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1. Introduction

Nowadays, traditional population censuses based on total enumeration of the pop-
ulation are being accompanied by sample surveys. In the United States, Census
Bureau implemented statistical sampling in a decennial census for the first time
in 1940. From then on, sampling within censuses have been adopted in several
European and non-European countries (Kish, 1979; Wright, 1998; Blum, 1999;
UNECE, 2007). Sampling within censuses allows to reduce costs and workload
of authorities involved in censuses operations, along with the statistical burden
for the people involved in the enumeration. From the statistical point of view,
sampling-based techniques allow to reduce non-sampling errors that affected the
quality of census data at the price of introducing sampling errors that need to be
properly managed.
The Italian National Institute of Statistics (Istat) introduced sampling-based tech-
niques as one of the main innovations characterising the 2011 Italian Population
Census. In particular, sampling techniques have been adopted for the simultane-
ous use of short and long form questionnaires. The short form questionnaire con-
cerns a small set of variables, related to all demographic and a few socio-economic
data. The logn form questionnaire concerns the whole set of census variables.
In municipalities with more than 20.000 inhabitants and in provinces capitals,
such long form questionnaire have been submitted to a sample of households,
while in municipalities with less than 20.000 persons a traditional approach have
been planned, by submitting the long form to the whole population (Istat, 2012,
2010). With regard to the sampling design, simple random sampling of house-
holds within Enumeration Areas (EA) was planned. The innovations give rise to
several methodological challenges, related to the management of sampling error
for delivering sensible estimates of population quantities. Among these challenges,
it emerges the need to estimate multi-way contingency table involving variables
measured via short form (census) and a long form (sampling) variable. In this
framework, two main issues need to be addressed: first of all, sample size for esti-
mating some of the entries of the contingency tables may be too small, delivering
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estimates prone to huge sampling variability. On the other hand, since estimates
of the joint distribution need to be coherent with the marginal distribution of the
variable collected via a census, estimation methods need to be coherent with the
constraint imposed by the marginal distribution of variables measured with the
short form questionnaire. Moreover, several coherence constraints at several levels
of geographical aggregation are imposed by the Istat publication plan. In a design
based approach, Generalised Raking (Deville et al., 1993) is a natural choice for
contingency tables estimation that comply to such constraints: this method is
considered as a benchmark in what follows and comparisons with the model-based
method proposed in this paper are discussed.
In the literature, this problem have been managed following both a design-based
and a model-based approach (Little and Wu, 1991; Melilil and Petris, 1995; Pfef-
fermann and Tiller, 2006; Steorts and Ghosh, 2013; You et al., 2013). In this paper
we propose a small area model-based approach that takes account of the coherence
constraints both with respect to marginal distributions of variables measured via
short form and with respect to figures obtained by aggregating such tables in ge-
ographical areas. The proposed method allows borrowing strength between areas
and, as a consequence, it delivers more precise estimates than those obtained by
direct estimators (Rao and Molina, 2015).
For the sake of simplicity, the proposed method is illustrated on a fairly small
three-way contingency table comprising the variables Sex, Age and Economic Ac-
tivity (EcA). Variable EcA consists in an Italian version of the European NACE
classification of economic activities. According to the Istat publication plan, vari-
ables Sex and Age are measured via short form and comprise I = 2 and L = 4
categories respectively. EcA is collected on a sample, via long form, and comprises
K = 3 categories. We aim at estimating EcA population counts in A = 9 Enumer-
ation Areas, such that estimates are coherent within areas and, when marginalising
with respect to EAs, they allow to obtain the municipality-level table. Thus, in
a given area, a I × L × K contingency table needs to be estimated. By means
of a Monte Carlo experiment we compare the sampling errors of the proposed
approaches to those of the Generalized Raking estimator. The rest of this paper
is organised as follows: in Section 2 the estimation problem is formally described
and a Bayesian model for coherence within EA-specific multy-way table is intro-
duced. Finally, a posterior transformation approach for geographical coherence is
discussed. Section 3 is devoted to a Monte Carlo simulation study for compari-
son with the Generalised Raking estimator. Some final remarks are sketched in
Section 4.

2. A bayesian small area model

In this section we propose a model-based approach for the estimation of contin-
gency tables at the Enumeration Area level when marginal distributions of vari-
ables collected via short form are known. In what follows, we denote with N cell
counts known by census while cell counts involving variables subject to sampling
are denoted as θ.
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TABLE 1

Coherence in estimated contingency tables - Enumeration area level.

