018
http://www.bikitech.com/
http://dx.doi.org/10.1021/ct9000685
http://www.ncbi.nlm.nih.gov/pubmed/26609855
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1002/jcc.21287
http://www.ncbi.nlm.nih.gov/pubmed/19444816
http://dx.doi.org/10.1111/j.1747-0285.2010.00951.x
http://www.ncbi.nlm.nih.gov/pubmed/20331649
http://dx.doi.org/10.1039/b517931a
http://dx.doi.org/10.1093/bioinformatics/btt055
http://www.ncbi.nlm.nih.gov/pubmed/23407358
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1002/jcc.20289
http://www.ncbi.nlm.nih.gov/pubmed/16222654
http://dx.doi.org/10.1021/acs.jcim.6b00151
http://www.ncbi.nlm.nih.gov/pubmed/27231982
http://dx.doi.org/10.1021/ct4003702
http://www.ncbi.nlm.nih.gov/pubmed/24163642
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Benefits and Limitations of Static Molecular Docking 
	Posing 
	Scoring 

	Plugging MD into Static Modeling Frameworks 
	Combining Docking and Molecular Dynamics Simulations 
	Fully Dynamic Solvent Mapping 

	Dynamic Docking 
	Sampling Strategies 
	Biased MD Approaches 
	Unbiased MD Approaches 

	Estimation of Experimentally Accessible Observables 
	Current Challenges and Future Directions 

	Conclusions and Perspectives 

