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through vital registration systems are available from 
governments and coded to diff erent variants of the ICD 
including various national ICD variants. Multiple sources 
were used in addition to vital registration data, including 
verbal autopsy data, cancer registries, maternal mortality 
surveillance, census and survey data on maternal death, 
census and survey data on selected injuries, and police 
records for some injuries. Figure 2A shows how each 
type of data were processed to deal with the challenges of 
diff erent coding schemes, diff erent age group reporting, 
variation in certifi cation, misclassifi cation of HIV/AIDS 
deaths, misclassifi cation of maternal HIV/AIDS deaths, 
and incorporation of population-based cancer registry 
data. The fi rst and second steps in the cause of death 
database development were standardisation of multiple 
data formats to a single GBD standard, then the mapping 
of each ICD or verbal autopsy variant to the GBD cause 
map. Figure 7A shows the number of deaths captured for 
each year in the GBD causes of death database by coding 
version. In step 3, we split a small subset of data reported 
in non-GBD-standard age formats into GBD age 
categories using the global relative age pattern of 
mortality for each cause as estimated from the pooled 
data that provide full age detail. In step 4, based on expert 
judgment, some causes were not allowed for certain age–
sex groups, for example, male uterine cancer.

In step 5, deaths assigned to causes that cannot be 
underlying causes of death (ie, garbage coded) were 
reassigned to their likely underlying cause of death.4,7 
These redistribution algorithms are based on three 
approaches. For some garbage codes, such as senility or 
old age, deaths were proportionately reassigned to all 
causes that are not garbage codes for a country–age–sex–
year. For HIV/AIDS in many countries, deaths from 
HIV/AIDS have been misclassifi ed as opportunistic 
infections, tuberculosis, cancer, digestive diseases, and 
immune defi ciencies. In step 6, using methods developed 
by Birnbaum and colleagues,41 these deaths were 
identifi ed and reclassifi ed as HIV/AIDS in select 
countries with evidence of misclassifi cation. In step 7, 
data from the China Center for Disease Control 
and Prevention (CDC) vital registration system were 

re-weighted to take into account potential selection bias 
caused by a larger fraction of deaths being captured in 
hospital than out of hospital in some locations.14 Step 8 
ensured that the process of redistributing garbage codes 
or identifying misclassifi ed HIV/AIDS deaths would not 
assign deaths to causes in an age–sex–country–year that 
violated age–sex or other restrictions.

Step 9 excluded vital registration sources that were less 
than 50% complete in a given geography from the 
database, because of the potential for selection bias in 
highly incomplete sources. Sources estimated to be 
50–70% complete were identifi ed as non-representative, 
which was information that we used in the building of 
the cause of death statistical model to increase the 
estimated data variance for these datapoints. All included 
sources were corrected to be 100% complete by 
multiplying the cause fraction in a source for a country–
age–sex–year by the estimate of all-cause mortality for 
that country–age–sex–year. Step 10 aggregated causes of 
death from most to least detailed levels of the GBD 
hierarchy, ensuring deaths for a given cause were 
representative of all branches of the hierarchy that fall 
beneath it. In step 11, deaths due to HIV/AIDS and 
various types of fatal discontinuities were removed before 
cause fractions were computed. Because of the very large 
eff ects of fatal discontinuities, such as wars and natural 
disasters in some cases, and the impact of HIV/AIDS in 
countries with large epidemics, we converted cause 
fractions to be cause fractions excluding HIV/AIDS and 
fatal discontinuities in the denominator. Deaths from 
HIV/AIDS and the fatal discontinuities were added back 
during the fi nal stages of the modelling process. Because 
many sources on maternal mortality identify deaths 
during pregnancy and the post-partum period and not 
maternal deaths, the separation of HIV/AIDS deaths 
during pregnancy and HIV/AIDS deaths aggravated by 
pregnancy was more complicated (methods appendix p 66).