Sex i = 1 Sex i = 2
Age Age

EcA l = 1 l = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4
k = 1 θ11a1 θ12a1 θ13a1 θ14a1 θ21a1 θ22a1 θ23a1 θ24a1 θa1
k = 2 θ11a2 θ12a2 θ13a2 θ14a2 θ21a2 θ22a2 θ23a2 θ24a2 θa2
k = 3 θ11a3 θ12a3 θ13a3 θ14a3 θ21a3 θ22a3 θ23a3 θ24a3 θa3

N11a N12a N13a N14a N21a N22a N23a N24a

TABLE 2

Coherence in estimated contingency tables - Municipality level.

Sex i = 1 Sex i = 2
Age Age

EcA l = 1 l = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4
k = 1 N111 N121 N131 N141 N211 N221 N231 N241 N1

k = 2 N112 N122 N132 N142 N212 N222 N232 N242 N2

k = 3 N113 N123 N133 N143 N213 N223 N233 N243 N3

N11 N12 N13 N14 N21 N22 N23 N24

Table 1 reports the three-way contingency table to be estimated for a given
Enumeration Area. Since the last row of this table concerns only variables mea-
sured via short form, it constitutes a constraint for the estimates of the table
entries. Namely, estimates of entries θilak need to comply with the coherence
constraint:

K
∑

k=1

θilak = Nila i = 1, . . . , I; l = 1, . . . , L; a = 1, . . . , A (1)

Note that this table needs to be estimated for all EAs, a = 1, . . . , A. Table 2
illustrates the municipality-level contingency table. In what follows we consider
municipality-level counts Nilk to be known, even if they have been obtained as
Nilk = θ̂GR

ilk , where θ̂GR
ilk is the generic entry of the contingency table estimated via

Generalized Raking at the municipal level. This assumption is motivated by the
fact that sample size at the municipality level is large enough to ensure negligible
sampling variability. Coherence of the estimated contingency tables at EA-level
requires that:

A
∑

a=1

θilak = Nilk i = 1, . . . , I; l = 1, . . . , L; k = 1, . . . ,K (2)

The strategy we propose in order to obtain estimates complying with both con-
straints (1) and (2) is structured in two steps: firstly, we propose a Bayesian Hierar-
chical model in order to comply with constraint (1), obtaining Monte Carlo Markov
Chain (MCMC) samples from the posterior distribution of unknown counts. Suc-
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cessively, a transformation approach is used to transform the posterior distribution
via Raking, in order to comply with constraint (2).

2.1. A Bayesian hierarchical model - Complying with area-level constraints

The following three-level Bayesian hierarchical model take account of the sampling
variability of direct estimates at the first level. The second level relates the EA-
level three-way contingency table to the municipality-level table, while the third
level is devoted to the management of the borrowing strength process.
Let θ̂HT

ila be the (K-1)-dimensional vector of the unconstrained Horvitz-Thompson
estimates of the number of individuals with Sex = i, Age = l, belonging to the
first K-1 categories of the variable EcA at the a-th area.
At the first level of the hierarchy, sampling variability of the design-based estimates
is taken into account by the following area-level model:

θ̂HT
ila• ∼ Nk−1(θila•,Σila) (3)

where the covariance matrix Σila = f(θila•) measuring the uncertainty of
Horvitz-Thompson estimates, is a function of the unknown parameters θila•. Even
if the sampling units are indeed households, the function f is specified under the
simplifying hypothesis of simple random sampling of individuals in Enumeration
Areas, since the Design Effect of cluster sampling is broadly equal to 1. Under
this hypotheses:

Σila(k,k) =
Na − na

Nana

(θilak + .5)(Na − θilak − .5) k = 1, . . . ,K − 1 (4)

Σila(k,k′) =
Na − na

Nana

(θilak + .5)(Na − θilak′ − .5) k 6= k′ (5)

whereNa and na are, respectively, the population count and the sample size in area
a. This specification of the covariance matrix allows to address two problems. First
of all, it avoids to use design-based (direct) estimates for building the covariance
matrix: such estimates are usually considered known and, because they suffer from
huge sampling variability, are subject to smoothing for building the covariance
matrix. Second, the variance for entries whose estimate is zero can be evaluated.

At the second level, in order to relate EA-level tables to the municipality-level
table, the following Multinomial model is assumed:

(θ̂ila•, θ̂ilaK) ∼ Multinomial(p1|ila, . . . , pK|ila, Nila) (6)

where pk|ila denotes the conditional probability to be in EcA = k given that
Sex = i, Age = l and Area = a. It is worth noting that this specification allows
to comply with constraint (1) but does not take account of constraint (2): for this
reason, estimates obtained by this model will need further adjustment.
Conditional probabilities pk|ila are modeled as:

logitm(p•|ila) = logitm(p•|il) + vila• (7)
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where vila• is an area-specific random effect and logitm() is the multivariate
logit function. Vector p•|il denotes the conditional distribution of the variable
EcA in the municipality under study, assumed to be known. Thus, area-level con-
ditional probabilities are centered on the municipality-level known probabilities,
and random effects vila• are devoted to manage heterogeneity between areas. As
regards random effects vila•, we assume

vila• ∼ NK−1(0,Γil) (8)

