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Abstract: The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4
(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and
sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their
counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin
on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of
cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial
step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving
rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying
to understand whether and how they are deregulated in cancer. We also discuss the use of such
molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning
the ability of colon cancers to express sLea and the possible use of circulating sLex in the early
detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link
selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field
seems to require additional data on native patient tissues to reach more definitive conclusions.
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1. Introduction

The three members of the selectin family bind carbohydrate structures (and are therefore referred
to as lectins) through a Ca++-dependent domain. They are transmembrane type I proteins with a short
cytoplasmic tail and the long N-terminal portion containing the carbohydrate recognition domain
protruding in the extracellular space. The three selectins differ in their structure and pattern of cell type
expression. L-selectin is expressed on lymphocytes, monocytes and granulocytes, and is responsible for
their homing through the binding of specific carbohydrate structures expressed by the high endothelial
venules in lymph nodes. P-selectin is expressed by platelets and endothelial cells and is stored in
membranes of α granules of platelets and in Weibel-Palade bodies of endothelial cells. It is involved in
the earlier steps of the adhesion process since its mobilization to the cell surface of activated endothelial
cells from the stores occurs within minutes upon the activation stimuli. E-selectin is constitutively
expressed on the cell surface of venular endothelia of bone marrow and skin, while in other organs
it is expressed upon stimulation by TNF-α, IL-1β, or LPS. The interaction between E-selectin and its
ligands expressed on the cell surface allows leukocyte rolling, a preliminary step leading to leukocyte
adhesion to endothelial cells and extravasation [1].
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The minimal sugar structure required for selectin binding is constituted by an α2,3-sialylated and
α1,3/4 fucosylated tetrasaccharide based on a type 1 (Galβ1,3GlcNAc) or a type 2 (Galβ1,4GlcNAc)
chain. Two isomers, known as sialyl-Lewis a (sLea: Siaα2,3Galβ1,3[Fucα1,4]GlcNAc) and sialyl-Lewis
x (sLex: Siaα2,3Galβ1,4[Fucα1,3]GlcNAc) fulfill this basic requirement. The addition of a sulfate group
at the 6 position of GlcNAc generates 6-sulfo-sLex, which is considered the physiologic ligand for
L-selectin [2]. This epitope is carried by mucin-type N- or O-linked oligosaccharides [3].

Although selectins were originally described in the context of inflammation and immunological
response, their role in cancer progression soon became evident in consideration of the role played by
cancer cell adhesion to endothelia in metastasis. Concurrently, many reports were describing various
glycan alterations associated with cancer, including the expression of sLea and sLex as a hallmark
of the malignant phenotype [4]. Interestingly, sLea is the epitope of the CA19.9 antigen, one of the
most widely used tumor markers in the clinical management of pancreatic and other gastrointestinal
cancers, as well as for research purposes. Recently, a role of circulating sLex has been proposed as
a marker for monitoring the metastatic progression of breast cancer [5] and has been associated with
tumor invasion by a meta-analysis study [6].

In the present article, we review recent data on the biosynthesis and role of selectin ligands
in gastrointestinal cancers. In particular, we will discuss how the mechanisms operating in the
immunological response and inflammation are recapitulated in cancer cells, and their significance in
gastrointestinal cancer patients. We will also highlight the still controversial points requiring further
experimental studies.