Figure 7B provides information about the fraction of 
the 519 geographies in the analysis for which cause of 
death data were available in each year from 1980 to 2015 
for any cause, including maternal death and injuries. 
Data availability by geography–year by cause is shown in 

Figure 7: Availability and quality of cause of death data in the GBD 2015 database

(A) Total deaths with a WHO-standard death certifi cate available in the GBD 2015 cause of death database classifi ed by the variant of the International Classifi cation of 

Diseases used for reporting. Cause of death data have been reported in national variants of ICD-8, ICD-9, and ICD-10 during the interval 1980–2015. Because of lags in 

reporting of both vital registration data and the release of household survey or census data, the availability of data was much lower for 2014 than for previous years and 

no data existed for 2015. (B) Percentage of global population covered by cause-specifi c data in the cause of death database for GBD 2015, 1980–2015; the percentage 

of available data was calculated by dividing the population of locations covered by available cause-specifi c data by the total global population. This fi gure is computed 

using vital registration, verbal autopsy, maternal, cancer, and injury sources. (C) Overall classifi cation of each GBD subnational level 1 geography by availability and 

quality of cause of death data for the period 1980 to 2015. Countries have been assigned on the basis of the available time series of data into one of six categories. The 

fi gure uses GBD subnational level 1 geographies because subnational level 2 cannot be easily seen on a map. Extensive complete representative vital registration was 

defi ned as 25 total years or more of vital registration data with an estimated 95% completeness or above. All geographies that do not meet the threshold for extensive 

complete representative vital registration are classifi ed as one of the following: limited years of complete representative vital registration, defi ned as 5 years or more of 

vital registration data with an estimated 95% completeness or above; incomplete representative vital registration, defi ned as at least 1 year of vital registration data 

with an estimated 70% completeness or above; more than 200 cause-years VA or non-representative VR, defi ned as more than 200 cause-years of verbal autopsy or at 

least 1 year of vital registration with an estimated 50% completeness or above; less than 200 cause-years of VA; or no data. Cause-years are defi ned as the number of 

years for each cause for which data are available. GBD=Global Burden of Disease. ICD=International Classifi cation of Diseases. BTL=basic tabulation list. VA=verbal 

autopsy. VR=vital registration. ATG=Antigua and Barbuda. VCT=Saint Vincent and the Grenadines. LCA=Saint Lucia. TTO=Trinidad and Tobago. TLS=Timor-Leste. 

FSM=Federated States of Micronesia.
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the methods appendix (pp 318–401). To facilitate 
understanding of the range of quality and availability of 
data for each geography, we classifi ed geographies into 
six categories: extensive complete representative vital 
registration (vital registration data that are 95% complete 
and cover more than 25 years); moderate data (vital 
registration data that are 95% complete but cover fewer 
than 25 years); incomplete representative vital registration 
(all other geographies with some representative vital 
registration data); extensive verbal autopsy and other 
sources (covering more than 20% of cause-years); limited 
verbal autopsy or other data (all others with some data 
available); and no data for any cause (methods appendix 
pp 691–710). Figure 7C shows this designation for each 
class of country.

CODEm
Figure 2B shows the analytical fl ow chart for modelling 
diff erent causes of death and combining them into 
internally consistent estimates of cause-specifi c mortality 
that sum to all-cause mortality with uncertainty levels. 
167 individual causes of death were modelled using 
CODEm. Developed for GBD 2010,5 CODEm tests a large 
number of model specifi cations, comparing diff erent 
functional forms and permutations of relevant covariates 
for each cause of death. Models that met requirements for 
direction and signifi cance of the regression coeffi  cients 
were then evaluated for out-of-sample predictive validity 
through multiple iterations of cross-validation testing. We 
then combined these models into an ensemble, weighting 
them such that top performing models (in terms of out-
of-sample prediction error on levels and trends) 
contributed the most to the fi nal prediction. Out-of-sample 
predictive validity testing was also used to select the psi 
parameter that determines the number of models and 
their weight in the fi nal ensemble (fi gure 8). 

For each cause of death, we ran independent CODEm 
models by sex and for countries with extensive complete 
vital registration representation and all other countries. 
We included all datapoints for the other categories of 
geographies, whereas for countries with extensive 
complete vital registration representation, we included 
only datapoints from those countries, so that 
heterogeneous data from other countries did not infl ate 
the uncertainty interval. 

