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ABSTRACT

Genomic selection, that is based on the prediction of the breeding value (the genomic breeding
value or GEBV) of the animals considering genomic information, is changing breeding strategies
and approaches in dairy cattle and in several other livestock species. The starting points for the
application of genomic selection in pigs were the development of a first commercial single-
nucleotide polymorphism panel for high throughput genotyping, the sequencing of the pig gen-
ome and the application of statistical and methodological approaches first developed in dairy cat-
tle and then adapted to the peculiarities of the pig breeding industry. In this review, we focused
on the specific applications of the genomic selection in pigs, considering its limits, its advantages
and its perspectives throughout an analysis of the simulation studies and field applications
already available targeting many different traits (with high and low heritability). In addition, we
presented an overview of the problems related to the implementation of genomic selection in
crossbred and multi-breed pig populations and the potential solutions taking into account the
economic aspects that should be faced in including genomic selection in pig breeding
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Introduction

Breeding and crossbreeding strategies based on quan-
titative genetics approaches have largely driven gen-
etic progress in pigs during the last 40-50 years.
Genetic progress increased its pace starting from the
late 1980s of the last century with the introduction of
BLUP Animal Models in the evaluation of boars and
sows in selected nuclei (Figure 1a). Before then, the
peculiarities of pig population structure and the limited
use of artificial insemination had not prevented the
use of progeny testing and BLUP technology based on
Sire Models. In addition to the introduction of BLUP
Animal Models, common to most species, pigs were
the first livestock species to benefit from the introduc-
tion of molecular genetics in breeding programmes.
The development of a DNA test to identify carries of
the pale, soft and exudative (PSE) meat defect, causing
also the porcine stress syndrome (PSS) was based on
the analysis of the ryanodine receptor 1 (RYRT)
€.1843C > T polymorphism (Fujii et al. 1991). This made
it possible to manage or eliminate this mutation in
most pig populations. In addition, a large number of
other studies that identified candidate genes and
quantitative trait loci (QTL) have provided a long list of

other potentially interesting DNA markers associated
with production traits, most of them in linkage disequi-
librium with the unknown causative mutation(s) in the
investigated populations (Ernst & Steibel 2013). Apart
from a few interesting examples, in general, these
markers explain a small fraction of the genetic variabil-
ity of economically important traits and their effects
should be verified in the populations that were not
used for the primary discovery studies. For these rea-
sons, most of these markers have not been fully
exploited by the pig breeding industry mainly due to
practical difficulties in integrating this information
through the development of specific marker-assisted
selection programmes for each potentially useful
polymorphism.

These problems could be overcome by the introduc-
tion of the concept of genomic selection that can be
considered an enhanced version of marker or gene-
assisted selection (Dekkers & Hospital 2002). Genomic
selection was first proposed by Meuwissen et al. (2001)
to predict the genetic value of the animals based on
the genotype at thousands of single-nucleotide poly-
morphisms (SNPs) covering the whole genome. When
the concept of genomic selection was first defined,
technologies and information needed to develop this
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Figure 1. Pigs and data needed to estimate traditional breeding values (a), genomic breeding values (b), and genomic breeding val-

ues by using a single-step model strategy (c).

idea were not available yet. Three main subsequent
advances have made it possible to implement genomic
selection in the most relevant livestock species: i) the
sequencing of their genome and the identification of
thousands or even millions of polymorphisms (mainly
SNPs); ii) the development of high throughput geno-
typing technologies that can genotype thousands of
SNPs spread all over the genome in a cost-effective
manner and iii) the development of statistical methods

to estimate the allelic effects of thousands of markers
in a data sets of limited number of animals.

These advances prompted the first practical and
widespread implementation of genomic selection in
2009 with the evaluation of dairy cattle in the USA
(VanRaden et al. 2009). Since then, most of dairy cattle
organisations in the world have developed genomic
selection programmes. Moreover genomic selection
was also proposed and applied in several other
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livestock species: beef cattle (Pollak et al. 2012), sheep
(Duchemin et al. 2012), poultry (Preisinger 2012) and
pigs (Ibanez-Escriche et al. 2014). This review will focus
on the state of the art and perspectives of the gen-
omic selection in the pig breeding industry starting
from the definition of the basic and general concepts
of genomic selection and completing the overview
with specific applications in pigs.

Principles of genomic selection

Genomic selection is based on the prediction of the
breeding value (the genomic breeding value or GEBV)
of each individual by summing up all SNP allele effects
over the whole genome. Marker effects are estimated
as a regression of the phenotype on the genotype in
training data sets, i.e. the animals in the population
with both phenotypic and genotypic (or genomic)
information, and these estimates are used to predict
GEBV for all individuals with genomic data without any
phenotypic  information  (prediction  population).
Therefore, these animals are selected based on their
genotype at thousands of SNPs, covering the whole
genome, without the need of recording phenotype
information on all animals under evaluation
(Figure 1b).

Depending on prior distributions considered in SNP
effects estimation, different procedures were already
proposed by Meuwissen et al. (2001), including GBLUP,
Bayes-A and Bayes-B, and later on additional Bayesian
methods (e.g. Bayes Cm, Bayesian-Lasso and others)
were proposed by other authors (e.g. Yi & Xu 2008;
Calus 2009; Gianola et al. 2009; Habier et al. 2011). The
GBLUP method assumes that each SNP explains the
same amount of variance with a similar approach to
the infinitesimal model of classical quantitative genet-
ics. The other methods fit different proportions of vari-
ance explained by different SNPs assuming that there
are many loci across the genome with no genetic vari-
ance (VanRaden 2008; Yi & Xu 2008; de los Campos
et al. 2009).

With a simulation study, VanRaden (2008) demon-
strated the equivalence in genomic prediction compu-
tation between the GBLUP model that first estimates
individual allelic effects and then sums those pertinent
to each animal (as in Meuwissen et al. 2001) and the
inclusion of genomic relationship matrix, in place of
the traditional additive matrix, in the mixed model
equations.

Other authors (Legarra et al. 2009; Mistzal et al.
2009; Aguilar et al. 2010) proposed an alternative
approach, known as single-step method. This method
incorporates marker information into the traditional
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pedigree models accounting also for all phenotypic
and pedigree information available, including pedigree
and performance records collected from non-
genotyped individuals (Figure 1c).

According to the classical concepts of quantitative
genetics, the introduction of genomic selection is
expected to increase the genetic progress (AG) follow-
ing the general formula defined by Falconer (1989):

AG = (i*r=og)/L

where i is the selection intensity, r is the accuracy, cq
is the genetic variability and L is the generation
interval.

The two terms that would be directly affected by
the introduction of genomic selection are the gener-
ation interval (L) and the accuracy (r) of the predic-
tions. In dairy cattle, a strong advantage derived by
the genomic selection is the possibility to predict reli-
able evaluations of young bulls, well before the time
needed to collect milk recording data from their
daughters reducing, in turn, the generation interval
(Schaeffer 2006). In pigs, the early use of young ani-
mals as reproducers, just after their puberty, might
determine a very short generation interval (<2 years),
with a rapid turnover of generations (Tribout et al.
2011). In this species, improvements by acting on this
parameter are limited by the short interval that the
current breeding plans can already reach and for prac-
tical difficulties in further reducing generation interval.
Therefore, the largest impact of genomic selection in
pig breeding can derive from the increased accuracy
of genetic predictions and for the possibility to predict
maternal traits in boars.

In the current pig genetic evaluations, accuracy is
usually low, especially for traits with low heritability,
like reproduction traits (e.g. fertility, litter size and pig-
lets mortality), for traits recorded in a limited number
of individuals (e.g. sex-limited traits and disease resist-
ance), for traits recorded very late in life (e.g. longevity)
or after death on the same animals or on carcasses of
relatives, like meat quality parameters (i.e. Stock &
Reents 2013; Van Eenennaam et al. 2014). On the other
hand, accuracy of GEBV is influenced by other factors
defined in the genomic selection approach. The preci-
sion of the estimation of the prediction equations is
affected by the size of the training population on
which the marker effects are estimated and its close-
ness to the prediction population (Habier et al. 2010;
Akanno et al. 2014). A drop in accuracy due to loss of
pedigree relationships is expected after the first gener-
ation by limiting the value of genomic predictions and
in close breeding population a regular re-training is



Downloaded by [AlmaMater Studiorum - Universitadi Bologna] at 14:01 21 April 2016

4 A. B. SAMORE AND L. FONTANESI

Table 1. Different genomic data useful in genomic selection programmes.