2. Biosynthesis of sLex and sLea

The biosynthesis process of sLea/sLex (Figure 1) has been known since the nineties [7]. However,
the actual contribution of the different α2,3 sialyltransferases and α1,3/4 fucosyltransferases to the
biosynthesis of selectin ligands in different healthy and cancer gastrointestinal tissues is far from
established. This is due to the complex tissue-specific pattern of expression of these enzymes and
the difficult use of the mouse model [7,8]. Moreover, the genetic manipulation of cell lines by
cDNA transfection or gene silencing [9–13] provides mainly indications on the potential role of
a glycosyltransferase in elaborating a sugar epitope in an experimental system, rather than on its
real role in normal or cancer tissues. For example, in pancreatic cancer cell lines, both ST3GAL3 and
ST3GAL4 are able to induce sLex biosynthesis [10,14], although the over-expression of sialyl-Lewis
(sLe) antigens in surgical specimens is not correlated with either gene [15]. In normal and cancer
colonic tissues, the α2,3-sialylation step of sLex biosynthesis appears to be mediated by ST3GAL4,
owing to the very low expression of ST3GAL3 [16], while the α1,3-fucosylation step is mediated mainly
by FUT6 [17]. However, the overexpression of sLex in colon cancer tissues cannot be explained by the
up-regulation of any single glycosyltransferase [16,18,19]. In a recent review [20], we have proposed
that the right question to answer is not “why are sLex levels high in colon cancer?” but rather “why
are sLex levels low in the normal colon?” Competition between FUT6 and enzymes synthesizing
alternative structures, such as Siaα2,3(GalNAcβ1,4)Galβ1,3/4GlcNAc (the Sda antigen) [21,22] or
the sialyl 6-sulfo-Lewis x antigen [23] has been proposed. The Sda antigen is the product of β1,4
N-acetylgalactosaminyltransferase-II (B4GALNT2) [24,25]. Both the Sda antigen and B4GALNT2
are highly expressed in normal colon and down-regulated in colon cancer [26,27]. The expression of
B4GALNT2 induces down-regulation of sLex in colonic and gastric cancer cell line [21,22] and probably
also in normal colonic tissues.

In fact, while in colon cancer tissues (where B4GALNT2 levels are low) sLex levels correlate
with FUT6 expression [17], in normal colon (where B4GALNT2 is high), they correlate with the
FUT6/B4GALNT2 ratio [28].

The branching point and the possible competition between the biosynthesis of type 1 and 2 chains,
(and consequently between sLea and sLex) is mainly controlled by the relative levels of expression
of β1,3- and β1,4-galactosyltransferases. Seven β1,4-galactosyltransferase enzymes (B4GALT1–7) are
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known in humans [29]. B4GALT1, the first cloned glycosyltransfease and one of the most deeply
investigated, is the one forming with lactalbumin the lactose synthase complex [30]. Association of
B4GALT1 with sLex expression has been reported in cancer [31] but little data on the other members of
the family are available. Up-regulation of type 2 chains [32], of B4GALT1 [33], and B4GALT4 [34] has
been reported in colon cancer and is associated with malignancy.
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Figure 1. Structure and biosynthesis of Lewis antigens. Monosaccharides are depicted. Blue square:
N-acetylglucosamine (GlcNAc); yellow square: N-acetylgalactosamine (GalNAc); yellow circle:
galactose (Gal); red triangle: fucose (Fuc); pink diamond: sialic acid (Sia). Anomers, linkage positions,
and enzymes involved in the reactions are indicated. All enzymes known to be able to perform a
reaction are listed, note that only some of them are proven to be expressed in gastrointestinal tissues,
as detailed in the text.

Four β1,3-galactosyltransferases (B3GALTs) have been described in humans: B3GALT1–2 and
B3GALT4–5. Much less data are available on B3GALTs than on B4GALTs. Sometimes they are limited
to a single report, as in the case of B3GALT2 [35], whose function is totally unknown. The role of
B3GALT5 in gastrointestinal tissues is rather well defined. In vivo and in cell models its expression is
closely associated with that of Lewis type 1 antigens, including sLea [36,37]. B3GALT5 acts on N- and
O-linked chains of glycoproteins, on glycolipids, and on soluble type 1 chain oligosaccharides [37,38].
In glycolipids, it is specifically responsible for globo-series elongation [39]. In Chinese hamster ovary
(CHO) cells, it competes with B4GALTs, blocking poly-N-acetyllactosamine chain elongation and sLex

