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1 Introduction

Consider the Dirichlet space D on the unit disc fz 2 C W jzj < 1g of the complex plane. It can be defined as the
Reproducing Kernel Hilbert Space (RKHS) having kernel

kz.w/ D k.w; z/ D
1

zw
log

1

1 � zw
D

1X
nD0

.zw/n

nC 1
:

We are interested in the spaces Dd having kernel kd , with d 2 N. Dd can be thought of in terms of function spaces
on polydiscs, following ideas of Aronszajn [4]. To explain this point of view, note that the tensor d -power D˝d

of the Dirichlet space has reproducing kernel kd .z1; � � � ; zd Iw1; : : : ; wd / D …d
jD1

k.zj ; wj /. Hence, the space
of restrictions of functions in D˝d to the diagonal z1 D � � � D zd has the reproducing kernel kd , and therefore
coincides with Dd .

We will provide several equivalent norms for the spaces Dd and their dual spaces in Theorem 1.1. Then we will
discuss the properties of these spaces. More precisely, we will investigate:
– Dd and its dual space HSd in connection with Hankel operators of Hilbert-Schmidt class on the Dirichlet

space D;
– the complete Nevanlinna-Pick property for Dd ;
– the Carleson measures for these spaces.

Concerning the first item, the connection with Hilbert-Schmidt Hankel operators served as our original motivation
for studying the spaces Dd .
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Note that the spaces Dd live infinitely close to D in the scale of weighted Dirichlet spaces QDs , defined by the
norms

k'k2
QDs
D

C�Z
��

ˇ̌̌
'.eit /

ˇ̌̌2 dt
2�
C

Z
jzj<1

ˇ̌
'0.z/

ˇ̌2
.1 � jzj2/s

dA.z/

�
; 0 � s < 1;

where dA.z/
�

is normalized area measure on the unit disc.
Notation: We use multiindex notation. If n D .n1; : : : ; nd / belongs to Nd , then jnj D n1C� � �Cnd . We write

A � B if A and B are quantities that depend on a certain family of variables, and there exist independent constants
0 < c < C such that cA � B � CA.

Equivalent norms for the spaces Dd and their dual spaces HSd

Theorem 1.1. Let d be a positive integer and let

ad .k/ D
X
jnjDk

1

.n1 C 1/ : : : .nd C 1/
:

Then the norm of a function '.z/ D
P1
kD0b'.k/zk in Dd is

k'kDd D

 
1X
kD0

ad .k/
�1
jb'.k/j2!1=2 � Œ'�d ; (1)

where

Œ'�d D

 
1X
kD0

k C 1

logd�1.k C 2/
jb'.k/j2!1=2 : (2)

An equivalent Hilbert norm jŒ'�jd � Œ'�d for ' in terms of the values of ' is given by

jŒ'�jd D j'.0/j
2
C

0@Z
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j'0.z/j2
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1A1=2 : (3)

Define now the holomorphic space HSd by the norm:

k kHSd D

 
1X
kD0

.k C 1/2ad .k/
ˇ̌̌b .k/ˇ̌̌2!1=2 : (4)

Then, HSd � .Dd /� is the dual space of Dd under the duality pairing of D. Moreover,

k kHSd � Œ �HSd WD

 
1X
kD0

.k C 1/ logd�1.k C 2/
ˇ̌̌b .k/ˇ̌̌2!1=2 �
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0@j .0/j2 C Z
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j 0.z/j2 logd�1
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�
dA.z/

�

1A1=2 : (5)

Furthermore, the norm can be written as

k k2HSd D
X

.n1;:::;nd /

jhen1 : : : end ;  iDj
2; (6)

where feng1nD0 is the canonical orthonormal basis of D, en.z/ D znp
nC1

.
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96 N. Arcozzi et al.

The remainder of this section is devoted to the proof of Theorem 1.1. The expression for k'kDd in (1) follows
by expanding .kz/d as a power series. The equivalence k'kDd � Œ'�d , as well as k'kHSd � Œ'�HSd , are
consequences of the following lemma. We denote by c; C positive constants which are allowed to depend on d
only, whose precise value can change from line to line.

