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Numerous data show a reciprocal interaction between REM sleep and thermoregulation.

During REM sleep, the function of thermoregulation appears to be impaired; from

the other hand, the tonic activation of thermogenesis, such as during cold exposure,

suppresses REM sleep occurrence. Recently, both the central neural network controlling

REM sleep and the central neural network controlling thermoregulation have been

progressively unraveled. Thermoregulation was shown to be controlled by a central

“core” circuit, responsible for the maintenance of body temperature, modulated by

a set of accessory areas. REM sleep was suggested to be controlled by a group

of hypothalamic neurons overlooking at the REM sleep generating circuits within the

brainstem. The two networks overlap in a few areas, and in this review, we will suggest

that in such overlapmay reside the explanation of the reciprocal interaction between REM

sleep and thermoregulation. Considering the peculiar modulation of thermoregulation by

REM sleep the result of their coincidental evolution, REM sleep may therefore be seen

as a period of transient heterothermy.

Keywords: REM sleep, thermoregulation, heterothermy, median preoptic nucleus, periaqueductal gray, lateral

parabrachial nucleus, orexin, melanin concentrating hormone

The primary function of rapid-eye movement sleep (REMS) is still unknown, but the finding that
the daily amount of REMS is “homeostatically” regulated (Cerri et al., 2005; Amici et al., 2008)
suggests that it may satisfy some primary physiological needs. Pioneering studies showed that
REMS occurrence is depressed at an ambient temperature (Ta) outside the thermoneutral range
of the species (Parmeggiani and Rabini, 1967a), and thermoregulatory responses, such as shivering
and panting, are suppressed during REMS (Parmeggiani and Rabini, 1967b). This thermoregulatory
impairment has been confirmed by different studies (Parmeggiani, 2003; Heller, 2005). Also,
since the direct warming and cooling of the preoptic area (POA) was shown to be inefficient in
eliciting appropriate thermoregulatory responses during REMS, such an impairment was ascribed
to a suspension in the central control of body temperature (Tb) (Parmeggiani et al., 1973, 1977;
Glotzbach and Heller, 1976; Martelli et al., 2014).

However, the few studies on changes in POA neuronal thermosensitivity during sleep
(Parmeggiani et al., 1983, 1986, 1987; Glotzbach and Heller, 1984; Alam et al., 1995) have not
clarified the mechanisms of POA unresponsiveness during REMS. Consequently, investigations
into the relationship between REMS and thermoregulation have been mostly phenomenal. A more
mechanistic milieu has arisen from recent studies on thermoregulatory circuits (Morrison and
Nakamura, 2011), and the critical role of the hypothalamus in sleep has been recognized (Saper
et al., 2005). In this mini-review we will: (i) provide a brief data overview describing the interaction
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between REMS and thermoregulation; (ii) summarize the central
networks regulating REMS and Tb and the areas in which they
overlap and, (iii) suggest possible mechanisms of the reciprocal
interaction between REMS and thermoregulation.

REM SLEEP AND THERMOREGULATION

Initial studies on the interaction between sleep and
thermoregulation were carried out, in different species, at
both low and high Tas (Parmeggiani and Rabini, 1970; Schmidek
et al., 1972; Haskell et al., 1981; Sichieri and Schmidek, 1984).
They showed that REMS amount plotted against Ta values
took the shape of an inverted U curve, with a maximum value
moving in accordance with acclimation to Ta. In rats, the peak of
REMS occurrence defined a thermoneutral zone (TNZ) that was
narrower than that delimited by the minimal O2 consumption
(Szymusiak and Satinoff, 1981). Thus, REMS occurrence is
influenced by thermoregulation and declines at Tas beyond the
TNZ limits. In accordance with this, not only REMS expression
is higher at the circadian nadir of Tb, but also the two rhythms
are phase-locked in free-running conditions (Lee et al., 2009).

It is worth noting that, in the latter condition, REMS
occurrence is preceded, during Wake and NREM sleep
(NREMS), by postural adjustments that optimize thermal
exchanges (Parmeggiani, 1980); the potential inhibition of REMS
occurrence according to Ta belongs to the same repertoire
of behavioral thermoregulation. In the rat, the efficacy of
this mechanism is revealed by the observation that, during
the acclimation to Tas close to the TNZ boundaries, REMS
occurrence is initially reduced and then restored to control levels
in about 1 week (Mahapatra et al., 2005; Kaushik et al., 2012).