Technological classification Certainty in genotype calls

Proportion of the genome

represented Structure of missed genotype data

High coverage genome sequence data
Low coverage genome sequence data

Highly accurate genotype calls
Reduced accuracy of genotype
calls

High-density SNP genotypes Highly accurate genotype calls

Low-density SNP genotypes Highly accurate genotype calls

Pedigree data, inferred genotypes Depends on imputation strat-

egies and/or accuracy

High No missed information
Low or intermediate (depend- Random (missed loci, homozygotes
ing on the coverage and called accurately, heterozygous
costs of sequence data) called less accurately)
Intermediate Rigid structure (the same set of
markers on each individual)

Low Rigid structure (the same set of
markers on each individual)
None Depends on imputation strategies

and/or accuracies

recommended (Wolc et al. 2011). Meuwissen (2009)
calculated the expected accuracy of GEBV for reference
populations of different size and for different heritabil-
ity levels. This simulation also reported, for example,
that for traits with low heritability, an accuracy of 0.30
can be obtained with quite a large reference popula-
tion (2000-5000 animals). In contrast, according to the
simulation of Akanno et al. (2014), if resources are lim-
ited, also smaller sizes of the training population (of at
least 1000 individuals) were considered appropriated
but with multi-generational training populations and
the re-estimation of marker effects after two genera-
tions of selection. Considering these aspects, genomic
selection is expected to improve AG in pig popula-
tions, but the level of this improvement is strongly
influenced by the population structure, by the trait
(and its heritability) and by the phenotyping and geno-
typing strategies that can directly affect the accuracy
of GEBV predictions.

Genomic selection in pig populations

The different types of genomic data relevant for appli-
cations in genomic selection programmes are summar-
ised in Table 1. These types of data can be classified
according to technological aspects related to their pro-
duction, certainty in genotype calls, proportion of the
genome represented and structure of the missing
genotype data. Genotyping data can be ascertained to
sequence data at high or low coverage, and high-dens-
ity (HD) or low-density (LD) SNP panels. Sequencing
data are costly (i.e. in the order of a thousand of euro)
but might provide information for a very high propor-
tion of the genome. Sequencing is performed by cut-
ting the genome into small pieces, sequencing these
pieces (i.e. determine the sequence of the nucleotides
along these pieces: generate reads), and then reassem-
ble reads by finding and analysing overlapping
sequences, or identical DNA sequences at either ends
of two or more different reads. Based on the number
and the size of the produced reads, sequencing can be

at high or low genome coverage and have propor-
tional costs. Low genome coverage sequencing data
have reduced accuracy on genotype calls as the
sequencing covers a fraction or the whole genome
only a few times. If we indicate with ‘X' the average
number of reads per each nucleotide of the reference
genome, when we have a coverage of 1X, on average,
all bases of the genome of an individual are covered
by reads just once whereas with a coverage of 10x all
nucleotides of the genome of an individual are read
10 times, on average.

At present, SNP genotyping panels are much
cheaper solutions than sequencing. SNP chips were
developed to include HD, medium density (MD) or LD
representations of markers across the genome
(Table 2). Differently from sequencing data, SNP geno-
typing panels have a high reliability of the called geno-
type. Nevertheless they have a rigid structure because
they can analyse only what is already predetermined
by the design of the chip, they miss a lot of potentially
important information, and may present ascertainment
bias: they are often selected to have intermediate
allele frequencies to capture maximum variance and
genetic diversity between and within breeds and lines,
they may not have equal density on all chromosomes,
and current arrays do not fully track structural genetic
variation, e.g. insertions, deletions and copy number
variants (Daetwyler et al. 2013).

The starting points for the application of genomic
selection in pigs were the development of a first com-
mercial SNP panel for high throughput genotyping
(Ramos et al. 2009) and the sequencing of the pig gen-
ome (Groenen et al. 2012). This first SNP panel com-
mercially available from lllumina (PorcineSNP60
BeadChip v2, at present available in the version 2;
lllumina, San Diego, CA) contains about 60K SNPs that
cover all autosomal and X chromosomes (Ramos et al.
2009; Table 2). In addition to this SNP panel, LD SNP
panels has been simulated and proposed in several
studies with the purpose of reducing genotyping costs
that, at present, is one of the main obstacles reducing
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Chip name No. of SNPs Company Technology Other information
PorcineSNP60 BeadChip v2 array 61,565 lllumina lllumina Infinium chemistry This chip substitutes version 1 that
included 62,163 SNPs
GeneSeek Genomic Profiler for 10,241 GeneSeek/Neogen® lllumina Infinium chemistry Possibility to customise including SNPs
Porcine LD (GGP-Porcine LD) associated with production and
reproduction traits and patented
GeneSeek Genomic Profiler for 68,528 GeneSeek/Neogen® lllumina Infinium chemistry Including about 43,000 most inform-
Porcine HD (GGP-Porcine HD) ative SNPs of the PorcineSNP60 v2
BeadChip array and additional
25,000 SNPs covering previous gaps
and telomeres
Axiom® Genome-Wide Pig ~650,000 Affymetrix Axiom assay Not yet commercially available (includ-

genotyping Array
(high-density panel)

ing the PorcineSNP60 v2 BeadChip
SNPs)

®Patented or specific markers can be included in the chip. The list of markers that are routinely included are in the following genes or loci: MC4R, HMGA,
CCKAR, RN (and other markers in the PRKAG3 gene), CAST, dystrophin, HAL (RYR1), ESR, resistance markers to E. coli/F4 ab/ac), erythropoietin receptor; SNP
WUR10000125 that has an impact on PRRS tolerance; commonly utilised SNPs for parentage at USDA.

the practical application of genomic selection in pigs
(Habier et al. 2009; Dekkers et al. 2011; Wellmann et al.
2013). A commercial LD SNP chip was developed by
GeneSeek/Neogen (Lincoln, NE) to face the need of
the market (GeneSeek/Neogen GPP-Porcine LD Illlumina
Bead Chip panel). GeneSeek/Neogen prepared also a
higher density SNP panel including about 70K SNPs.
A HD SNP panel, containing ~650,000 SNPs and
including all SNPs of the Illlumina PorcineSNP60
BeadChip v2 array, has been recently released for test-
ing by Affymetrix (Santa Clara, CA) that is also planning
to release a LD panel. Features of all commercial SNP
panels thus far developed in pigs are reported in
Table 2. Batches of these panels can be manufactured
including private SNPs that can be read only by the
owner of this information or including patented
markers and SNPs in a few genes associated with pro-
duction traits (Table 2).

Other studies simulated the lower number of SNPs
needed according to different scenarios of genotyping
and imputation with higher density SNP chips to
obtain sufficient predicting ability of GEBV (Wellmann
et al. 2013; Stratz et al. 2014; Xiang et al. 2015). For
example, based on simulations, a panel size of less
than 1000 markers spread all over the pig genome
(with the lower limit of 384 markers), if imputed to a
higher density panel genotyped in at least one of the
parents, could be used to obtain unbiased estimates of
accuracy of genomic breeding values (Wellmann et al.
2013). This means that other LD and proprietary SNP
panels may be developed in the future to reduce the
genotyping costs.

The marker density to be used is directly deter-
mined by the extent of linkage disequilibrium captured
by markers for the target trait across the genome. In
case of high levels of linkage disequilibrium a low
number of markers are needed to capture and explain
the genetic variation in the tested population. The

reliability of GEBV prediction depends on the level of
linkage disequilibrium between markers and QTL in
both within family or population-wise scenarios (Hayes
et al. 2009). Increasing the density of markers would
increase the level of linkage disequilibrium between
markers and QTL that, in turn, would increase the
accuracy of GEBV (Brito et al. 2011) till a maximum of
accuracy that depend on the genetic architecture of
the traits. The level of linkage disequilibrium is larger
in livestock populations than in humans. This is due to
the strong and recent selection and to the small effect-
ive population size in livestock (Khatkar et al. 2008).
Several studies reported information on the extent of
linkage disequilibrium in different pig populations
(Table 3). In general, it appears that in pigs the level of
linkage disequilibrium is larger than in cattle popula-
tions (Veroneze et al. 2013). Analyses, based on the
use of the 60K Illumina chip, indicated that the aver-
aged linkage disequilibrium levels (*) between two
adjacent SNPs might range from 0.36 to 0.46 in differ-
ent pig populations (Uimari & Tapio 2011; Badke et al.
2012; Veroneze et al. 2013). Actually this value exceeds
the threshold of 0.2 that was simulated by Meuwissen
et al. (2001) and that is considered the minimum level
to reach an accuracy of GEBV prediction of about 0.85
that could make a genomic selection programme
feasible.

Several works simulated genomic selection in pigs
by using different assumptions, mimicking real popula-
tion structures and data. Simulation studies made it
possible to predict and evaluate the potential prob-
lems, advantages and drawbacks of genomic selection
in different scenarios.

In particular, in simulation studies of pig breeding
programmes in developing countries (Akanno et al.
2013, 2014), including indigenous and exotic, purebred
and crossbred populations, the accuracy of GEBV
decreased in the unselected indigenous population at
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Table 3. Examples of linkage disequilibrium data reported by different studies in various pig breeds or lines.