synthesis [37], while its silencing in the pancreatic cancer cell line BxPC-3 reduces sLea expression and
increases sLex secretion [38]. B3GALT5 is strongly expressed in the normal colonic mucosa, resulting
in Lewis a and, to a much lower extent, in sLea expression. Conversely, the B3GALT5 transcripts are
down-regulated in colon cancer, where type 1 Lewis antigens are scarcely or not detectable [37,40,41].
In normal and pancreatic cancer tissues the amount of B3GALT5 mRNA is similar, and lower than in the
colon mucosa. In both cases, type 1 chain Lewis antigens are well detectable, but only in the glandular
ducts or in the ductal-like structures present in the relatively well differentiated adenocarcinomas [40].
In CHO cells, B3GALT1 appeared to be able to synthesize sLea [37] and it was recently proposed as
the enzyme responsible for sLea synthesis in other tissues, such as the prostate [42]. Notably, in cell
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lines derived from gastrointestinal cancers, the expression of sLea and/or sLex is rather infrequent.
The cell lines COLO-205, SW-1116 and LS-174T express sLex, and the first two surprisingly express
also high amounts of sLea. This finding apparently contradicts the sLex/sLea competition revealed by
the studies in CHO and BxPC3 cells above reported, and suggests that multiple variables affect the
relative expression of such antigens in vivo.

Another important biosynthetic step of selectin ligand biosynthesis is represented by the addition
of the GlcNAc residue preceding the galactosyl residues. The GlcNAc transferases involved differ
depending on the nature of the carbohydrate chain. On N-linked chains, the elongation of the
polylactosaminic chains bearing sLex occurs mainly in the β-1,6 branching, whose biosynthesis is
controlled by the metastasis-associated enzyme GnT5 [43]. On the O-linked chains of glycoproteins,
sLex/sLea expression is strongly dependent on Core 2 GlcNAc transferase (C2GnT) [44], while in
glycolipids a pivotal role in their biosynthesis appears to be played by a β1,3GlcNAc transferase which
synthesizes a common precursor of both type 1 and 2 chain Lewis structures [45]. Interestingly, this
enzyme is activated by Helicobacter pylori infection, leading in stomach cells to increased expression of
sLex, which is a ligand for H. pylori adhesin SabA [46].

3. Regulation of sLea and sLex

Unfortunately, the knowledge of glycosyltransferase gene regulations and its relation to cancer
is still preliminary. Epigenetic control is supposed to be relevant in many cases [47,48], while other
emerging mechanisms controlling gene expression, such as the presence of regulatory RNA sequence
and or RNA binding proteins [49], are, as yet, unexplored. At present, data are available about
promoter sequences and potential regulatory elements operating in various tissues [50–57], while
those actually involved in gastrointestinal cancer are described in very few cases [43,58–61]. This is a
very promising field of research since a bidirectional relationship may exist between the expression
of sLe antigens and the mechanisms controlling cell growth. For instance, the expression of the
metastasis-suppressive gene Nm23-H1 in a human hepatocarcinoma cell line induces down-regulation
of both FUTs and ST3GALs, resulting in reduced sLex expression [62]. On the other hand, sLe antigens
expressed on the TGF-β receptor enhance colon cancer cell migration through promotion of the
epithelial to mesenchymal transition [63], which instead was found associated to the activity of the
ST6GAL1 gene in other cancer cell lines [64].