Negative binomial models
For ten causes of death, the number of events are so low, 
including many zero counts in countries with high 
income per capita or high educational attainment, that 
CODEm out-of-sample predictive validity testing was 
unstable. For these rare causes of death, which included 
other intestinal infectious diseases, upper respiratory 
infections, diphtheria, varicella and herpes zoster, 
malaria, schistosomiasis, cysticercosis, cystic echino-
coccosis, ascariasis, and iodine defi ciency, we used 
negative binomial regression to develop simple models to 
predict deaths. More details are available in the methods 
appendix (pp 185–200; negative binomial models).

Natural history models
For some causes, deaths are rarely recorded in either vital 
registration data or verbal autopsy data. Partly, this is 
because of the geographical location of the deaths or 
because of the potential for systematic bias in vital 
registration data or verbal autopsy data. For 14 causes, we 
have developed natural history models in which 
incidence and case-fatality rates are modelled separately 
and combined to yield estimates of cause-specifi c 
mortality. We developed natural history models for 
typhoid fever, paratyphoid fever, whooping cough, 
measles, visceral leishmaniasis, African trypanosomiasis, 
yellow fever, syphilis (congenital), and acute hepatitis A, 
B, C, and E. Additionally, for malaria in sub-Saharan 
Africa, we have used a natural history model based on 
the incidence estimated by the Malaria Atlas Project and 
age–sex-specifi c case-fatality rates estimated from 
available data. Further details on the development of 
these natural history models are available in the methods 
appendix (pp 201–26; natural history models).

Subcause proportion models
For meningitis, maternal disorders, liver cancer, cirrhosis, 
and chronic kidney disease, we estimated detailed causes 
for each of these cause groupings by modelling the 
proportion of the cause grouping (parent cause) due to 
each of the component causes. We used this approach 
because the available data on the specifi c causes can come 
from sources other than vital registration, such as end-
stage renal disease registries, or from too few places to 
model the death rates directly. For these causes, the 
parent cause was fi rst estimated with CODEm and the 
fraction of the parent due to each component cause for 

Figure 8: Distribution of out-of-sample model performance for CODEm models used for GBD 2015

Model performance was assessed by use of the root mean square error of the ensemble model predictions of the log of 

the age-specifi c death rates for a cause assessed with 15% of the data held out from the statistical model building. 

The fi gure shows the distribution of root mean square error across the set all models for all causes. Model performance 

varies substantially across causes. GBD=Global Burden of Disease.  CODEm=cause of death ensemble modelling.
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each age–sex–geography–year was generally estimated 
with DisMod-MR 2.1, a Bayesian meta-regression method 
developed for the GBD studies.42,43 Details for each cluster 
of causes analysed in this way are shown in the methods 
appendix (pp 233–52; subcause proportion models).

Prevalence-based models
For Alzheimer’s disease and other dementias and atrial 
fi brillation and fl utter, there is evidence of marked 
changes over time in the propensity of individuals who 
completed death certifi cates to list these causes as 
underlying causes of death.44,45 These changes created 
increases in the reported death rates. Conversely, 
prevalence surveys do not show a matching increase 
in age-specifi c disease prevalence. Garbage code 
redistribution algorithms used in the development of the 
cause of death database have so far not accurately 
captured this shift over time in the certifi cation of 
underlying causes of death. For these two causes, we 
based our estimates on prevalence surveys and estimates 
of excess mortality based on deaths certifi ed in countries 
with the greatest proportion of deaths allocated to the 
correct underlying cause of death in recent years. In both 
cases, more detail is available in the methods appendix 
(pp 227–32; prevalence-based models). We developed 
models for prevalence and excess mortality using 
DisMod-MR 2.1.

CodCorrect
Depending on the specifi c data availability and details of 
individual causes, we adopted diff erent modelling 
strategies for each cause. We generated a set of underlying 
cause of death estimates, with uncertainty intervals, that 
equalled all-cause mortality, with uncertainty intervals, 
for each age–sex–year–geography and cause and all-cause 
mortality at the individual draw level.24 In CodCorrect, for 
each draw from the posterior distribution of each cause, 
the sum of cause-specifi c estimates is rescaled to equal 
the draw from the all-cause distribution (methods 
appendix p 285).

Pathogen counterfactual analysis
We used a counterfactual analysis approach to estimate 
aetiology-specifi c population attributable fraction for 
mortality due to lower respiratory infections and 
diarrhoeal diseases. This approach involved analysing 
changes in mortality on the basis of the estimated 
prevalence of each pathogen and relative risk of 
developing disease given pathogen exposure.