Lemma 1.2. For each d 2 N there are constants c; C > 0 such that for all k � 0 we have

cad .k/ �
logd�1.k C 2/

k C 1
� Cad .k/:

Consequently, if t 2 .0; 1/, then
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t
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logd�1.k C 2/
k C 1

tk � C

�
1

t
log

1

1 � t

�d
:

Proof of Lemma 1.2. We will prove the Lemma by induction on d 2 N. It is obvious for d D 1. Thus let d � 2

and suppose the lemma is true for d � 1. Also we observe that there is a constant c > 0 such that for all k � 0 and
0 � n � k we have

c logd�2.k C 2/ � logd�2.nC 2/C logd�2.k � nC 2/ � 2 logd�2.k C 2/:

Then for k � 0
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by the inductive assumption
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by the earlier observation
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Next, we prove the equivalence Œ'�HSd � jŒ'�jHSd which appears in (5).

Lemma 1.3. Let d 2 N. Then
1Z
0
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logd�1.k C 2/
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; k � d:

Given the Lemma, we expand
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� jb .0/j2 C 1X
kD1

k2
ˇ̌̌b .k/ˇ̌̌2 logd�1.k C 2/

k C 1

� Œ �2HSd ;

obtaining the desired conclusion.

Proof of Lemma 1.3. The case d D 1 is obvious, leaving us to consider d � 2. We will also assume that k � 2:
Then by Lemma 1.2 we have
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!
:

Now, the duality between Dd and HSd under the duality pairing given by the inner product of D is easily seen by
considering Œ��d and Œ��HSd . They are weighted `2 norms and duality is established by means of the Cauchy-Schwarz
inequality.

Next we will prove that Œ'�d � jŒ'�jd . This is equivalent to proving that the dual space of HSd , with respect
to the Dirichlet inner product h� ; �iD , is the Hilbert space with the norm jŒ��jd .

Let d 2 N and set, for 0 < t < 1, wd .t/ D
�
1
t

log 1
1�t

�d
and, for 0 < jzj < 1, Wd .z/ D wd .jzj

2/ and
Wd .0/ D 1.

Lemma 1.4. Let d 2 N. Then

1Z
1�"

wd .t/dt �

1Z
1�"

1

wd .t/
dt � "2 as "! 0:

Proof. Write Qw.t/ D .log 1
1�t

/d , and note that it suffices to establish the lemma for Qw in place of wd . Let " > 0.
Then Qw is increasing in .0; 1/ and Qw.1 � "kC1/ D .k C 1/d .log 1

"
/d , hence

1Z
1�"

Qw.t/dt D

1X
kD1

1�"kC1Z
1�"k

Qw.t/dt �

1X
kD1

Qw.1 � "kC1/."k � "kC1/

Unauthenticated
Download Date | 6/14/17 11:03 PM



98 N. Arcozzi et al.

D

1X
kD1

.k C 1/d .log
1

"
/d "k.1 � "/ � ".log

1

"
/d

1

.1 � "/d

For 1= Qw we just notice that it is decreasing and hence

1Z
1�"

1

Qw.t/
dt �

1

Qw.1 � "/
" D

"

.log 1
"
/d

Thus as "! 0 we have

"2 �

1Z
1�"

Qw.t/dt

1Z
1�"

1

Qw.t/
dt D O."2/:

For 0 < h < 1 and s 2 Œ��; �/ let Sh.eis/ be the Carleson square at eis , i.e.

Sh.e
is/ D freit W 1 � h < r < 1; jt � sj < hg:

A positive functionW on the unit disc is said to satisfy the Bekollé-Bonami condition (B2) if there exists c > 0 such
that Z

Sh.e
is/

WdA �

Z
Sh.e

is/

1

W
dA � ch4

for every Carleson square Sh.eis/. If d 2 N and if Wd .z/ is defined as above, thenZ
Sh.e

is/

WddA �

Z
Sh.e

is/

1

Wd
dA D h2

1Z
1�h

wd .t/dt �

1Z
1�h

1

wd .t/
dt � h4

by Lemma 1.4, at least if 0 < h < 1=2. Observe that both Wd and 1=Wd are positive and integrable in the unit disc,
hence it follows that the estimate holds for all 0 < h � 1.