Γ−1
il ∼ Wishart(IK−1,K − 1) (9)

where Γil denotes the random effects covariance matrix for which a fairly vague
Wishart prior is chosen. This specification allows borrowing strength between ar-
eas: actually, it implies shrinkage of area-level estimates toward municipality level
known quantities. More general specification of the covariance matrix can be ob-
tained by introducing further relationships of conditional dependence among areas,
taking into account, as an example, spatial correlation or similarity with respect
to socio-economic features. Such extensions will be object of future research.

2.2. Transformation of the posterior distribution - Complying with municipality-

level constraints

The model specified in equations (3)-(8) can be estimated by means of a MCMC
algorithm. Since the proposed model is fairly simple, it can be easily estimated
with standard software for MCMC-based Bayesian Inference such as OpenBugs
(Lunn et al., 2000) or STAN (Carpenter et al., 2016).

The problem to be addressed in this section is that model-based estimates θ̂Mila• =

E(θila•|θ̂
HT
ila•) do not comply with constraint (2), i.e.

A
∑

a=1

θ̂Mila• 6= Nilk (10)

In a fully Bayesian approach, this could be managed by a more sophisticated
model that generalizes the Multinomial distribution according to a suitable mul-
tivariate distribution belonging to the Fréchet class. However, flexible (and easy-
to-implement in a MCMC framework) distributions belonging to this class are not
known (see, among others, Melilil and Petris (1995)). An immediate straightfor-
ward approach could consist in raking of the posterior means (see for example Fay
and Herriot (1979)), but this would fail to properly take into account posterior
uncertainty. For this reason, we follow a more customary approach adopting the
transformation methodology proposed in Gunn and Dunson (2005).
Given an MCMC sample of size G, θgila•, g = 1, . . . , G from the posterior distribu-

tions p(θila•|θ̂
HT
• ), we obtain G samples from the posterior distribution of raked

estimates by raking each MCMC sample, this turns out in the transformation:

p(θila•|θ̂
HT
• ) Raking

−−−−−→
p(θ∗ila•|θ̂

HT
• ) (11)
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This delivers an MCMC sample θ∗,gila•, g = 1, . . . , G, from the posterior distribu-

tion p(θ∗ila•|θ̂
HT
• ) that can be used to produce both point estimates and uncertainty

measures related to cell count estimates. The important point is that raked pos-
terior distributions allow to comply with both coherence constrains (1) and (2),

indeed
∑A

a=1 θ
∗
ila• = Nilk.

For this reason, we propose as point estimator for cell counts:

θ̂RPD
ila• = E(θ∗ila•|θ̂

HT
• ) (12)

Since model implementation and raking of the posterior distribution are fairly
simple, the procedure described in this Section can adopted in a more general
framework where a huge number of coherent multy-way tables need to be estimated
in order to deliver detailed official statistics.

3. A Monte Carlo experiment

In this section we discuss the results of a Monte Carlo experiment designed for
comparing the efficiency of model based estimates θ̂RPD

ila• (12) with Generalised

Raking estimates denoted in what follows as θ̂GR
ila•. The experiment is based on

data from the 2001 Population Census coming from a municipality composed by
9 Enumeration Areas. Both design based and model based estimates are obtained
on B = 1000 Monte Carlo samples. As a measure of performance, we use the
Relative Mean Squared Error (RMSE) defined as:

sRMSEilak =
1

B

B
∑

b=1

(

θ̂b,silak − θilak
θilak

)2

(13)

where subscript s = RPD is referred to model-based estimates obtained by
Raking the Posterior Distribution while s = GR is referred to design-based esti-
mates obtained via Generalised Raking; θ̂b,RPD

ilak is the posterior mean of θilak based
on the b-th Monte Carlo simulation. In Figure 3, GRRMSE and RPDRMSE are
compared for each θilak > 0. Results show that GRRMSE is, for a large number
of cells, quite greater than RPDRMSE. This positive feature of the model-based
approach is particularly appreciable for cells with small population counts. In-
deed, as expected, the merit of the borrowing strength process activated by the
model is particularly appreciable when cell-specific sample size is not large enough
in order to deliver stable estimates. For this reason, from now on we restrict our
attention to performances on population cells with frequency less than 10%.

In Table 3, results for groups of cells with population frequencies between 0.1%
and 30% are summarized. For each group of frequencies, the average RMSE of
the Generalised Raking estimator, the number of cells involved, the average count
within cells and the ratio RPDRMSE/GRRMSE are reported.