References Genotyped markers

Linkage disequilibrium between
adjacent blocks/SNPs

Breeds/lines and no. of pigs

15 microsatellites on 2 chromosomes
(4 and 7)
29 (SSC15) and 5 (SSC2) microsatellites

Nsengimana et al. (2004)

Harmegnes et al. (2007)

Du et al. (2007) Pairs of SNPs approximately 3
centiMorgan (cM) apart, 4500 SNPs
on 18 autosomes

lllumina PorcineSNP60 beadchip: 3762
SNPs on chromosome 1

lllumina PorcineSNP60 beadchip

Huisman et al. (2010)
Uimari and Tapio (2011)

Badke et al. (2012) lllumina PorcineSNP60 beadchip

Veroneze et al. (2013) lllumina PorcineSNP60 beadchip:
62,163 markers on haplotypes blocks
(number of blocks from 2640-3037)

lllumina PorcineSNP60 beadchip: about
1420 SNPs on chromosome 14

Sahana et al. (2013)

D= 021-046
r = 0.15-0.50

= 0.1 (pairwise linkage
disequilibrium)

r* between 0.26 and 0.01 depending
on distance in Mb

P = 0.43 (Finnish Landrace), 0.46
(Finnish Yorkshire)

r* = 0.46 (Duroc), 0.44 (Hampshire),
0.36 (Landrace), 0.39 (Yorkshire)

= 0.39-045

r* = 0.56 between adjacent markers
and 0.30 at 1000 kb distance.

2872 pigs of 5 commercial pure lines

Two commercial populations (33 and
44 pigs)

4300 pigs from 6 pure lines (600-750
per line): Pietrain, Duroc, Landrace
and Large White-based lines

In 522 pigs of two lines derived from
Pietrain and Landrace breeds

32 Finnish Yorkshire and 86 Finnish
Landrace

351 pig from US breeds (Duroc,
Hampshire, Landrace and Yorkshire)

3616 pigs from 6 commercial lines
(from 169 to 1307 per line)

3071 Duroc pig data (born from 1998
tp 2010)

a faster rate over generations, for the low initial linkage
disequilibrium level and for the subsequent breakdown
of the available linkage disequilibrium by recombin-
ation. In contrast, crossbred lines exploited the new
linkage disequilibrium and maintained the accuracy of
GEBV over generations (Akanno et al. 2013, 2014).

Since the availability of the 60K SNP lllumina panel,
several breeding organisations and selection centres
have started to genotype their populations on a regu-
lar basis generating data to build training populations
with various strategies including the joint use of LD
and HD panels in various groups of animals. Both the
size and the pedigree closeness of the training sets
(i.e. pigs having both genotypic and phenotypic data)
to the prediction animals (i.e. pigs without phenotype
records) directly influence the accuracy of GEBV
(Habier et al. 2010) and the perspectives of adopting
genomic selection in different population structures
(Samore et al. 2015). Nevertheless, the implementation
of genomic selection on a routine level in pig popula-
tions has to face several practical logistic challenges
(Figure 2) that include the collection of samples at a
very early age (i.e. within few hours from birth), and
the identification of the animals, the storage and trans-
portation of the biological samples for genotyping
(Ibdnez-Escriche et al. 2014).

Tables 4-6 report a list of published works describ-
ing studies on genomic selection in different pig popu-
lations, the characteristics of the field or simulated
data and the main results. Several traits have been
already targeted in genomic selection strategies in
pigs, including production traits (i.e. loin depth, back
fat thickness, carcass weight, average daily gain; e.g.
Tribout et al. 2012; Akanno et al. 2014; Jiao et al.
2014), longevity aspects (i.e. leg score, health trait: e.g.

Boddicker et al. 2014), meat quality parameters (i.e. pH,
marbling, intramuscular fat: e.g. Miar et al. 2014) and
maternal traits (i.e. total number of born, stillborn, pre-
weaning mortality, piglet survival: e.g. Cleveland et al.
2010; Forni et al. 2011; Lillehammer et al. 2011; Tusell
et al. 2013) with various results depending on the trait
involved as well as on the adopted selection schemes
and phenotyping strategies. This means that, before
implementing genomic selection in pigs, particular
attention should be paid to the population structure
and the traits included in the evaluation. It is also clear
that when genomic selection is applied in a popula-
tion, all traits considered by the recording systems of
that population would be included in the new evalu-
ation process and optimisation of the whole genomic
evaluation for all parameters would be sometimes diffi-
cult due to their different characteristics. Difficulties
arise with multiple-trait genomic analyses, although
application with single-step procedures was reported
in literature in other species for a large number of
traits (Tsuruta et al. 2011).

Maternal, performance and other traits in pig
genomic selection

Maternal and performance traits are the two main
groups of traits considered in pig genomic selection.
Reproduction and functional traits in maternal lines are
relevant in pig breeding for the commercial competi-
tiveness of maternal genetic lines that should also
guarantee efficient and sustainable productions of hog
farms. However, due to the general low heritability,
genetic progress for these traits is very slow and trad-
itional BLUP predictions give a strong weight to
records of relatives and a few emphases are assigned
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Figure 2. Practical aspects of the implementation of genomic selection programmes in pigs: (1) collection of samples on (a) just
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genotyping in the population during the time; (7) genomic analyses for genomic breeding value calculations; (8) use of genomic
breeding value estimations for the selection of either parents and/or pigs for performance testing of the selected piglets or of their

parents.

to the individual record by producing similar EBV
among relatives and a preference to the selection of
pedigree-related animals. Genomic selection, in con-
trast, can obtain a better exploitation of the genetic
variation within families that can produce a more
accurate selection of the candidates and a reduction of
inbreeding level in the investigated populations
(Sonesson et al. 2005), and it allows the accurate esti-
mation of breeding values for selection candidates that
have no phenotypic records (Meuwissen et al. 2001).
Maternal traits include ovulation rate, embryonic sur-
vival, various measures of litter size (e.g. total number
of piglets born, number of piglets born alive, number
of weaned piglets, number of fully formed pigs, still-
born, pre-weaning mortality, piglet survival) and piglet
birth weight. A list of genomic selection studies in pigs
for maternal traits, on simulated or real data, is
reported in Table 4. Summarising, genomic predictions
usually outperform pedigree-based predictions for litter
size and other maternal traits in pigs although the spe-
cificities of population structures, available datasets (i.e.
training population size), as well as the model of ana-
lysis and the genomic relationships existing in each
population can affect and limit the advantages of the
genomic selection in different scenarios.

In contrast with maternal traits, performance and
carcass traits present moderate to high heritability and
specific programmes have been established in pigs to
collect relevant phenotypes (on the same alive animals
or after their slaughtering or on relatives like in the sib
testing programmes). Genomic selection is advanta-
geous for performance traits as phenotypic information
can be leveraged across all selection candidates and,
potentially, generations (e.g. Stock & Reents 2013) and
the collection of phenotypic data on a routine basis
might be reduced with large flexibility possible con-
cerning the pigs that should be phenotyped (Dekkers
2010). Nevertheless, as the accuracy of GEBV might
decline rapidly over generations a continuous collec-
tion of phenotypes over generations, especially in ani-
mals related to selection candidates, is always needed
to update the genomic selection prediction models
(Muir 2007; Sonesson & Meuwissen 2009; Dekkers
2010). Table 5 reports major results on performance
and carcass traits in pig genomic selection.

Examples of the implementation of the genomic
selection in pigs in traits different than production and
maternal ones are reported in Table 6. Similarly, to
what has been already envisaged in other species,
genomic selection would help in selecting pig disease
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Table 4. Genomic selection studies on maternal traits in pigs.

Traits

Data

Results as comparison with traditional BLUP or
according to the aim of the paper

Cleveland et al. (2010)

Lillehammer et al. (2011)

Forni et al. (2011)

Cleveland et al. (2012)

Jafarikia et al. (2012)

Akanno et al. (2013)

Cleveland and Hickey (2013)

Tusell et al. (2013)

Akanno et al. (2014)

Andersen-Ranberg, Grindfleck
(2014)

Tusell et al. (2014)

Uimari et al. (2014)

DBV on number of piglet born
(h* = 0.16) and percentage
of stillborn (h* = 0.16)

Maternal trait measured after
the first litter (h*> = 0.10)

Litter size (total number born
per litter)

Phenotypes and de-regressed
proofs of five traits (h? from
0.07 to 0.62)

Number of piglets born per
litter

Number of born alive (h? =
0.08), average daily gain
(h? =0.28), back fat thick-
ness (h* = 0.63)

Total number born (h* = 0.16)

Litter size (h* = 0.21, 0.14 and
0.19 depending on lines)

Number of born alive (h* =
0.08), average daily gain
(h*=0.28), back fat thick-
ness (h* = 0.63)

Total born, stillborn, piglet
mortality, litter weight

Adjusted litter size (total num-
ber of piglets born per
litter)

Litter size and other maternal
traits (total number of pig-
lets born, number of still
born piglets, pig mortality)

Field data on PIC Landrace-
based population of 3000
Landrace genotyped pigs
(males and females) with
SNP60 BeadChip, 2700
training pigs and 300 valid-
ation pigs

Simulation of pure bred line
(300 females and 150
males) with 18 pairs of
100 cM chromosomes: in
total 1800 QTL and 9000
SNP markers

Field data with 1919 sows and
70 sires genotyped with
SNP60 BeadChip. Records
on 338,346 sows

Field data on 3534 pigs geno-
typed with SNP60 BeadChip
from a single PIC nucleus
pig line and pedigree for
6473 pigs

Field data on 542 genotyped
pigs with the SNP60
BeadChip

Simulation data on 1275 train-
ing pigs and 1000 valid-
ation pigs. Genome of 5
chromosomes of 150 cM
with a density of markers of
22 each, 50 segregating
QTL per chromosomes

Field data on 4763 pigs from a
single nucleus line geno-
typed with SNP60 BeadChip
and three LD genotyping
panels with SNP density of
450, 3071 and 5963

Field data of three lines: about
2500 and 1600 sows for
two Landrace purebred
lines; 1900 sows for a com-
mercial cross

Simulated pig population
(exotic or indigenous lines).
Genome of 5 chromosomes
of 150 cM with a density of
markers of 22 each, 50 seg-
regating QTL per
chromosomes

Field data on 9745 genotyped
Norsvin Landrace boars and
Norsvin Landsvin sows

Field data: two purebred
Landrace lines (2598 and
1604 pigs) and commercial
crosses (1829 pigs) geno-
typed with SNP60 BeadChip

Field data on 723 genotyped
Finnish Yorkshire Al-boars
with SNP60 BeadChip

Mean accuracies (mean correlation between
the GEBV calculated with a Bayes-A model
and traditional BLUP EBV) in the validation
sets of 0.82 and 0.83, but the accuracy
decreased to 0.33-0.65 with age when a
cross validation was performed mimicking
the real selection (the oldest candidates in
the training sets and pigs born on the last
two years as the validation population).