Thus Wd satisfies the condition (B2). Furthermore, note that if f .z/ D
P1
kD0

Of .k/zk is analytic in the open
unit disc, then Z

jzj<1

jf .z/j2wd .jzj
2/
dA.z/

�
D

1X
kD0

wk j Of .k/j
2;

where wk D
R 1
0
tkwd .t/dt �

logd .kC2/
kC1

.
A special case of Theorem 2.1 of Luecking’s paper [7] says that ifW satisfies the condition (B2) by Bekollé and

Bonami [5], then one has a duality between the spaces L2a.WdA/ and L2a.
1
W
dA/ with respect to the pairing given

by
R
jzj<1

f gdA. Thus, we have

Z
jzj<1

jg.z/j2
1

Wd .z/
dA � sup

f¤0

ˇ̌̌R
jzj<1

g.z/f .z/dA.z/
�

ˇ̌̌2R
jzj<1

jf .z/j2Wd .z/dA
D sup
f¤0

ˇ̌̌P1
kD0

Og.k/

.kC1/
p
wk

p
wk Of .k/

ˇ̌̌2
P1
kD0wk j

Of .k/j2

D

1X
kD0

1

.k C 1/2wk
j Og.k/j2

This finishes the proof of (5). It remains to demonstrate (6). We defer its proof to the next section.
By Theorem 1.1 we have the following chain of inclusions:

: : : ,! HSdC1 ,! HSd ,! : : : ,! HS2 ,! HS1 D D D D1 ,! D2 ,! : : : ,! Dd ,! DdC1 ,! : : :

with duality w.r.t. D linking spaces with the same index. It might be interesting to compare this sequence with the
sequence of Banach spaces related to the Dirichlet spaces studied in [3]. Note that for d � 3 the reproducing kernel
of HSd is continuous up to the boundary. Hence functions in HSd extend continuously to the closure of the unit
disc, for d � 3.
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Hilbert-Schmidt norms of Hankel-type operators

Let feng be the canonical orthonormal basis of D, en.z/ D znp
nC1

. Equation (6) follows from the computation

1X
kD0

X
jnjDk

jhen1 :::end ;  ij
2
D

1X
kD0

X
jnjDk

1

.n1 C 1/ � ::: � .nd C 1/
jhzn1 :::znd ;  ij2

D

1X
kD0

X
jnjDk

1

.n1 C 1/ � ::: � .nd C 1/
jhzk ;  ij2 D

1X
kD0

X
jnjDk

.k C 1/2

.n1 C 1/ � ::: � .nd C 1/
j O .k/j2

D

1X
kD0

.k C 1/ad .k/j O .k/j
2
�

1X
kD0

logd�1.k C 2/
k C 1

j O .k/j2:

Polarizing this expression for k � kHSd , the inner product of HSd can be written

h 1;  2iHSd D
X

.n1;:::;nd /

h 1; en1 : : : end iDhen1 : : : end ;  2iD:

Hence, for any �; � 2 D,

hk�; k�iHSd D
X
n2Nd

hk�; en1 : : : end iDhen1 : : : end ; k�iD D
X
n2Nd

en1.�/ : : : end .�/en1.�/ : : : end .�/

D

 
1X
iD0

ei .�/ei .�/

!d
D k�.�/

d
D hkd� ; k

d
� iDd :

That is,

Proposition 1.5. The map U W k� 7! kd
�

extends to a unitary map HSd ! Dd .

When d D 2, HS2 contains those functions b for which the Hankel operator Hb W D ! D, defined by
hHbej ; ekiD D hej ek ; biD , belongs to the Hilbert-Schmidt class.

Analogous interpretations can be given for d � 3, but then function spaces on polydiscs are involved. We
consider the case d D 3, which is representative. Consider first the operator Tb W D! D˝D defined byD

Tbf; g ˝ h
E
D˝D

D hfgh; biD :

The formula uniquely defines an operator, whose action is

Tbf .z; w/ D hTbf; kzkwiD˝D

D hf kzkw; biD

D

X
n;m;j

Of .j /
zn

nC 1

wm

mC 1
h�nCmCj ; biD

D

X
n;m;j

Of .j / Ob.nCmC j /
nCmC j C 1

.nC 1/.mC 1/
znwm

Then, the Hilbert-Schmidt norm of Tb is:X
l;m;n

ˇ̌
hTbel ; emeniD˝D

ˇ̌2
D

X
l;m;n

jhelemen; biDj
2
D kbk2HS3 :

Similarly, we can consider Ub W D˝D! D defined byD
Ub.f ˝ g/; h

E
D
D hfgh; biD :
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The action of this operator is given by

Ub.f ˝ g/.z/ D

1X
l;m;nD0

bf .l/bg.m/.l CmC nC 1/bb.l CmC n/
nC 1

zn:

The Hilbert-Schmidt norm of Ub is still kbkHS3 .