The prevalence of each pathogen in diarrhoeal cases 
was extracted from a systematic literature review and 
modelled with DisMod-MR 2.1. The odds ratios of an 
episode of diarrhoea given exposure to the pathogen 
were estimated from a reanalysis of the Global Enteric 
Multicentre Study (GEMS) that used the TaqMan Array 
Card (TAC), which is based on a quantitative polymerase 
chain reaction diagnostic (qPCR).46,47 We attributed 

mortality to all pathogens, even if the odds ratio was not 
signifi cant in all age groups. We corrected the estimated 
prevalence for each pathogen on the basis of conventional 
laboratory techniques, such as bacterial culture or 
enzyme-linked immunosorbent assay (ELISA), to be 
consistent with the new qPCR method. Cholera mortality 
was estimated by modelling the under-reporting to the 
WHO cholera case notifi cation system and applying this 
correction factor to estimate the number of cholera cases 
and deaths (methods appendix p 281). The incidence and 
mortality of Clostridium diffi  cile was modelled with 
natural history and incidence data in DisMod-MR 2.1.

We estimated attributable mortality due to respiratory 
syncytial virus and infl uenza with a similar approach to 
that for diarrhoea. We used a counterfactual approach 
whereby the prevalence in patients with lower respiratory 
infection was extracted from a systematic literature review 
and modelled with DisMod-MR 2.1. The odds ratios of 
lower respiratory infections given pathogen presence were 
obtained from a meta-analysis by Shi and colleagues.48 We 
adjusted the population attributable fraction for lower 
respiratory infection mortality due to respiratory 
syncytial virus and infl uenza for the relative case-fatality 
rate of viral to bacterial pneumonia episodes by age. 
Haemophilus infl uenzae type b and pneumococcal 
pneumonia (Streptococcus pneumonia) were estimated 
with a vaccine probe approach whereby the attributable 
fraction was calculated as the ratio of vaccine effi  cacy 
against non-specifi c pneumonia to vaccine effi  cacy against 
pathogen-specifi c and serotype-specifi c pneumonia. 
Studies that report vaccine effi  cacy against vaccine-type 
invasive pneumococcal disease were adjusted for the 
relative effi  cacy against vaccine-type clinical pneumococcal 
pneumonia using a uniform distribution of uncertainty 
around this ratio.49,50

Socio-demographic Index and epidemiological 
transition analysis
In this Article, we built on GBD 201351 concepts by 
improving the interpretability of sociodemographic status 
and characterising and describing this relationship in 
more detail for years of life lost due to premature mortality 
(YLLs), as well as highlighting changes in age-standardised 
death rates, population age structure, and YLL rates. We 
have made two important changes to the GBD 2013 
computation. First, we have used only lag-dependent 
income per capita, average educational attainment in the 
population over age 15 years, and the total fertility rate. We 
excluded the mean age of the population because it is 
directly aff ected by death rates. Second, we have applied 
the methods used to compute the Human Development 
Index to generate an interpretable scale, resulting in 
the Socio-demographic Index (SDI).52 The Human 
Development Index method weights each component 
equally and rescales each component on a zero-to-one 
scale with zero being the lowest value observed in the time 
period 1980 to 2015 and 1 being the highest value observed. 
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The fi nal composite SDI value is the geometric mean of 
each of the components. The SDI ranges from 0·060 in 
Mozambique in 1987 to 0·978 in Washington, DC, USA, 
in 2015. The correlation of the SDI with the socio-
demographic status principal component analysis used in 
GBD 2013 was 0·982. The very high correlation is because 
the principal component analysis yields weights that are 
nearly equal across components. The advantage of the 
index is that 1 can be interpreted as the level of SDI at 
which a geography has the highest observed log income 
per capita and educational attainment and lowest fertility 
rate. We tested whether alternative lags of the components 
of SDI would provide a better predictor of outcomes such 
as life expectancy and age-specifi c probabilities of death. 
Using lag distributed income per capita, educational 
attainment, and the total fertility rate in the current year 
was the most predictive of these mortality outcomes 
(methods appendix p 286).