Since endothermic homeotherms evolved with a Tb that
was much closer to the upper than to the lower limit of their
lethal core temperature, the interaction between REMS and
thermoregulation has mostly been addressed within the wider
span of cold defense mechanisms. In the rat, this approach
showed that REMS is reduced proportionally to Ta and that
the REMS debt is fully recovered, following the return to TNZ,
through a mechanism based on the frequency rather than the
duration of episodes (Cerri et al., 2005; Amici et al., 2008).
This pattern, qualitatively described in early reports (Schmidek
et al., 1972; Sichieri and Schmidek, 1984), appears to conform to
the energetic constrains of polyphasic sleep in small mammals
(Capellini et al., 2008).

Long-term selective REMS deprivation studies have
been performed in the rat (Rechtschaffen et al., 1983). The
results showed that animals progressively developed a severe
hypothermia, caused by an increase in heat loss (Bergmann
et al., 1989). This appeared to be counteracted by behavioral
thermoregulation, since deprived animals were able to select
progressively higher Tas in a thermal gradient (Prete et al., 1991),
but not by an increase in metabolic rate, which was concomitant
with an incremental hyperphagia. These results were further
clarified by the finding, in REMS-deprived rats, of an increased
expression of the uncoupling protein-1 in the brown adipose
tissue (BAT) and a decrease in leptin secretion (Koban and

Swinson, 2005). Thus, it appears that a long-lasting deficiency
of periods of central thermoregulatory unresponsiveness,
represented by REMS, will progress to a malfunctioning of
the different thermoeffector loops balancing Tb (Romanovsky,
2007).

The onset of REMS is characterized by an increase in
hypothalamic temperature (Thy) (Kawamura and Sawyer, 1965),
which is usually in the range of decimals of a degree and evident
even outside the TNZ (Parmeggiani, 2003). This change was
conditionally coupled to the increase in cerebral blood flow
characterizing REMS (Franzini, 1992) until it was shown that it
mainly depends on an larger increase in the flow from vertebral
arteries compared to that from carotid arteries, the former circle
supplying the brain with warmer blood than the latter (Azzaroni
and Parmeggiani, 1993).

The thermal irrelevance of the Thy increase during REMS
episodes contrasts with its strictly controlled decrease, during
NREMS episodes leading to REMS occurrence (Parmeggiani
et al., 1975). With respect to this, a quantitative study on the
slope of that decrease showed the possibility to predict the onset
of REMS within a 1 min interval (Capitani et al., 2005).

The thermal irresponsiveness of POA, decrease in the
overall O2 consumption and increase in the overall heat loss
(Roussel and Bittel, 1979; Schmidek et al., 1983), probably
due to changes in peripheral vasomotion in opposition to a
homeothermic control of Tb (Parmeggiani et al., 1977; Franzini
et al., 1982; Alfoldi et al., 1990), support the view that REMS
is a poikilothermic state, while Wake and NREMS remain
homeothermic (Parmeggiani, 2003).

By taking into account the autonomic irregularities
associated with REMS (Parmeggiani, 1980; Amici et al.,
2014) this dichotomy may be extended to systemic physiological
regulations, indicating a poikilostatic control for REMS and the
permanence of a homeostatic control for Wake and NREMS
(Parmeggiani, 2003). According to this view, POA thermal
irresponsiveness depends on an impairment of diencephalic
integrative activity. Thus, physiological regulation during
REMS should mainly operate through a brainstem reflex
activity, destitute of the hypothalamic control (Parmeggiani,
2003). However, hypothalamic osmoregulation, which is
phylogenetically older than thermoregulation, is not impaired
during REMS (Luppi et al., 2010), and REMS occurrence is
hardly affected by a long-lasting water deprivation (Martelli
et al., 2012). These results raise the possibility that the distinctive
trait of REMS is the development of a poikilothermic condition,
and this may be the reason why REMS occurrence is so intensely
influenced by thermoregulation.