Carleson measures for the spaces Dd and HSd

The (B2) condition allows us to characterize the Carleson measures for the spaces Dd and HSd . Recall that a
nonnegative Borel measure � on the open unit disc is Carleson for the Hilbert function space H if the inequalityZ

jzj<1

jf j2d� � C.�/kf k2H

holds with a constant C.�/ which is independent of f . The characterization [2] shows that, since the (B2) condition
holds, then

Theorem 1.6. For d 2 N, a measure � � 0 on fjzj < 1g is Carleson for Dd if and only if for jaj < 1 we have:Z
QS.a/

logd�1
�

1

1 � jzj2

�
.1 � jzj2/�.S.z/ \ S.a//2

dxdy

.1 � jzj2/2
� C1.�/�.S.a//;

where S.a/ D fz W 0 < 1 � jzj < 1 � jaj; j arg.za/j < 1 � jajg is the Carleson box with vertex a and QS.a/ D fz W
0 < 1 � jzj < 2.1 � jaj/; j arg.za/j < 2.1 � jaj/g is its “dilation”.

The characterization extends to HS2, with the weight log�1
�

1

1�jzj2

�
. Since functions in HSd are continuous for

d � 3, all finite measures are Carleson measures for these spaces. Once we know the Carleson measures, we can
characterize the multipliers for Dd in a standard way.

The complete Nevanlinna-Pick property for Dd

Next, we prove that the spaces Dd have the Complete Nevanlinna-Pick (CNP) Property. Much research has been
done on kernels with the CNP property in the past twenty years, following seminal work of Sarason and Agler. See
the monograph [1] for a comprehensive and very readable introduction to this topic. We give here a definition which
is simple to state, although perhaps not the most conceptual. An irreducible kernel k W X � X ! C has the CNP
property if there is a positive definite function F W X ! D and a nowhere vanishing function ı W X ! C such that:

k.x; y/ D
ı.x/ı.y/

1 � F.x; y/

whenever x; y lie in X . The CNP property is a property of the kernel, not of the Hilbert space itself.

Theorem 1.7. There are norms on Dd such that the CNP property holds.

Proof. A kernel k W D � D ! C of the form k.w; z/ D
P1
kD0 ak.zw/

k has the CNP property if a0 D 1 and the
sequence fang1nD0 is positive and log-convex:

an�1

an
�

an

anC1
:
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See [1], Theorem 7.33 and Lemma 7.38. Consider �.x/ D ˛ log log.x/ � log.x/, with real ˛. Then, �00.x/ D
log2.x/�˛ log.x/�˛

x2 log2.x/
, which is positive for x �M˛ , depending on ˛. Let now

an D
logd�1.Md .nC 1//

log.Md / � .nC 1/
�

1

nC 1
C

logd�1.nC 1/
nC 1

(7)

Then, the sequence fang1nD0 provides the coefficients for a kernel with the CNP property for the space Dd .

The CNP property has a number of consequences. For instance, we have that the space Dd and its multiplier algebra
M.Dd / have the same interpolating sequences. Recall that a sequence Z D fzng1nD0 is interpolating for a RKHS

H with reproducing kernel kH if the weighted restriction map R W ' 7!
n

'.zn/

kH .zn;zn/1=2

o1
nD0

maps H boundedly

onto `2; whileZ is interpolating for the multiplier algebraM.H/ ifQ W  7! f .zn/g
1
nD0 mapsM.H/ boundedly

onto `1. The reader is referred to [1] and to the second chapter of [8] for more on this topic.
It is a reasonable guess that the universal interpolating sequences for Dd and for its multiplier spaceM.Dd / are

characterized by a Carleson condition and a separation condition, as described in [8] (see the Conjecture at p. 33).
See also [6], which contains the best known result on interpolation in general RKHS spaces with the CNP property.
Unfortunately we do not have an answer for the spaces Dd .
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