The gain in efficiency obtained from model-based estimation is inversely pro-
portional to the frequency to be estimated. When population cell frequencies are
between 10% and 30% (see last row of Table 3), both model-based and design-
based estimates are very precise due to the high sampling fraction, this turns out
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Figure 1 – RPDRMSE vs GRRMSE, the solid line indicates the bisector of the first
quadrant.

TABLE 3

Comparison between model-based and design-based approach in terms of RMSE for cell

frequencies< 30%.

Frequencies GRRMSE Cells N̄ RPDRMSE/GRRMSE
0 -0.0001 1.1253 31 3.06 0.3090
0.0001-0.0025 0.1918 38 8.39 0.3914
0.0025-0.005 0.0878 17 20.53 0.6065
0.005-0.01 0.0398 12 44.75 0.7252
0.01-0.05 0.0098 38 168.18 0.9074
0.05-0.1 0.0015 38 397.45 0.9450
0.1-0.3 0.0005 20 1423.40 1.0364
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Figure 2 – Sampling distribution of θ̂GR

ila• (first line) and θ̂
RPD

ila• (second line). The vertical
line is referred to true counts.

in a negligible RMSE for both GR and RPD estimates: thus, for these cells, ad-
justment obtained by raking the posterior distribution is irrelevant. On the other
hand, when cell frequencies are lower than 10%, the merit of the model-based
procedure is evident. The ratio RPDRMSE/GRRMSE ranges from 0.3 for the 31
cells with very low frequencies to 0.94 for for the 38 cells with frequencies between
5% and 10 %.

Figure 3 compares the sampling distribution of θ̂RPD
ila• and θ̂GR

ila• for selected
cells with small counts. The reduction in sampling variance is quite evident:
both estimators are centred around the true value, but the θ̂RPD

ila• estimator is
more concentrated and shows improvements with respect to the left tail, i.e. with
respect to samples where the θ̂GR

ila• underestimates the true value.

As a further display of simulation results, Figure 3 reports box-plots of the
sampling distribution of the estimators for true cell counts between 0 and 19.
When the true cell count is zero, θ̂GR

ila• is always equal to zero since, when sample
data provide a 0 direct estimate, the estimator is equal to 0. For this reason,
almost all box-plots referred to this estimator include 0 even for larger counts.
On the other hand, θ̂RPD

ila• show a clear increasing trend of all the quantiles of the
sampling distribution with respect to true counts.

4. Conclusions and future work

Introduction of sampling techniques within population censuses raise several prob-
lems related to estimation of population quantities. In this paper we dealt with
one of those problems, i.e. the estimation of coherent multi-way tables. The pro-
posed approach is based on a Bayesian hierarchical model for achieving within-area
coherence and raking of the posterior distribution for achieving municipality-level
coherence.
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Figure 3 – Box-plots of the sampling distribution of θ̂GR

ila• (first panel) and θ̂
RPD

ila• (second
panel) vs true counts.

The proposed methodology is built with the aim to deliver a feasible estimation
procedure with respect to computational effort and stability of the algorithms.
This is particularly appealing if one considers that Istat needs to produce a huge
amount of coherent multi-way tables for hundreds of different variables measured
via long form and for different levels of spatial aggregation. Despite of its simplic-
ity, the method have proven to be very efficient in reducing the sampling variability
of direct estimates by activating a borrowing strength process. Such process can
be extended in several directions by specifying different structures of the random
effects covariance matrix and by introducing further relationships of conditional
dependence between Enumeration Areas. A limitation of the RPD estimator is its
applicability to only one long form variable at a time. Extensions to the case of
considering several variables subject to sampling will be object of future research.
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Summary

Nowadays, traditional population censuses based on total enumeration of the population
are being accompanied by sample surveys. Sampling within censuses allows to reduce
costs and workload of authorities involved in censuses operations, along with the sta-
tistical burden for the people involved in the enumeration. In this paper, we deal with
estimation of multi-way contingency tables involving variables measured both via cen-
sus and sampling. In this framework, two main issues need to be addressed: first of
all, sample size for estimating some of the entries of the contingency tables may be too
small, delivering estimates prone to huge sampling variability. On the other hand, since
estimates of the joint distribution need to be coherent with the marginal distribution
of the variable collected via a census, estimation methods need to be coherent with
the constraint imposed by marginal distribution of variables measured via census. The
problem is tackled via a model-based approach that allows to comply with all coherence
constraints following a fairly simple procedure. The merit of the proposed methodology
is illustrated by means of a simulation study.

Keywords: Population Census; Multi-way tables; Generalised Raking; Bayesian hierar-
chical models.