It is well known that oncogenes are able to activate glycosyltransferases involved in the
biosynthesis of cancer-related carbohydrate structures. Good examples are provided by the MGAT5
gene which is up-regulated by src [65], ErbB2 [66], v-sis [67] and Ras [68,69] oncogenes, through Ets-1
transcription factor [70,71] and by sialyltransferase ST6GAL1, which is regulated by both N-ras and
H-ras through RalGEF signaling [72–76]. Also, the biosynthesis of Lewis type structures is affected by
oncogenes. In gastric cancer cells, the forced expression of ST3GAL4 led to increased invasive potential
through the biosynthesis of sLex, which, in turn, activates the c-Met pathway [77]. In addition, the
expression of the Lewis y antigen, induced by the forced expression of FUT4 [78,79] or of FUT2 [80],
led to increased cell growth through activation of a signal transduction pathway generated at the cell
membrane level. Colon cancer cells induced to epithelial to mesenchymal transition by EGF and/or
bFGF, displayed increased sLea/sLex expression because of up-regulation of ST3GAL1, -3 and -4 and
of FUT3, with a concomitant decrease of FUT2. These effects were dependent on c-myc expression [81].
Altogether, these data indicate that both sialylated (sLex/sLea) and non-sialylated (Lewis y) Lewis
type antigens, when expressed on cell membrane receptors, can activate an “outside-in” (from the cell
membrane to the nucleus) signal transduction pathways leading to increased growth and malignancy.
On the other hand, expression of activated oncogenes leads to overexpression of Lewis-type antigens
through glycosyltransferase stimulation, generating an “inside-out” (from the nucleus to the cell
membrane) flow of information. It can be hypothesized that these two opposite flows of information
generate a loop self-fueling invasive cell growth.
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Some reports also suggested that sLe expression is regulated by mechanisms alternative to
glycosyltransferase regulation. They include the cancer-associated expression of nucleotide-donor
transporters [82–84] and hypoxia [85], sometimes working in tandem [83]. These data were not further
developed and need to be evaluated on the light of recent papers dealing with the derangement of
fucosylation occurring in cancer. A general loss of the fucosylation potential has been reported in
fact in up to 13% of colorectal cancers due to mutations of an enzyme involved in the biosynthesis of
GDP-Fuc [86,87], the mandatory donor of fucose in all fucosyltransferase-catalyzed reactions. Such
mutation and the consequent loss of fucosylation was very recently reported to enhance inflammation
and tumors in the mouse [88]. On the other side, a general increase of fucosylation was also reported
in colorectal cancer, as suggested by the binding of Aleuria aurantia lectin [89], that preferentially
recognizes fucose α1,2/3/6 linked to lactosamine units [90]. Increased fucosylation levels were also
reported in cancer stem cells of the pancreas and associated to chemoresistance in pancreatic cell
lines [91].

4. Plasma Carriers of sLex or sLea

Owing to the role of sLe antigens in cancer diagnosis, the nature of their carrier molecules in
plasma is of crucial importance. In fact, the global level of expression of these antigens in plasma
does not always provide the sufficient sensitivity and/or specificity to discriminate cancer from
non-malignant conditions, nor to follow disease progression, while the presence of sLe epitopes
on specific glycoproteins can provide the necessary sensitivity and/or specificity. For example,
in pancreatic cancer (Table 1), the CA19.9 antigen has been reported to be carried by MUC1, MUC5AC
and MUC16 [92,93], and also by apolipoprotein B-100, kininogen and apolipoprotein E [94]. However,
while on MUC16 the up-regulation of CA19.9 parallels that of the protein carrier (indicating that no
real change of glycosylation occurred), on MUC1 and MUC5A the elevation of CA19.9 was not due to
the increased expression of the protein carrier [93]. The protein carrier may reflect the disease state.

Table 1. Plasma protein-carrying sialyl-Lewis (sLe) antigens in pancreatic diseases. sLea: sialyl-Lewis
a; sLex: sialyl-Lewis x.

Selectin Ligand Carrier Molecule Disease Involved Reference

sLea MUC1 cancer > chronic pancreatitis [92,93]
sLea MUC5AC cancer > chronic pancreatitis [92,93]
sLea MUC16 chronic pancreatitis > cancer [92,93]
sLea Apo-B-100 cancer = chronic pancreatitis [94]
sLea Apo-E cancer = chronic pancreatitis [94]
sLea Kininogen cancer = chronic pancreatitis [94]
sLex α1-acid glycoprotein cancer > chronic pancreatitis [95]
sLex Ceruloplasmin cancer > chronic pancreatitis [95]
sLex Haptoglobin chronic pancreatitis > cancer [95]
sLex Fetuin chronic pancreatitis > cancer [95]
sLex Antitrypsin chronic pancreatitis > cancer [95]
sLex Transferrin chronic pancreatitis > cancer [95]