THE CENTRAL CIRCUITS CONTROLLING
REM SLEEP AND THERMOREGULATION

The Central Network Controlling REM
Sleep
The neural network controlling REMS onset was initially
outlined in the cat (Jouvet, 1962) and, later, in the rat (Luppi et al.,
2014, 2017). In the cat, a central role in REMS generation has
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been attributed to pontine cholinoceptive/cholinergic neurons
(Vanni-Mercier et al., 1989; Sakai and Koyama, 1996). In the
rat, the crucial role of pontine structures in REMS generation
has been confirmed, and general agreement has been reached
regarding the prominent role of REMS-on glutamatergic neurons
of the sublaterodorsal tegmental nucleus (SLD) (Luppi et al.,
2014, 2017). Projections from SLD have been shown to activate
neural networks underlying both brain cortical and somatic
hallmarks of REMS (Luppi et al., 2014, 2017).

SLD neurons receive a tonic excitatory glutamatergic input
from different brain areas and are kept inhibited during
Wake and NREMS by projections from REMS-off neurons
of the ventrolateral periaqueductal gray (VlPAG) and the
dorsal deep mesencephalic reticular nuclei (dDPMe) (Luppi
et al., 2014, 2017). VlPAG/dDPMe REMS-off neurons are
excited by both orexin neurons in the lateral hypothalamus
(LH) and monoaminergic neurons in the brainstem and
tuberomammillary wake-promoting areas.

The inhibition of these VlPAG/dDPMe REMS-off neurons is
apparently crucial for REMS onset. Active inhibition is promoted
by a sub-population of VlPAG GABAergic REMS-on neurons,
while disfacilitation is due to the suppression of firing, during
REMS, of monoaminergic wake-promoting neurons, to which
GABAergic REMS-on VlPAG neurons also send their terminals.
It has been proposed that further inhibitory inputs arise from
ascending GABAergic projections from the medulla in both rats
(Luppi et al., 2014, 2017) and mice (Weber et al., 2015).

A crucial role in the inhibition of VlPAG/dDPMe REMS-
off neurons is played by REMS-on neurons of the posterior
hypothalamus, including LH, zona incerta, and perifornical
hypothalamus, many of which release GABAand/or the peptide
melanin-concentrating hormone (MCH) (Luppi et al., 2014,
2017). In fact, this group of neurons is considered the “master
generator” of REMS (Luppi et al., 2014). The central role of the
hypothalamic MCH/GABAergic neurons in REMS occurrence
has been underlined by optogenetic and chemogenetic studies
in rats (Jego et al., 2013) and mice (Vetrivelan et al., 2016),
respectively. MCH neurons, inhibited by monoaminergic wake-
promoting neurons, may also contribute to the active inhibition
of orexin neurons in the LH during REMS.

At a preoptic-hypothalamic level, themedian preoptic nucleus
(MnPO) and the ventrolateral preoptic nucleus (VLPO) play
a role in REMS regulation (Gvilia et al., 2006; Dentico et al.,
2009). In both structures, the degree of cellular activity appears
to be related to the homeostatic need for REMS, which, increases
during REMS deprivation and decreases during the following
REMS rebound. It has been suggested that both structures are
part of the network for the switching-off of the brainstem
and hypothalamic wake-promoting centers when sleep need is
increased, but the MnPO has been shown to have a closer link
with REMS regulation (Szymusiak andMcGinty, 2008; McKinley
et al., 2015). A similar REMS-related pattern has been found
at the pontine level in the Lateral Parabrachial Nucleus (lPBN),
largely active during both REMS deprivation and the following
REMS rebound (Verret et al., 2005).

The Central Network Controlling
Thermoregulation
Research in thermoregulation has led to a better definition of
the neural pathways through which cutaneous thermal receptors
activate BAT thermogenesis, as well as shivering thermogenesis,
and cutaneous vasoconstriction (CVC) for heat retention,
necessary for cold defense (Cano et al., 2003; Nakamura and
Morrison, 2007, 2008, 2010, 2011; Morrison and Nakamura,
2011; Morrison et al., 2012).