To report on aggregate results, we divided geographies 
into SDI quintiles in 2015. Quintile cutoff s were based 
on the entire distribution of geography–years from 1980 
to 2015, excluding populations smaller than 1 million. 
Figure 9 shows a map of the SDI level in 2015 categorised 
into fi ve groups including subnational geographies. 
Because SDI includes educational attainment and the 
total fertility rate, some countries which have very high 
income, such as Saudi Arabia, are classifi ed in the second 
quintile of SDI because of lower educational attainment 
and higher fertility rates.53

To capture the average relationships for each age–
sex–cause group, we used spline regression of death 
rates on SDI (methods appendix pp 285–86). To ensure 
a coherent set of estimated death rates for Levels 1, 2, 
and 3 in the GBD cause hierarchy for each level of SDI, 
the Level 2 death rates were rescaled such that for each 
age–sex–cause bin, the sum of Level 2 death rates 
equalled the Level 1 death rate. This procedure was 
repeated for Level 3 and Level 2 causes. These rates 
were used as the expected death rates by age–sex–cause 
and SDI. Various summary measures have been 
computed on the basis of the age–sex–cause-specifi c 
predictions based on SDI, including age-standardised 
death rates, age-standardised YLL rates, and life 
expectancy at birth.

To further characterise how patterns of crude death rates 
and death numbers change with SDI, we have computed 
the average population age structure associated with each 
SDI level. These population age structures have then been 
used to estimate how crude death rates and death numbers 
by cause are expected to change with rising SDI.

Decomposition of changes in global deaths
To analyse the drivers of change in the numbers of deaths 
by cause or geography, we decomposed change from 
2005 to 2015 into three explanatory components: change 
due to growth of the total population; change in the 
population structure by age or sex; and change in 

age-specifi c, sex-specifi c, and cause-specifi c rates. We 
refer to all changes in age-specifi c, sex-specifi c, and 
cause-specifi c death rates not explained by demographic 
change (population growth and ageing) as the 
epidemiological change. The observed change in the total 
number of deaths equals the net change of these three 
components.

Decomposition analyses for 1980 to 2015 and 2000 to 
2015 are shown in the results appendix (pp 6–7). The 
decomposition analysis uses methods developed in 
demographic research by Das Gupta.54 As an example, we 
describe our approach to decomposition for the 2005 to 
2015 period. We used counterfactual scenarios to 
calculate two diff erent sets of numbers for death. In the 
fi rst scenario, for population growth, the number of 
deaths in 2015 was the number expected if the total 
population increased from 2005 as observed, but the 
age–sex-specifi c population structure and rates of death 
were the same in 2015 as in 2005. In the second scenario, 
for population growth and ageing, the number of deaths 
in 2015 was the number expected according to the 2015 
age–sex-specifi c population structure, but with the 
age–sex-specifi c rates of death held constant to 2005. The 
diff erence between the number of deaths observed in 
2005 and those estimated for 2015 with the population 
growth scenario is the change in the number of deaths 
exclusively from population growth. The diff erence 
between the scenario for population growth alone and 
the scenario for population growth and ageing is the 
change in the number of deaths exclusively attributable 
to population ageing.

Attribution of changes in life expectancy to changes in 
causes of death
When considering the estimated levels and changes in 
all-cause and cause-specifi c mortality rates for each 
geographical area covered by GBD 2015, it is important 
to understand the relative contribution of changes in 
mortality due to each cause to the overall changes in life 
expectancy at birth during the same period. To examine 
the changes in life expectancy at birth between 2005 and 
2015, we have applied the state-of-the-art life expectancy 
cause-specifi c decomposition method developed by 
Beltran-Sanchez, Preston, and Canudas-Romo.55

YLL computation
We computed YLLs using the standard GBD methods 
whereby each death is multiplied by the normative 
standard life expectancy at each age. The normative 
standard life expectancy at birth is 86·59 years, which is 
based on the lowest observed death rates for each 5-year 
age group in populations larger than 5 million. For 
GBD 2015, we computed age-standardised mortality 
rates and YLL rates from the updated world population 
age standard developed for GBD 2013.7 Details of the 
GBD world population age standard are available in the 
methods appendix (pp 286–287 and 314).