In fact, MUC16 is the most prevalent CA19.9 carrier in pancreatitis, while MUC5AC and MUC1 are
the preferential carriers in cancer. Acute phase proteins are carriers of sLex in pancreatic diseases [95].
In particular, increased sLex expression on α1-acid glycoprotein occurs in both cancer and chronic
pancreatitis, while increased expression on haptoglobin, fetuin, antitrypsin and transferrin is associated
only with chronic pancreatitis, not with pancreatic cancer [95]. Ceruloplasmin is a carrier of sLex in
pancreatic diseases; an increase of the sLex/ceruloplasmin ratio is present in pancreatic cancer [96].
In plasma of pancreatic cancer patients, CA19.9 is carried also by glycolipids associated with the
bile globular membrane, a membrane vesicle secreted by normal bile [97]. In some colorectal cancer
patients, sLex is carried by α1-acid glycoprotein in both tissues and plasma [98]. By using high density
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antibody arrays, a variety of glycoproteins expressing sLea and/or sLex were identified in plasma
of colon cancer patients [99]. SPARC, coagulation factor V, neuropeptide Y, complement C2 and
α2-macroglobulin were among the glycoproteins more strongly expressing sLea. These glycoproteins
(and many others) also expressed sLex. In pancreatic and colon cancer cell lines, MUC1 is a carrier of
various Lewis type antigens, including sLea and sLex [100]. In gastric cancer, an increased expression
of sLex, carried by acute response proteins released by the liver, is probably dependent on the systemic
inflammatory status associated with cancer [101].

Interestingly, the fucosylation pattern of some serum proteins is specifically affected in
gastrointestinal cancer patients. For example, pancreatic ductal adenocarcinomas are associated with
increased α1,3fucosylation of α1-acid glycoprotein, which is of hepatic origin [102], while colorectal
cancers are associated with altered core-fucosylation of IgG glycans, which are produced by plasma
cells [103]. In particular, the core-fucosylation was increased in non-sialylated IgG glycans and
decreased in those sialylated. Since the glycosylation of IgG glycans is strongly dependent on the
inflammatory status (reviewed in [104]), it is possible that the cancer-associated systemic inflammation
affects the glycosylation machinery of distant tissues. Pro-inflammatory cytokines have been reported
to regulate the expression of glycosyltransferases involved in the biosynthesis of disease-associated
glycans. In particular, TNF was found able to up-regulate ST3GAL4 in human lung increasing
sLex expression [105]. It is worth recalling that sLe antigens can be carried by a glycosphingolipid
backbone, forming gangliosides. sLe gangliosides potentially circulate in the bloodstream in the form
of membrane vescicles [97], and are actually effective selectin ligands [106,107]. In colon cancer cells,
sLea ganglioside was found able to bind E-selectin and promote cell adhesion upon removal of mucin
carrying sLea [108], suggesting a potential cooperation between the various carrier structures.