Cold and warm signals from the skin are transmitted, through
glutamatergic second order ascending neurons from the dorsal
horn to the externolateral- (el) and dorsolateral- (dl) PBN
neurons, respectively. From here, elPBN glutamatergic neurons
convey the cold thermal signal to the GABAergic Median
preoptic (MnPO) neurons (Tan et al., 2016), which in turn
inhibit the warm-sensitive GABAergic neurons within the medial
preoptic (MPO) projecting to the dorso-medial hypothalamus
(DMH) and raphe pallidus (RPa). This leads to an increased
activity of thermogenesis-promoting neurons in the DMH, which
provide the main excitatory drive for the rostral RPa (rRPa)
premotor neurons with consequent activation of thermogenesis
(Morrison et al., 1999; Cerri et al., 2010). Alternatively, warm
thermal signals retransmitted by dlPBN glutamatergic neurons
activate the MnPO glutamatergic neurons, which in turn activate
MPOGABAergic neurons projecting to the DMH and rRPa. This
leads to an inhibition of thermogenesis-promoting neurons in
the DMH, reducing the excitatory drive to the rRPa premotor
neurons. The inhibition of RPa neurons increases thermal
dissipation and leads to a reduction in body temperature (Cerri
et al., 2010, 2013).

The thermoregulatory network sends its branches to several
brain areas that control metabolic, cardiovascular, osmolar
and respiratory functions and, conversely, receives feedback
from these areas, thus modulating thermoregulatory responses
(Morrison et al., 2014). Among these areas, the role of the LH
and the PAG is of particular interest in the context of this review.

Two relevant populations of neurons that modulate
thermoregulation are located within the LH: orexin neurons
and MCH neurons. Orexin neurons send direct projections to
the rRPa (Oldfield et al., 2002; Berthoud et al., 2005; Tupone
et al., 2011), are directly involved in the modulation of BAT
thermogenesis (Tupone et al., 2011; Luong and Carrive, 2012),
are indispensable to mediate the prostaglandin E2-induced fever,
and are necessary for the defense against environmental cooling
in mice (Takahashi et al., 2013). MCH signal deficiency has been
shown to increase Tb (Ahnaou et al., 2011; Takase et al., 2014).

PAG neurons receive projections from the main
thermoregulatory hypothalamic nuclei (Rizvi et al., 1992;
Yoshida et al., 2005) and project directly to the rRPa (Hermann
et al., 1997) and, multi-synaptically, to BAT (Cano et al., 2003),
mostly from the ventromedial and the ventrolateral regions,
respectively. The caudal portion of the lateral PAG contains
BAT sympatho-excitatory neurons (Chen et al., 2002; Nakamura
and Morrison, 2007), whereas the rostral PAG contains BAT
sympatho-inhibitory neurons (Rathner and Morrison, 2006).
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POTENTIAL SITES AND MECHANISMS AT
THE BASE OF THE INTERACTION
BETWEEN REM SLEEP AND
THERMOREGULATION

The tight reciprocal link between REMS and thermoregulation
suggests the existence of mechanisms underlying this interaction
at the level of the brain areas shared by the two regulatory
networks. In fact, it is noteworthy that the sleep network and
the thermoregulation network overlap in some brain areas
(Figure 1). This overlap is particularly evident in the case of
the LH, where two populations of wake-promoting neurons,
expressing orexin (Adamantidis et al., 2007) or GABA (Venner
et al., 2016), are intermingled with a population of REMS-
promoting neurons expressing GABA and MCH (Hanriot et al.,
2007). MCHneurons are also segregated from the orexin neurons
(Kerman et al., 2007), and send reciprocal connections to each
other (Guan et al., 2002). The entire area also has relevant
effects on thermoregulation and behavioral state regulation when
activated (Cerri and Morrison, 2005; Di Cristoforo et al., 2015),
or inhibited (Cerri et al., 2014). In particular, the LH inhibition by
the local delivery of the GABA-A agonist muscimol led to REMS
suppression in rats (Clement et al., 2012; Cerri et al., 2014).

Another overlap between the two networks occurs at the
POA level, in particular, the MnPO. The MnPO is a very
important integrative site for homeostatic function, since it
receives inputs from different sensory pathways and contains
osmoresponsive, thermoresponsive, and sleep-related neurons,
which, to some extent, reciprocally interact (McKinley et al.,
2015). Intrinsic MnPO GABAergic neurons, which are activated
by projections from the elPBNmight directly or indirectly inhibit
the REMS-related neurons in the MnPO, contributing to Wake
enhancement and REMS suppression at a low Ta.