The genetic gain increased by 23-91% and the
rate of inbreeding was reduced with a
GBLUP model if compared with traditional
selection. Results depend on which and how
many animals are genotyped. Genotyping
dams, in addition to male candidates is
more advantageous than genotyping more
males.

Average accuracies between 0.28 and 0.49 with
single-step predictions versus 0.22 of trad-
itional BLUP predictions for sows, no differ-
ences in sires.

Comparison of alternative methods for genomic
prediction (Bayes-B and single-step models).
GEBV accuracy increased with the increased
trait heritability and increased relationship
between training and validation populations.
Generally Bayes-B using de-regressed EBV
outperform the use of other approaches.

Increased of 20% reliabilities of GEBV predic-
tion compared to the parent average of offi-
cial evaluations.

Estimation of higher genetic gain with genomic
selection in pig breeding in developing
countries by using the ridge regression
method. Indigenous population, also with
low linkage disequilibrium, may benefit of
genomic selection but with the use of HD
marker panels in genotyping.

Evaluation of imputation strategies in a cost-
effective genomic selection by using a sin-
gle-step model. Alternative genotyping scen-
arios evaluated: GEBV may be calculated
using imputed genotypes but the accuracy
of GEBV depend on the level of genotyping
in close relatives and the size of the dataset
genotyped.

Prediction ability (average correlation between
observed and predicted phenotypes) always
larger than that obtained with traditional
plans both in crossbred (0.26) or in pure-
breds (0.15-0.22) with various pedigree and
genomic prediction models.

The genomic selection improved the accuracy
of breeding values if compared to pedigree-
based models for traits with low heritability
(number of born alive or average daily gain)
and in pigs without performance data.

GEBV increase the selection difference for litter
size and maternal ability traits between 26%
and 67% IF compared to traditional EBV.

It is one of the two data sets (pigs and wheat
grain) used to evaluate various reproducing
kernel Hilbert spaces regression models
combing different number of Gaussian and
t kernels.

Reliability of genomic selection varied from
0.32 (total number of piglets born in the
first parity) to 0.58 (pig mortality in later
parities).

(continued)
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Traits

Data

Results as comparison with traditional BLUP or
according to the aim of the paper

Hidalgo et al. (2015b)

Guo et al. (2015)

DBV for two female reproduc-
tion traits: gestation length
and total number of piglets
born

Total number of piglets born,
litter size, mortality rate

Field data. Genotypes with
SNP60 BeadChip of 2078
Dutch Landrace-based, 2301
Large White-based, and 497
crossbreds pigs (F1 cross
between the lines). More
than 100,000 phenotypes in
purebred and 85,000 in
crossbred

Field data on 1241 boars and
2131 sows genotyped with
the SNP60 BeadChip.
Pedigree on 778,095 litters

Genomic value accuracies were equal or higher
with training data based on phenotypes of
purebred offspring versus phenotypes of
crossbred offspring because purebred have
high reliability (based on offspring pheno-
types). When correcting for the reliability
level, genomic values by using crossbred
traits outperforms the usage of purebred
traits by supporting the phenotyping on
crossbred.

Comparison of genomic models and methods
(single-step BLUP, GBLUP, selection index
blending method, and traditional pedigree-
based method-BLUP). Single step produced

from 309,362 Landrace
sows and 472,001 litters
from 190,760 Yorkshire

Park et al. (2015) Litter size

Field data on 519 sows of
Yorkshire pigs with geno-
typing and litter size data

more accurate predictions in genotyped pigs
(from 0.171 GBLUP to 0.209 single step) ver-
sus traditional BLUP (0.091). In non-geno-
typed pigs, reliability of 0.105 with single
step versus 0.091 with traditional BLUP.

Comparison of performance of three methods
(LASSO, regularised LASSO, Fused LASSO
and Elastic Net) to identify influencing SNPs
for a trait in ultrahigh-dimensional data of
GS. The Fused LASSO regression method
was the best one for prediction errors and
correlation coefficients between true litter
value and predicted value.

GEBV: genomic estimated breeding values; DBV: deregressed breeding values; GS: genomic selection; EBV: estimated breeding values; LD: low density;

SNP60 BeadChip: Illumina PorcineSNP60 BeadChip.

resistance, for example against the porcine reproduct-
ive and respiratory syndrome (PRRS; Jafarikia & Sullivan
2014). Genomic selection would make it possible to
predict breeding values also for healthy pigs, distantly
related to those with the phenotypes that could be
collected in specific environments or only at occasion-
ally disease outbreak (Bishop 2014). For example, PRRS
seems largely controlled by many genomic regions
with generally relatively small effects, but chromosome
4 might harbour an important QTL for PRRS resistance
(Boddicker et al. 2012). Based on these findings, vari-
ous strategies were proposed to predict GEBV by using
both the QTL region on chromosome 4 or whole gen-
ome data (Boddicker et al. 2013, 2014), eventually inte-
grated by a specific emphasis given on other
chromosome regions following the progresses in QTL
mapping for other important traits related to biological
features of PRRS resistance (Lough et al. 2014; Orrett
et al. 2014). Genomic selection for disease resistance is
a hot topic and other studies including resistance to
other pathogens will provide additional information
to use this approach in pig breeding programmes to
improve robustness of the animals.

Boar taint is the undesirable smell and taste of pork
meat derived from uncastrated male pigs that is usu-
ally associated to androsterone and skatole com-
pounds. These two components were considered both
in GWAS studies (be e.g. in Duijvesteijn et al. 2010)
and more recently in GEBV prediction analyses

(Azevedo et al. 2014; de Campos et al. 2015). In detail,
de Campos et al. (2015) reported GEBV accuracy values
of 0.65 for androstenone and 0.58 for skatole levels.
Boar taint is another trait that the pig breeding indus-
try is trying to deal with due to the new proposed
regulation about pig castration in Europe.

Meat quality traits have been considered in gen-
omic selection by a few studies. Meat quality parame-
ters have generally low heritability and they are
expensive and difficult to be recorded, especially
because often measured post mortem. The potentials
of genomic selection in the genetic improvement of
these traits were evaluated, for example, for meat pH.
For this trait, Miar et al. (2014) based on information
on about 2000 commercial crossbred pigs obtained
accuracy of 0.25 of GEBV predictions by using GBLUP
models. With the aim of comparing heteroskedastic
versus homoscedastic error in various genomic models,
Ou et al. (2015) predicted genomic values on 45-min
post mortem carcass temperature and loin muscle pH,
recorded in a swine F2 population. No significant
advantages, evaluated in terms of prediction accuracy,
resulted when accounting for heteroskedastic error
variance. Nevertheless the results of this study suffered
from the selection design that aimed to evaluate and
select crossbred lines through the use of phenotypes
recorded in purebred animals. Another study included
a total of 16 meat quality traits that were predicted
with GBLUP and Bayes B models in about 1200
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Table 5. Genomic selection studies on performance and carcass traits.