5. Role in Diagnosis

Due to the general derangement of the glycosylation machinery associated with cancer [109],
many carbohydrate structures are potential markers for early diagnosis of gastrointestinal cancers.
However, sLea remains the most consolidated and used carbohydrate tumor marker. As the epitope of
CA19.9 antigen, it represents the target of the monoclonal antibody 1116-NS-19-9 developed 30 years
ago immunizing mice with the colon cancer cell line SW-1116. At present, the antigen is determined
for multiple purposes in the serum of patients suffering various gastrointestinal diseases, leading to an
enormous number of clinical determinations whose rationale is questioned [110,111]. According to
the American Society of Clinical Oncology [112] and the European Group on Tumor Markers [113],
determination of CA19.9 is recommended only for the follow-up, surveillance, and response to therapy
of pancreatic cancer. Taking into account the prevalence of pancreatic cancer, the expected number of
CA19.9 determinations was calculated to be 10-fold lower than the number of tests actually performed
in a western country [111].This is probably due to the assumption that serum CA19.9 values may help
the differential diagnosis of several gastrointestinal diseases, including cancers arising not only in the
pancreas [114–116], but in the colon [117], stomach [118,119], and bile ducts [120]. In this regard, it is
important to recall that the synthesis, expression, and secretion of CA19.9 was demonstrated in many
healthy tissues, including the pancreas [121] and the bile ducts [122]. In fact, both the pancreatic juice
and the bile physiologically contain relevant amounts of the antigen. The question is why blood CA19.9
increases in some patients but not in others, and why elevated levels of serum CA19.9 are found in
cancer patients and in patients affected by non-malignant diseases as well. The highest CA19.9 serum
values are reported in severely jaundiced patients [123], while the elevation in chronic pancreatitis
is lower and overlapping that of pancreatic cancer patients [124]. To explain these observations,
several years ago an hypothesis was formulated proposing that in pancreatic cancer the increased
serum CA19.9 levels were due to the inversion of polarity of transformed ductal cells [125] and to
the obstruction of the ducts, which in turn give rise to the abundant reabsorption of the antigen in
the blood [124]. On the other hand, immunohistochemical detection suggested an abundant and
rather specific expression of CA19.9 in pancreas and colon cancer, and not in the surrounding normal
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tissue [126–128]. Normal colon was rather considered to express the structurally related antigens Lewis
a and Lewis b [129]. These observations were further consolidated by the discovery of disialyl-Lewis a
in healthy colon mucosa, due to the activity of the sialyltranferase ST6GALNAC6 (Figure 1). It was
proposed that sLea expression in colon cancer was due the loss of disialyl-Lewis a because of the
down-regulation of ST6GALNAC1 [130]. However, differential expression of disialyl-Lewis a is not
known in organs other than the colon, and colon cancer is associated with a strong down-regulation
of B3GALT5 [37,41,131], the key enzyme in the synthesis of all Lewis type 1 antigens, including
sLea (Figure 1). Coherently, CA19.9 was scarcely detected in colon cancer by dot-blotting [40,132] or
western blotting [16]. This apparent contradiction was recently explained by the finding that using the
1116-NS-19-9 anti-CA19.9 antibody by immunohistochemistry generates artifacts [133]. In contrast,
the use of the same antibody by immunofluorescence correctly confirmed the absence of CA19.9 in
colon cancer, suggesting that the antigen circulating in such patients may originate outside the colon,
i.e. from the bile [40]. Immunofluorescence also showed that in normal pancreas, CA19.9 expression
is restricted to the ducts, and in cancer it is restricted to ductal like structures, while the bulk of the
malignant cells lacks expression. Altogether, these data suggest a re-evaluation of the hypothesis,
based on the obstruction of the ducts and the reverse of polarity, which provides a more satisfactory
explanation for serum CA19.9 elevation. This hypothesis predicts that other carbohydrate antigens
synthesized and secreted by pancreatic ductal cells may undergo reabsorption in the blood due to
obstruction and reverse of polarity occurring in cancer (Figure 2). Recently, Lewis b was actually found
expressed in a pancreatic cancer patient lacking CA19.9 [40], suggesting that such antigen may turn
useful for monitoring CA19.9-negative patients.
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Figure 2. Proposed model of the elevation of circulating CA19.9 in pancreatic cancer patients.
The inversion of polarity occurring in malignant ductal cells [125] together with the obstruction
of the cancerous ducts determine reabsorption by the blood of the molecules normally secreted by
the organ [121,124]. According to recent data [40], the expression of type 1 chain Lewis antigens in
the pancreas is regulated by the individual glycosyltransferase pattern, which is not deregulated in
cancer. Consequently, serum CA19.9 levels increase only in those patients actually expressing the
antigen in their normal ducts. Non-malignant pancreatic diseases causing obstruction, such as chronic
pancreatitis, are expected to determine partially overlapping elevation of circulating antigens. Sugars
are depicted as in Figure 1.
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In the future, it would be advisable to detect all Lewis antigens in tissue sections of surgical
specimens by immunofluorescence and compare the results with the clinical records of the patients,
including their serum CA19.9 levels. In fact, a relevant issue to be addressed concerns the
potential expression of sLex in conjunction or alternative to CA19.9. Recently, it was proposed that
CA19.9-negative cancer patients may be monitored through circulating sLex [134], and the expression
of sLex in distinct glycans appears to be independent of that of sLea, potentially improving the
diagnostic accuracy over CA19.9 [135]. The expression of sLex on plasma protein seems to be actually
associated with gastrointestinal cancers, as above reported [96].