A further possible site of overlap between REMS regulation
and thermoregulation is the VlPAG. On one hand, a consistent
number of either REMS-off or REMS-on neurons have been
found in VlPAG (Sapin et al., 2009). On the other hand, neurons
from this region directly project to the RPa (Hermann et al., 1997;
Cano et al., 2003), some of which are able to indirectly promote
BAT activity (Chen et al., 2002; Nakamura and Morrison, 2007).
However, these neurons appear to be differently controlled. In
fact, while REMS-off neurons are apparently kept active by
orexinergic and monoaminergic afferents (Luppi et al., 2014,
2017), thermoregulatory neurons apparently receive inputs from
the DMH/dorsal hypothalamic area (Yoshida et al., 2005) and the
MPO (Rizvi et al., 1992). As discussed by others (Martelli et al.,
2013), a further possible site of overlap can be found at the level
of the lPBN, since lPBNneuronsmay influence REMS occurrence
via direct projections to the SLD (Boissard et al., 2003).

CONCLUSIONS

A way to consider changes in the activity of MnPO in REMS
deprivation and recovery (Gvilia et al., 2006; Dentico et al., 2009)
is that this nucleus belongs to a preoptic set which is thought to
form, with the DMH, a visceromotor pattern generator (HVPG)

FIGURE 1 | This figure outlines the interaction between the central network

controlling thermoregulation (in red) and the central network controlling REM

sleep (in green). Areas belonging to both networks are red and green checked.

Interactions of both networks with the ventrolateral preoptic nucleus (VLPO, in

light blue), a critical part of the network controlling non-REM sleep onset, are

also shown. PBN, Parabrachial Nucleus; MPO, Medial Preoptic; MnPO,

Median Preoptic; DMH, Dorsomedial Hypothalamus; RPa, Raphe Pallidus; LH,

Lateral Hypothalamus, PAG, Periaqueductal Gray; SLD, sublaterodorsal

tegmental nucleus; Thin lines represent a modulatory influence.

(Thompson and Swanson, 2003). As suggested by the normality
of fluid regulation (Luppi et al., 2010; Martelli et al., 2012), the
thermal irresponsiveness of POA may change the visceromotor
response patterns of HPVG.

The clamping of Thy, during REMS, by a diathermic warming
of the thermally irresponsive POA, doubled episode duration
even at a Ta well below the lower limit of TNZ (Parmeggiani
et al., 1974), and this extra REMS was fully accounted for
within deprivation-recovery processes (Parmeggiani et al., 1980).
This increase in REMS duration may be interpreted as a direct
thermal effect on sleep-regulating circuits, whereas hypothermia
has the opposite effect (Jones et al., 2008; Del Vecchio et al.,
2014). However, its striking efficacy may, alternatively, be viewed
as a sign that Thy is monitored by POA before REMS onset,
and by the DMH subdivision of HPVG during its occurrence.
Along these lines, the diathermic warming of POA did not
change c-FOS expression in that area, but suppressed a c-FOS
increase induced in DMH by previous cold exposure (Yoshida
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et al., 2002). The potential role for DMH in the peculiar
thermoregulatory set of REMS is further supported by the
finding that a transection separating POA fromDMH transforms
the input of peripheral thermoreceptors into a response, by
thermal effectors, that is directly proportional to Ta (inverted
thermoregulation) (Tupone et al., 2017).

Thus, taken together, these results suggest that REMS may be
considered as a transient heterothermic state fulfilling, within
the far-reaching protection of a rest period, specific needs of
endotherms brain activity, rather than energy saving. This view
appears in line with the hypothesis of a coevolution of REMS and
thermoregulation (Lee Kavanau, 2002) and the observation of an
occurrence of REMS-like episodes in hibernating lemurs only at
the highest Ta still compatible with torpor (Krystal et al., 2013;
Blanco et al., 2016).

On these bases, the interplay between REMS and
thermoregulation may be linked to the simultaneous evolution
of the two functions, and the sharing of regulatory areas
may be the results of some evolutionary constraint in

terms of developmental physiology. Thus, the study of the
interaction between REMS and thermoregulation may open new
perspectives on how the two functions developed and shed light
on the yet unknown purpose of REMS.
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