Traits

Data

Results as comparison with traditional
BLUP or according to the aim
of the study

DBV for 1375 pigs on daily gain (h* =
0.27) and 898 pigs on feed conver-
sion ratio (h? = 0.21)

Ostersen et al. (2011)

Tribout et al. (2012) Two traits with: one easy and cheap
to collect (i.e. growth rate or ultra-
sonic back fat thickness) and a
second one difficult or expensive to
measure (i.e. meat quality, feed
efficiency or intramuscular fat). h?
of 0.20 or 0.40

Christensen et al. (2012) Average daily gain and feed conver-
sion rate (feed intake/weight gain

between 30 and 100 kg)

Su et al. (2012) DBV on daily gain (h* between 0.36

and 0.39)

Number of born alive (h? = 0.08),
average daily gain (h* = 0.28),
back fat thickness (h* = 0.63)

Akanno et al. (2013)

Tribout et al. (2013) A fattening trait (inexpensive and easy
to measure) and a trait difficult or
expensive to record (e.g. feed effi-
ciency) or that cannot be measured
on selection candidates. h*> = 0.20

or 0.40

Number of born alive (h* = 0.08),
average daily gain (h* = 0.28),
back fat thickness (h* = 0.63)

Akanno et al. (2014)

Field data on Duroc pigs: 1911 geno-
typed with SNP60 BeadChip, pedi-
gree records of 52,537 pigs

Simulated data on 1050 breeding
females and 50 breeding males for
a purebred pig male line. Genome
simulated: 10 pairs of 100 cM chro-
mosomes, each with 3600 biallelic
loci (alternatively being SNP
or QTL)

Field data of 1500-2700 pigs geno-
typed (for the two traits) with
SNP60 BeadChip and 25,000 or
330,000 pigs éphenotyped

Field data on 1911 Danish Duroc gen-
otyped with SNP60 BeadChip and
339,393 pig records

Simulation data on 1275 training pigs
and 1000 validation pigs. Genome
of 5 chromosomes each one of
150 cM, with 22 markers and 50
segregating QTL

Simulated data on 1050 breeding
females and 50 breeding males.
Genome simulated: 10 pairs of
100 cM chromosomes, each with
3600 biallelic loci (alternatively
being SNP or QTL)

Simulated pig population of exotic or
indigenous lines (high- or low-link-
age disequilibrium). Genome of

The use of DBV in GEBV predictions

yielded to 18 to 39% higher reli-
abilities of GEBV and the choice of
statistical method (GBLUP, Bayesian
Lasso, and mixture models) was
less critical in purebred pigs
predictions.

Various results on average accuracy of

GEBV of young candidates depend-
ing the heritability of the traits and
the phenotyping (if on candidates
or on relatives) and training popu-
lation size. Usually the GBLUP
model increases genetic gain and
reduce inbreeding. A GBLUP model
with large training population
including selection candidates pro-
duced 27% to 33% of extra genetic
improvement in the global breed-
ing goal. With training that did not
include selection candidates, but
only phenotypes on relatives,
advantages with the genomic selec-
tion were small.

Various prediction models (pedigree-

based, original single step, adjusted
single step, and GBLUP methods).
Predictions were more accurate
with genomic models, with single-
step predictions were more accur-
ate in non-genotyped pigs.
Adjusted single-step methods
(adjustment in the genomic rela-
tionship matrix) produced more
accurate predictions than with
other methods.

GBLUP model including additive and

non-additive genetic effects
increase the prediction accuracy
and improve unbiasedness of gen-
omic predictions.

Estimation of higher genetic gain with

genomic selection in pig breeding
in developing countries by using
the ridge regression method.
Indigenous population, also with
low linkage disequilibrium, may
benefit of genomic selection but
with the use of HD marker panels
in genotyping.

Genomic selection can increase gen-

etic gain in a purebred male popu-
lation based on the combined
phenotyping of candidates and rel-
atives for lowly to moderate herit-
able traits while significantly
reducing the annual increase in
inbreeding. Direct phenotyping is
usually the choice to prefer.
Genotyping of a limited number of
pre-selected candidates reduce
extra costs associated to the gen-
omic approach while preserving
both the increase in genetic gain
and the reduction in inbreeding.

The genomic selection improved the

accuracy of breeding values if com-
pared to pedigree-based models

(continued)
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Traits

Data

Results as comparison with traditional
BLUP or according to the aim
of the study

Andersen-Ranberg and
Grindfleck (2014)

Maternal and production traits (age at
40kg, days from 40kg to 120kg,
feed from 40kg to 120kg, lean
meat %, carcass %)

DBV for backfat thickness (h*> = 0.45),
number of days to 2501b (h? =
0.26) and loin muscle area (h*> =
0.47)

Badke et al. (2014)

Jiao et al. (2014) Feed intake (h*> = 0.44), average daily
gain (h* = 0.44), and real-time
ultrasound traits: back fat thickness
(h* = 0.58), muscle depth (h> =
0.39), intramuscular fat content (h?
= 0.54)

Traits recorded both on living animals
(i.e. growth traits, h* = 0.40) and
after slaughtering (i.e. carcass traits,
h? = 0.10)

Samoré et al. (2015)

Do et al. (2015) Daily feed intake, average daily gain,

back fat

Ou et al. (2015) 45-min post-mortem carcass tempera-
ture (921) and loin muscle pH (908)

F2 phenotypes

Carcass traits: bacon depth (h? =
0.34), and 4 measures of backfat
thickness: midline lower (h* =
0.33); midline after the last rib (h*
= 0.35); midline on the last lumbar
vertebrae (h*> = 0.36), and after last
rib (h* = 0.42)

Azevedo et al. (2015)

5 chromosomes of 150 cM, each
with 22 markers and 50 segregat-
ing QTL

Field data on 9745 genotyped Norsvin
Landrace boars and Norsvin
Landsvin sows

Field data on 983 Yorkshire sires gen-
otyped with SNP60 BeadChip

Field population of about 1047 Duroc
boars (training population) and 516
boars (validation population).
Genotyping with SNP60 BeadChip

Simulated population with a training
population constituted only by rela-
tives of boars in a sib-testing pro-
gramme and phenotypes recorded
only on sibs of candidate boars

Field data on 1272 Duroc pigs (train-
ing dataset: 968 pigs, validation
dataset: 304 pigs)

Field data on 3 generations swine
population: 19 FO, 55 F1 and 928
F2 in the pedigree. All FO, F1 and
336 F2 pigs genotyped with SNP60
BeadChip

Field data. F1 population of 106 sows
and 134 boars (from 2 native Piau
Brazilian boars and 18 commercial
sows), and F2 population of 840
offsprings

for traits with low heritability (num-
ber of born alive or average daily
gain) and in pigs without perform-
ance data.

Genomic selection increased the selec-
tion differences for production
traits between 8% and 34%, if
compared to the use of traditional
EBV's.

A feasible method for a cost-efficient
design of genomic selection in
swine is the use of HD genotypes
for selection candidates but when
LD panels are imputed with high
accuracy. The addition of supple-
mentary animals genotyped at LD
to a large number of pigs geno-
typed at HD is a promising solution
in genomic selection.

Low GEBV accuracies for several traits
genotyped with LD or HD SNP
chips. Bayes-A prediction model.

With this specific selection structure
(sib test of boars), population struc-
ture and genotyping strategies, no
advantages are expected for traits
with high or medium heritability
and only small advantages are
expected for traits with low
heritability.

Predictive accuracy of different anno-
tated genomic classes for the traits
ranged from 0.508 to 0.531(daily
feed intake), 0.506 to 0.532
(residual feed intake), 0.276 to
0.357 (average daily gain), and
0.308 to 0.362 (back fat).

Whole-genome prediction models (RR-
BLUP, BayesA, BayesB and BayesCr)
were fitted to predict GEBV.
Heteroskedastic error of whole-gen-
ome prediction models showed
improved model fit and enhanced
prediction accuracy if compared to
homoscedastic error models
although the magnitude of the
improvement was small (less than
two points % net gain in prediction
accuracy).

Application of various methods of
dimensionality reduction (i.e. num-
ber of markers larger than number
of genotyped individuals, and such
markers are highly correlated) to
genome wide selection in F2 pig
population. Principal component
regression and independent com-
ponent regression had the highest
predictive ability values and the
most efficient prediction of pheno-
typic values. Partial principal com-
ponents method had the highest
predictive ability value for midline
lower backfat thickness, and it was
biased for remaining traits.

GEBV: genomic estimated breeding values; EBV: estimated breeding values; DBV: deregressed breeding values; RR-BLUP: ridge-regression best linear
unbiased prediction; SNP60 BeadChip: lllumina PorcineSNP60 BeadChip; LD: low density; HD: high density.
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Table 6. Genomic selection studies on traits other than production or maternal traits or with joint selection for more types of

traits in pigs.

References Traits

Data

Results as comparison with traditional BLUP
or based on the aim of the study

Lillehammer et al. (2013) Joint selection with equal weight to

maternal and performance traits

Wellmann et al. (2013) DBV of 14 growth, carcass and meat
quality traits recorded with progeny

testing

Azevedo et al. (2014) Precorrected phenotypes. Boar taint:
androsterone (h> = 0.44), skatole
(h? = 0.38); carcass traits: back fat
thickness (h> = 0.36) and loin
depth
(R* = 0.24).

A total of 16 carcass and meat quality
traits (h* from 0.11 to 0.46)

Baby et al. (2014)

Boddicker et al. (2014) Porcine reproductive and respiratory
syndrome resistance measured
post-virus infection: viral load
(h* =0.44) and weight gain
(h*=0.29)

Bishop (2014) Resistance to infectious diseases

Jafarikia and Sullivan (2014)  Health indicator traits and perform-
ance traits

Miar et al. (2014) Pork pH and meat quality traits

Stratz et al. (2014) Conventional EBV for 14 traits: growth,

carcass and meat quality

Boar taint: concentration of androster-
one, skatole; carcass: back fat thick-
ness, loin depth

de Campos et al. (2015)

Simulation study with a large and
continuously updated training
population with the genotyping
of boars at the test station or
also of female sibs

Field data of 895 German Piétrain
boars genotyped with SNP60
BeadChip, LD panels used for
selection candidates

Field data on 622 boars with phe-
notypes, genotyped with a
panel of 2500 SNPs (average of
131 SNPs per chromosome)

Field data on a Berkshire popula-
tion with 1205 genotyped pigs
with SNP60 BeadChip. Missing
genotypes imputed

Field data on 8 trials of about 200
pigs experimentally infected
genotyped with the SNP60
BeadChip

Field data on 2384 pigs genotyped
with SNP60 Beadchip: 1948
commercial crossbred pigs from
139 sires of two Duroc lines
bred to 429 F1 hybrid
Landrace x Large White sows

Field data: 895 German Piétrain
boars genotyped with SNP60
BeadChip and LD panels

622 boars genotyped with SNP60
BeadChip and a panel of 2500
SNP (about 131 SNPs per
chromosome)

Increase in genetic gain of 13% and better
with the genotyping of female sibs.