6. Role in Malignancy

sLe antigens may promote metastasis by forming emboli of cancer cells and platelets, which
favor their arrest on endothelia [136–139]. In colon cancer patients, increased expression of sLex and
sLea correlated with metastasis and poor survival [140–143]. Down-regulation of sLe expression
by knock-down of key glycosyltransferases in cancer cell lines resulted in reduced selectin binding
and reduced metastatic ability [11,12,144], while forced expression of sLe antigens by gene transfer
increased adhesion to selectins in vitro and metastatic ability in vivo [10]. The role of selectins in
the metastatic process was confirmed by the finding that the formation of experimental pulmonary
metastases could be inhibited by the use of peptides mimicking sLea and was inhibited in E-selectin-
knock-out mice [145]. Owing to the fact that mesothelial cells express, like endothelial cells,
E- and P-selectins, the two adhesion molecules are crucial also for peritoneal spread of pancreatic
carcinoma [146].

Beside adhesion, sLe antigens influence also angiogenesis and immune recognition of cancer
cells. The role of sLex in angiogenesis is indicated by the observation that the formation of tube-like
networks of endothelial cells induced by the co-culture with cancer cells can be inhibited by antibodies
against sLex [147]. Moreover, the ability of hepatocarcinoma cells to promote angiogenesis was
inhibited by blocking sLex biosynthesis [148]. On the other hand, forced expression of sLea and type 1
Lewis antigens in a colon cancer cell line by transfection with B3GALT5 also resulted in increased
angiogenesis and tumor growth [133]. Altogether, these results suggest that angiogenesis is stimulated
by sLe antigens, regardless of the underlying carbohydrate structure (sLea or sLex). Cells expressing
high levels of sLex are a better target of natural killer cells and thus less metastatic than those expressing
moderate levels of the antigen [149,150].

Many of the experimental models reported above utilized subsets of cancer cell lines or engineered
cell clones differing in the expression of the terminal sLe epitopes, which are seeded in contact with
endothelial cells in vitro, or inoculated in nude mice to form xenografts. Although their presence is
the basic requirement for selectin binding, the mere over-expression of sLea and/or sLex does not
necessarily imply an increase of the adhesion properties of the cells. Conversely, a shift from the
expression of a particular carrier molecule to another has the potential to alter more deeply the adhesion
properties of the cells. At present, the actual expression of sLe antigens in native gastrointestinal
cancers is not adequately known because of the little available data [151,152], potentially affected
by artifacts [127,128,141]. Particularly, in colon cancer evidence of the expression of genuine CA19.9
is missing, and elevation of the circulating antigen is reported mainly in advanced stages of the
disease [153,154]. In none of cases reported in vivo was any information available about the nature of
the carrier molecules.

7. Concluding Remarks

A large number of clinical and experimental data is now available through many papers dealing
with the relationship between the expression of sLe antigens and the phenotype of various cancer
types, including those of gastrointestinal origin. The biosynthesis of sLe antigens is mainly controlled
through the regulation of several glycosyltransferase genes, which has been elucidated only for few of
them. Consequently, it is not yet possible to link sLe expression to the mechanisms controlling cell
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growth. It is well established that sLe expression has the potential to deeply influence the phenotype of
cancer cells by modulating the adhesion properties, the angiogenic ability, and the immune recognition.
However, the actual and reciprocal expression of sLea or sLex in native gastrointestinal cancers is still
questioned and needs to be unambiguously confirmed in the near future. In particular, recent data
indicated that the detection by histochemistry of sLea/CA19.9 by the NS-1116-19-9 antibody provided
artifacts, suggesting re-evaluation of Lewis antigen expression by immunofluorescence. Moreover,
the nature of the carrier molecules and their ability to constitute the proper scaffold promoting cell
adhesion in vivo requires further attention. In particular, the peculiar role of gangliosides as selectin
ligands deserves dedicated experiments. The presence of these antigens has been identified on a
variety of protein and non-protein carriers in the plasma. Selectin ligands associated with specific
carrier molecules represent a class of novel markers potentially useful in early diagnosis, as they are
able to discriminate neoplastic and non-neoplastic diseases. At present, the simple detection of sLe
antigens fails in targeting such clinical aims. In several cases, these antigens are carried by molecules
that presumably have not been synthesized by the cancer cells, indicating an indirect mechanism for
their overexpression. The proposed biliary origin of circulating CA19.9 in colon cancer patients [40,133]
needs further investigation but provides a paradigm of the indirect mechanisms of production of
carbohydrate markers circulating in some cancer patients.
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