When using LD SNP panels in a sire pig
line, with GBLUP models, to limit the
reduction in GEBV accuracies, it is useful
to genotype at HD at least one parent of
selection candidates.

Comparative analyses among various meth-
ods for the estimation of GEBV.

GEBV accuracy depends on the size
of training data and heritability of traits.

Accuracies of GEBV predictions based
on significant markers on Sus Scrofa
chromosome 4 were higher than those
of GEBV calculated on the whole
genome.

Discussion on genetic and genomic studies
on the resistance to infectious diseases.
Main challenge is the obtaining of suit-
able phenotypes especially from epidem-
ics and to understand the biology and
epidemiology of the disease.

Overview of the status of genomic evalu-
ation research in pigs with special con-
cern to health traits.

Genomic selection in purebred pigs for
crossbred performances with imputation
of missing genotypes and a GBLUP
model. Prediction model of the parental
pure lines had accuracy of prediction
(correlation between EBV-GEBV) of 0.21
and crossbred animals of 0.25.

Study to evaluate possibilities of genomic
selection with a single-step method
using very LD markers.

Genomic selection for boar taint compounds
and carcass traits by using Ridge regres-
sion and Bayesian Lasso methods to pre-
dict GEBV.

DBV: deregreesed breeding values; SNP60 BeadChip: Illumina PorcineSNP60 BeadChip; LD: low density; HD: high density.

Berkshire pigs genotyped with the 60K Illumina SNP
panel (Baby et al. 2014). The accuracy of GEBV, calcu-
lated on the standard errors of GEBV, mainly depended
on the heritability of the traits and the size of the
training dataset that was different for each trait. Larger
training sets were envisaged to increase the accuracy
of GEBV to efficiently implement genomic selection in
that population (Baby et al. 2014).

Finally, implementation of genomic selection is also
expected for several other traits that might indirectly
affect production efficiency, like pig welfare-related-
parameters such as sow longevity and behaviour.

However, at present, as far as we know, there is no
report in the scientific literature on these traits or
aspects, with the only exception of few studies on
health indicator traits (e.g. Boddicker et al. 2014).

Genomic selection in crossbred and
multi-breed populations

Selection in pig populations is generally based on a
pyramidal structure with three levels: selection, multi-
plication and production (Dekkers et al. 2011; Tribout
et al. 2011) to exploit the effects of both heterosis and



Downloaded by [AlmaMater Studiorum - Universitadi Bologna] at 14:01 21 April 2016

.
Pure breed nuclei & ‘;»' A2

(or pure lines)

Crossbreeding between lines to produce commercial pigs

) ?—2 = \}“‘w Genotyping of pigs in nuclei _
Nuclei of pure breed "‘;: P -
(or pure lines) \t.l..’ 3.

Crossbreeding between lines to produce commercial pigs

Crossbred commerual pigs

‘A “‘“ﬁ

-

e"" ‘1»—: “P—a "*1*—&

N 4
~ ~ Nz
& r 2B g To improve performance

P genotyping of commercial

ITALIAN JOURNAL OF ANIMAL SCIENCE . 13

I  RRnr

= S

Recording of performances Genetic selection
and pedigree data

in commercial pigs [ .

Selection in Nuclei

Genomic Breeding Value:

Calculation of prediction equations
(estimation of SNP effects)

A4

To improve performances in
commercial pigs

Performance records and
pIgS 1.*' ‘-v - “. 4

Py \ R “;-{ “:"—<

Py ¢ 2l =%

"‘i ‘}n ‘-\.1 e ‘-1,.“1&,_ ‘}'—g TV R S h%"ﬁ

Figure 3. Selection for crossbreeding performances. (a) Traditional genetic selection in pig crossbreeding with selection in the nuclei
of purebred (or pureline) pigs to improve the performance of commercial crossbred pigs. (b) Perspectives of the selection in cross-
bred pigs with the genomic selection: selection in the nuclei of purebred (or pureline) pigs based on prediction equations calculated

in crossbred commercial pigs.

line complementarity by the practice of crossbreeding.
Most of the genetic progress is realised at the first
level of pure breed, or pure lines, with the assumption
that the realised genetic progress is transmitted to the
following levels (Figure 3a). However, the general
breeding goal is the improvement of crossbred per-
formances at the commercial herds (the final slaugh-
tered products) but phenotypic data are collected on
purebred animals in high-health environments with
optimised managements (Dekkers 2012). The distance
between this level and the bottom level of the pyram-
idal structure produces a reduced genetic improve-
ment at the bottom (Tribout et al. 2011).
Notwithstanding the success of current breeding
schemes, genetic differences between purebred and
crossbred animals, together with the environmental
differences between nucleus and field conditions,
make the performances of purebred animals poor pre-
dictors of the performance of their crossbred

descendants (Dekkers 2007). Moreover, some import-
ant traits, like disease resistance, cannot be measured
in nucleus lines (Ilbanez-Escriche et al. 2009). By simu-
lating a population structure organised in three tiers
(nucleus, multiplier and production tiers), Lillehammer
et al. (2015) evaluated that the increase in the genetic
gain of a trait not measured in the nucleus strongly
depends on the economic weight assigned to it and
that the most effective strategy, for the enlargement
and update of the reference population, is the geno-
typing of animals of the production progeny of geno-
typed nucleus sires, other than the only genotyping
nucleus sires.

Finally, genomic prediction is calculated by using
realised relationships instead of the expected genetic
relationships as it happens in traditional models. This
has the main advantage of allowing the calculation of
individual genomic prediction based on the effective
relationships and without the need of recording the
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relationship data, something that it might be difficult
especially in commercial hogs.

To reduce the gap between purebred and crossbred
animals, the collection of phenotypic data on crossbred
offspring was proposed as a possible solution to esti-
mate breeding values of purebred animals. This design
requires expensive programmes due to the need of
recording both phenotypes and pedigree data at the
commercial level that are usually difficult to obtain
(Tribout et al. 2011; Dekkers 2012). Genomic selection
would overcome these limitations by selecting pure-
bred animals from crossbred performances. By incorpo-
rating information from crossbred pigs, the SNP effects
would be estimated by using phenotypes and SNP
genotypes of crossbred animals and the selection of
purebred pigs based on purebred genotyping data
and prediction equations from crossbred pigs (Dekkers
2007). This design would take advantages from the col-
lection of performances on crossbred pigs (the final
products) overcoming the difficulties of recording pedi-
gree information in crossbred animals (Toosi et al.
2009). This scenario (Figure 3b) was evaluated with
promising results in pigs, through simulations analyses
(Ibanez-Escriche et al. 2009; Toosi et al. 2009). lbanez-
Escriche et al. (2009), using phenotypes on crossbreds
and a genomic model with breed of origin specific
allele substitution effects, reported that accuracies
based on crossbred data were a little bit lower than
accuracies based on pure breed data. This difference
was almost null, when the crossed breeds were closely
related breeds, depending on the models, genotyping
density and assumptions that were included in the
simulations. This was nevertheless evaluated under
additive models and differences might arise with the
inclusion of non-additive effects in the models. Similar
results were obtained by Toosi et al. (2009) who
reported that accuracy of genomic selection for pre-
dicting candidate breeding values of purebred animals
based on estimates of marker effects in a crossbred
population was slightly lower (from 0.66 to 0.74) than
what was obtained in a pure breed training population
(from 0.79 to 0.85). In another study, genomic selection
in purebred pigs for crossbred performances was eval-
uated on muscle pH using field data showing that gen-
omic selection might be of great utility for traits
difficult to measure and with low heritability (Miar
et al. 2014). In contrast, experiences of genomic selec-
tion programmes in crossbred animals that replaced
purebred animals with crossbred pigs in the reference
population did not produce any advantage except for
the cases of low correlation between purebred and
crossbred performances (<0.70) or where purebred
performances were not included in the breeding goal

(van Grevenhof & van der Werf 2015). Recently, by
using field data, Veroneze et al. (2015) reported accur-
acy of 0.25-0.29 in crossbreds by using purebred data,
and Hidalgo et al. (2015b) reported that the use of
crossbred training data would outperform those of
purebred training data in the prediction of crossbred
merits. Several methodological aspects related to the
use of pure breed and crossbreeding information were
further developed by Christensen et al. (2014) who pre-
sented a single-step method for genomic evaluation of
both purebred and crossbred performances in a two-
breed crossbreeding system by extending a model pro-
posed by Wei and van der Werf (1994). The method
included two partial relationship matrices for the two
breeds and constructed marker-based partial relation-
ship matrices that were adjusted to be compatible to
pedigree-based partial relationship matrices to combine
marker and pedigree-based source of information. This
single-step method provided a coherent approach for
genomic evaluation in a scenario in which all animals
cannot be genotyped (e.g. Guo et al. 2015).

Another important issue that should be considered
when genomic selection is applied in crossbreds is
that genomic predictions are usually carried out using
models that ignores non-additive effects. This is a
problem because final performances of crossbred ani-
mals are only in part determined by additive genetic
effects (that are considered in GEBV predictions), with
an important contribution of non-additive dominance
and epistatic genetic effects that are generally not con-
sidered in prediction calculations. Therefore, it would
be expected that a model including non-additive gen-
etic effect would increase the prediction accuracy and
reduce estimation-based biases. Su et al. (2012)
described an approach to estimate additive and non-
additive genetic variations and predict genetic values
for complex traits using models integrating additive
and non-additive genomic relationship matrices. The
method was used to investigate the variance compo-
nents of additive and non-additive genetic effects and
the accuracy of genomic predictions for daily gain in a
Danish Duroc population. The models including non-
additive genetic effects predicted breeding values
more accurately and unbiasedly, compared with a
model ignoring non-additive genetic effects. However,
in a real genetic evaluation system, there are two main
limiting factors for using a model with both additive
and non-additive genetic effects for genomic predic-
tion (Su et al. 2012). The first problem is due to the
high computational demand for models with both
additive and non-additive genetic effects requiring
more powerful computers and/or more efficient algo-
rithms. The second problem is derived by the fact that
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animals in a population under selection are conven-
tionally evaluated by genomic model using estimated
breeding value (EBV), de-regressed EBV or mean of cor-
rected progenies’ performances which are more
informative than individual observation but are appro-
priate descriptors for an additive genetic model. These
pseudo observations are not appropriate for a model
that includes non-additive genetics effects (Su et al.
2012).

In another simulation study, Esfandyari et al. (2015)
reported a more efficient genomic selection on cross-
breeding performances than on purebred phenotypes
when, in addition to additive effects, only dominant
effects were considered. Costa et al. (2015) suggested
to integrate pedigree and genomic data to better esti-
mate additive and dominance variance for growth rate
and carcass traits in an F2 pig population and Toro
and Varona (2010) evaluated the possibilities of gen-
omic selection approaches with non-additive effects in
mating design.

Another critical aspect that genomic selection pro-
grammes have to face is the reduced training popula-
tion. With the aim of enlarging the training population
on which the marker effects were estimated, and
increasing therefore the accuracy of GEBV, multi-breed
genomic evaluations were proposed in dairy cattle as
an alternative to the organisation of large consortia of
breeding companies or associations for the same
breed (Hayes et al. 2009; VanRaden et al. 2009). The
inclusion of data from more breeds in the training set
would improve the accuracy of GEBV only if the link-
age phase between markers and traits, and the genetic
architecture of the trait involved, was comparable in
the different populations. In pigs, Toosi et al. (2009)
evaluated genomic selection in an admixture popula-
tion, i.e. with multiple genetically distinct subgroups
within a population (Wang et al. 2005), and found that
given that genes from the target pure breed were
included in the admixed or crossbred population; the
accuracy was not greatly reduced with the admixed
training population. This was true, even without specif-
ically designed populations by accounting for breed
composition or breed origin of marker alleles. In con-
trast, other studies (i.e. Hidalgo et al. 2014, 2015a) sug-
gested that multi-breeds training populations would
not result in advantages in genomic selection imple-
mentations, as the across-breeds GEBV prediction
yielded to null or low accuracies.

Economic aspects of genomic selection

Although the economic aspects associated to the intro-
duction of genomic selection in pig populations might
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represent the main limits to extensive field applica-
tions, few researches evaluated this problem in detail.
Actually, unlike in dairy cattle, where genomic selection
is a reality nowadays, in pigs no great economic
changes are expected with the introduction of gen-
omic selection and the advantages should cover the
extra financial costs associated to its implementation
in pig breeding programmes (Tribout et al. 2013). The
primary expected benefit from incorporating genomic
information into pig breeding value estimation is the
improved accuracy and this increase should be large
enough to recover the genotyping costs (Abell et al.
2014). Differently from other species, as i.e. dairy cattle,
no great advantages are expected in terms of reduc-
tion of phenotyping costs because phenotypic meas-
ures recorded in the field are, in general, not very
expensive (i.e. female reproduction traits are routinely
recorded by the farmers). For other traits, that, for their
high cost are recorded in testing stations, or that can
only be recorded after slaughtering, the need of
obtaining data and updating them for the training
population (to make the training set closely related to
the population under selection to obtain a more accur-
ate GEBV prediction) might not produce a reduction in
the number of animals to be phenotyped (Muir 2007;
Sonesson & Meuwissen 2009).

The genotyping cost seems larger than the increase
in expenses of additional infrastructure, as i.e. ancillary
expenses associated to genotyping, costs due to the
additional time needed to develop and calculate EBV,
and to the increased computer power necessary to
predict GEBV (Abell et al. 2014).

For the current price of genotyping of about
100 euro per animal (even if the price is expected to
decline, in particular with the development of LD SNP
chips), costs might still be too high, considering also
that a large number of selection candidates should be
evaluated (Dekkers et al. 2011). To overcome this prob-
lem, various approaches were proposed as by e.g. the
pre-selection of animals to be genotyped (Stock &
Reents 2013) or the recording of phenotypic data only
in a limited part of the selection candidates (Okeno
et al. 2014). Henryon et al. (2012) evaluated the
amount of marginal returns derived by the introduc-
tion of genomic selection in a population with increas-
ing proportion of selection candidates with genotyping
data and in which the selection candidates to be geno-
typed were defined based on their breeding value
calculated on a priori information. In that population,
if compared to the situation in which all candidates
were genotyped, only 5-20% of selection candidates
could be genotyped to produce most of the
benefits associated to the introduction of genomic
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selection programmes. Okeno et al. (2014) evaluated
the marginal return from genomic selection when the
proportion of selection candidates with phenotypic
information changed and reported that the phenotyp-
ing of only the 80% of top breeding value ranking
selection candidates would produce the maximum
genetic gain in the breeding programme with a subse-
guent reduction in costs. Larger number of candidates
with phenotypic data is necessary when the choice
was at random and not based on prior information as
i.e. breeding value rankings.

Another scenario to reduce routine costs of gen-
omic selection is the genotyping with a SNP panel of
reduced density, to impute missing SNP genotypes
from a HD panel (Habier et al. 2009; Dekkers et al.
2011). Imputation techniques were recently reviewed
by Calus et al. (2014) by giving a complete overview of
features and techniques associated to this strategy.
Summarising, imputation can be done on a within
family base (Daetwyler et al. 2010), or based on linkage
disequilibrium information (Sheet & Stephens 2006), or
on a combination of both information (Druet &
Georges 2010) from the individuals in the reference
population. After the imputation process, values of
GEBV can be predicted for all candidates, genotyped
with LD or HD, and by using the complete set of SNPs
of the HD panel.

The use of imputation of LD genotypes with high
accuracy was supported in pigs GEBV predictions
(Cleveland & Hickey 2013). The accuracy obtained with
the imputation depends on several factors, such as the
number of markers in the LD panel, the markers
informativeness and their distribution across the gen-
ome, the relationship between the genotyped animals,
the effective population size and the used method of
imputation (Wellmann et al. 2013). The reduction in
the accuracy of direct GEBV is ranging only between
0.02 and 0.05, depending on the reference base, and
the average reliability increased with large training
populations (Dassonneville et al. 2011). For example,
the imputation error rate was very low, and the reduc-
tion in selection efficiency was small when selection
candidates were genotyped for at least 5000 markers,
with both parents mapped with porcineSNP60 bead-
chip (Hickey et al. 2012). Genotyping with LD panels
represents low-cost genotyping possibilities and there-
fore a chance of genotyping large number of animals
in a species like pigs where the economic value of
individual animals would be low as compared to indi-
vidual genotyping cost (Huang et al. 2012). Bouquet
et al. (2015) assessed that imputation of LD to HD gen-
otyping of crossbred pigs would result in a similar pre-
cision of imputation than those on purebred animals

when both the parental lines are genotyped at HD and
with similar values of precision than in the imputation
of purebred lines when sufficient dense genotyping
(at least 10K).

Abell et al. (2014) predicted the expenses associated
to the incorporation of genomic selection into trad-
itional pig breeding schemes while using two different
types of genotyping densities (LD and HD chips). With
the selection candidates genotyped at LD and all ani-
mals used for breeding genotyped at HD, costs
resulted in US$0.164 (in a 1000 sow maternal line
nucleus herd) or US$0.21 (in a 600 sow terminal sire
line) per weaned piglets. The decrease in GEBV accur-
acy due to imputation was estimated in a maximum of
3% in a scenario with a panel of only 384 markers if at
least one parent of the selection candidates were gen-
otyped at HD (Wellmann et al. 2013). In another study
(Jiao et al. 2014), the accuracy of the prediction of
GEBV was considered low in a population with 1047
boars genotyped at HD (e.g. 60K SNP chip) and 516
pigs genotyped at LD with a 9K SNP chip. The accur-
acy of GEBV with highly accurate imputed data was
large (correlation of 0.95 between GEBV of imputed
data and the estimated breeding value) whereas it sig-
nificantly decreased when genotypes were imputed
with low accuracy in training and prediction animals
(Badke et al. 2014).

Perspectives of the genomic selection in pigs
and concluding remarks

Genomic selection is already a routine practice in dairy
cattle and is becoming a reality in other livestock spe-
cies. Field applications of genomic selection are open-
ing new opportunities also in pig breeding.

Specific strategies and solutions were proposed and
envisaged to overcome the main limits associated to
the introduction of genomic selection in pigs. These
limits and associated problems but also new opportu-
nities are related to (i) the high cost of genotyping,
compared to the individual animal value, (ii) the pecu-
liarities of pig selection schemes, i.e. pyramidal popula-
tion structures with selection mainly on pure lines,
affecting how many animals should be genotyped and
phenotyped, the use of data from performance sta-
tions, further limiting the amount of available pheno-
type data and the accuracy of GEBV estimation, (iii) the
short time available for the genetic evaluation (com-
pared to dairy cattle), (iv) the possibility to better con-
trol inbreeding, (v) the possibility to perform selection
among full sibs and vi) the overall implementation of
the logistics aspects, including storage of DNA or other
biological materials from the animals, computation
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power, storage and handling data and personnel
training.

The definition of two main questions (that are not
completely independent) may at present represent the
starting point for the introduction of a genomic selec-
tion programme in a pig breeding scheme: (i) the pre-
selection of pigs for genotyping and phenotyping and
the (ii) combined use of HD and LD SNP panels. That
means which and how many animals should be geno-
typed with one or the other panel.

However, quite soon SNP genotyping technologies
are expected to be substituted by sequencing-based
approaches also in genomic selection, as sequencing
costs should decrease with the introduction of new
sequencing approaches and technologies (Table 1).
Whole genome sequence data are expected to
increase GEBV accuracy by enabling a large proportion
of the genetic variance to be finely mapped to causal
variants that would make it possible to generate pre-
diction equations more stable over populations and
over time (Meuwissen & Goddard 2010; Meuwissen
et al. 2013; Hickey et al. 2014) although the accounting
for genetic interactions, such as dominance or epistatic
effects, might represent serious limitations in predic-
tion calculations. Computational problems associated
to the use of sequence data could be a potential
bottleneck at present should the shift in technologies
(from SNP genotyping platform to sequencing plat-
forms) be complete (for all animals). However, despite
the decrease in costs, sequencing might still be too
expensive for implementation on a large number of
animals. For this reason, the identification of which ani-
mals should be first sequenced and at what fold cover-
age to correctly infer haplotype information of the
descendant animals from sequencing data is also
necessary (Kemp 2014). Continuing on what could be
envisaged in the feature, improvements in sequencing
data analysis and management would derive (i) by the
application of low coverage sequencing strategies to
reduce costs, (i) by the improvement of imputation
techniques and (iii) by the functional annotation of all
variants contributing to better clarify genetic variance
(Hickey et al. 2014).

Finally, perspectives and applications of genomic
selection in pigs were generally evaluated within the
context of existing selection programmes with already
established phenotype recording procedures. Although
perspectives of introducing genomic selection were
generally promising for traits at low heritability or
recorded only in a part of the population, i.e. on litter
size recorded only for females or health traits; in con-
trast, small advantages were expected for performance
traits with moderate to high heritability or for traits
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recorded through the use of some of the peculiar pigs
testing programmes. Dekkers (2010) suggested that to
fully capitalise the benefits of genomic selection, exist-
ing breeding programmes should be eventually rede-
signed. The implementation of genomic selection
actually removes some limitation factors of current
phenotype-based breeding programmes with regard to
when and on which individuals phenotypes should be
recorded and might lead to the re-organisation of
both the selection schemes and the population
structure.

Crossbreeding is a common practice in commercial
pig populations while selection is generally performed
on pure bred lines only, with scarce or no information
on crossbred performances. Using genomic models, it
is possible to evaluate pure bred lines with genomic
information, by using marker effects estimated on
crossbred animals with both phenotypic and genotypic
data. That would allow a new contribution coming
from field phenotypes in real production environments
(crossbred), through the selection of pure line breeds
at the top level of the pyramid of pig breeding struc-
ture. Furthermore, the genetic improvement of cross-
breeding performances implies that non-additive
genetic variance could be taken into consideration.
Accounting for non-additive effects in GEBV predictions
may be theoretically and computationally complicated
and additional studies are needed to dissect and take
advantages from these genetic components (Boysen
et al. 2013). Their correct estimation would likely
require the use of raw data as dependent variable (Su
et al. 2012) and their practical use would be probably
limited to planned mating. Another potential interest-
ing factor, that should be considered in this context
even if it could be complicated to disentangle, is the
imprinting parent-of-origin effects. Imprinted gene
expression can have an important effect on cross-
breeding performances. In order to effectively capture
imprinting genomic models should weigh imprinted
gene-associated SNPs according to the expected
effects on gene products when those effects are rele-
vant (during a specific developmental phase or across
the whole lifespan of the animals) (O'Doherty et al.
2015) and more recently, Nishio and Satoh (2015) pre-
sented two statistical GBLUP models that included
imprinting effects on the basis of genotypic or gametic
values.

It could also be important to consider that, when
genomic selection is running in a population, particular
attention should be paid to monitoring the inbreeding
level as an increased could be expected (Sonesson &
Meuwissen 2009; Lillehammer et al. 2011; Tribout et al.
2011, 2013). However, this is more an issue in dairy



Downloaded by [AlmaMater Studiorum - Universitadi Bologna] at 14:01 21 April 2016

18 A. B. SAMORE AND L. FONTANESI

cattle selection where production is usually by pure-
bred, than in swine, where production is by crosses.

Traits considered for pig genomic selection span
from traditionally selected traits, i.e. performance or
reproduction traits, to new traits, as boar taint trait,
longevity and health trait parameters or diseases out-
breaks. For several of these complex traits and new
traits (i.e. longevity) one of the main problems to be
solved is the definition of a reliable dependent vari-
able. Lucot et al. (2015) calculated the genomic predic-
tions for the trait of ‘age at puberty in gilts’ as an early
indicator of reproductive longevity by using various
subsets of the most informative SNPs from
PorcineSNP60 BeadChip and calculated the expected
genetic gain. With a selection also on males, as it is
possible with genetic tools by exploiting the genomic
selection features with sex-limited traits, the genetic
gain resulted in an extra value of 20.5% if compared to
those on females alone. With a different approach,
Santos et al. (2015) evaluated the measure of slaughter
age to measure longevity by using a genomic selection
model for longevity based on the Cox frailty model.

The emerging fields of metabolomics and phenom-
ics in pigs (Fontanesi et al. 2014) might represent a
rich potential source of new interesting traits associ-
ated to production level and quality, health status and
well-being of pigs. The prediction of GEBV might there-
fore be envisaged for the most significant parameters,
both in terms of selection for the trait in itself or as
indicator of the status of the pigs, considering that
most novel phenotypes are expensive to measure and
can be collected on a limited number of animals.
Finally, a GEBV multi-trait setting would be the logical
frame for setting up selection indexes for the overall
selection objective by accounting for GEBV variance-
covariance structure (Dekkers & van der Werf 2014).
This is a key issue for the implementation of genomic
selection in specific breeding programmes, ie. in
Italian heavy pigs in which the simultaneous selection
for productivity and seasoning meat quality traits
require the simultaneous selection of antagonistic
traits.

Several models and tools to predict GEBV have
been presented and others will certainly be developed
in the next future for genomic selection in pigs.
Among them, single-step strategies to predict GEBV
opened new scenarios with the possibility of using a
large amount of phenotypic records collected on geno-
typed or non-genotyped individuals, and of pedigree
data, precisely recorded in selected parental lines
(Christensen & Lund 2010; Christensen 2012). That
would be of significant value for traits recorded on
field over a large part of the population and few

animals being genotyped (Forni et al. 2017;
Christensen et al. 2012), but with less advantages for
traits needing a sib performance test programme with
phenotypic data collected in a small part of the popu-
lation (Samore et al. 2015). An interesting approach to
reduce the deepness of pedigree in a single-step GEBV
prediction is the attempt to limit to the last few years
of historical data in the pig data set, (i.e. about two
generations) without any reduction of accuracy of pre-
dictions in large populations (Lourenco et al. 2014). In
conclusion, accounting for all these aspects outlined
here, genomic selection might represent the strategy
of choice in pig breeding. Caution should be taken for
its implementation, considering their current limits and
problems but new developments might be expected
to overcome the most important critical points. Several
aspects relevant in pigs could be also interesting mod-
els for other species (i.e. fish, poultry and rabbits) with
analogous selection programmes, especially in terms of
crossbreeding, presence of different lines and breeds
and family structures.
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