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A measurement of the time-integrated CP asymmetry in the Cabibbo-suppressed decay D0 → K − K + is 
performed using pp collision data, corresponding to an integrated luminosity of 3 fb−1, collected with the 
LHCb detector at centre-of-mass energies of 7 and 8 TeV. The flavour of the charm meson at production is 
determined from the charge of the pion in D∗+ → D0π+ and D∗− → D0π− decays. The time-integrated 
CP asymmetry ACP(K − K +) is obtained assuming negligible CP violation in charm mixing and in Cabibbo-
favoured D0 → K −π+, D+ → K −π+π+ and D+ → K 0π+ decays used as calibration channels. It is 
found to be

ACP(K − K +) = (0.14 ± 0.15 (stat) ± 0.10 (syst))%.

A combination of this result with previous LHCb measurements yields

ACP(K − K +) = (0.04 ± 0.12 (stat) ± 0.10 (syst))%,

ACP(π
−π+) = (0.07 ± 0.14 (stat) ± 0.11 (syst))%.

These are the most precise measurements from a single experiment. The result for ACP(K − K +) is the 
most precise determination of a time-integrated CP asymmetry in the charm sector to date, and neither 
measurement shows evidence of CP asymmetry.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In the Standard Model (SM), the violation of the charge-parity 
(CP) symmetry is governed by an irreducible complex phase in 
the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Charmed hadrons 
provide the only way to probe CP violation with up-type quarks. 
Recent studies of CP violation in weak decays of D mesons have 
not shown evidence of CP symmetry breaking [1], while its vi-
olation is well established in decays of mesons with down-type 
quarks (strange and beauty) [2–6].

The CP-even decays1 D0 → K −K + and D0 → π−π+ are singly 
Cabibbo-suppressed, and for these decays D0 and D0 mesons share 
the same final state. The amount of CP violation in these decays is 
expected to be below the percent level [7–14], but large theoreti-
cal uncertainties due to long-distance interactions prevent precise 
SM predictions. In the presence of physics beyond the SM, the 
expected CP asymmetries could be enhanced [15], although an ob-
servation near the current experimental limits would be consistent 
with the SM expectation. The CP asymmetries in these decays are 
sensitive to both direct and indirect CP violation [1,16]. The di-

1 Throughout this Letter, charge conjugation is implicit unless otherwise stated.

rect CP violation is associated with the breaking of CP symmetry 
in the decay amplitude. Under SU (3) flavour symmetry, the di-
rect CP asymmetries in the decays D0 → K −K + and D0 → π−π+
are expected to have the same magnitudes and opposite sign [17]. 
Indirect CP violation, occurring through D0–D0 mixing and inter-
ference processes in the mixing and the decay, is expected to be 
small and is measured to be below 10−3 [1].

The most recent measurements of the time-integrated indi-
vidual CP asymmetries in D0 → K −K + and D0 → π−π+ decays 
have been performed by the LHCb [18], CDF [19], BaBar [20] and 
Belle [21] collaborations.

The measurement in Ref. [18] uses D0 mesons produced in 
semileptonic b-hadron decays (B → D0μ−νμ X), where the charge 
of the muon is used to identify (tag) the flavour of the D0 me-
son at production, while the other measurements use D0 mesons 
produced in the decay of the D∗(2010)+ meson, hereafter re-
ferred to as D∗+ . Charmed hadrons may be produced at the pp
collision point either directly, or in the instantaneous decays of ex-
cited charm states. These two sources are referred to as prompt. 
Charmed hadrons produced in the decays of b-hadrons are called 
secondary charmed hadrons.

This Letter presents a measurement of the time-integrated CP
asymmetry in the D0 → K −K + decay rates
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ACP(D0 → K −K +) ≡ �(D0 → K −K +) − �(D0 → K −K +)

�(D0 → K −K +) + �(D0 → K −K +)
, (1)

using a data sample of proton–proton (pp) collisions at centre-of-
mass energies of 7 and 8 TeV, collected by the LHCb detector in 
2011 and 2012, corresponding to approximately 3 fb−1 of inte-
grated luminosity. To distinguish the two CP-conjugate decays, the 
flavour of the D0 at production must be known. In this analysis, 
the flavour of the D0 is tagged by the charge of the soft pion, 
π+

s , in the strong decay D∗+ → D0π+
s . A combination with the 

recent measurement of the difference between the time-integrated 
CP asymmetries of D0 → K −K + and D0 → π−π+ decays, �ACP ≡
ACP(K −K +) − ACP(π

−π+), in prompt charm decays [16] allows 
the determination of ACP(π

−π+) taking into account the correla-
tion between �ACP and ACP(K −K +). In addition, a combination of 
the measurements using prompt charm decays and the measure-
ments using secondary charm decays from semileptonic b-hadron 
decays [18] at LHCb yields the most precise measurement of these 
quantities by a single experiment.

The method to determine ACP(K −K +) follows the strategy de-
scribed in Ref. [18]. In the analysis of D∗+ → D0(→ K −K +)π+

s
decays, two nuisance asymmetries must be considered, the pro-
duction asymmetry of the D∗+ meson A P (D∗+), and the detec-
tion asymmetry AD(π+

s ) of the soft pion caused by non charge-
symmetric interaction probabilities with the detector material and 
instrumental asymmetry. The measured raw asymmetry in the 
number of observed signal decays, defined as

Araw ≡ N(D0 → K −K +) − N(D0 → K −K +)

N(D0 → K −K +) + N(D0 → K −K +)
, (2)

is related to the CP asymmetry via

ACP(D0 → K −K +)

= Araw(D0 → K −K +) − A P (D∗+) − AD(π+
s ), (3)

assuming that the asymmetries are small and that the recon-
struction efficiencies can be factorised. The decay D∗+ → D0(→
K −π+)π+

s is used as a calibration channel to determine the pro-
duction and detection asymmetries. Since this decay is Cabibbo-
favoured, a negligible CP asymmetry is assumed. In contrast to the 
decay into two kaons, the final state K −π+ is not CP symmetric. 
Therefore, additional detection asymmetries arising from the final 
state particles are present, giving

Araw(D0 → K −π+) = A P (D∗+) + AD(π+
s ) + AD(K −π+). (4)

In order to evaluate the detection asymmetry of the final state 
K −π+ , enhanced by the different interaction cross-sections of pos-
itively and negatively charged kaons in the detector material, the 
Cabibbo-favoured decay D+ → K −π+π+ is employed. In analogy 
to the D0 → K −π+ decay, the raw asymmetry in this channel is 
given by

Araw(D+ → K −π+π+) = A P (D+) + AD(K −π+
l ) + AD(π+

h ).

(5)

The pion with the lower transverse momentum, π+
l , is chosen to 

cancel the effect of the detection asymmetry of the pion of the 
decay D0 → K −π+ . The remaining production asymmetry of the 
D+ meson A P (D+), and the detection asymmetry of the other 
pion π+

h are eliminated by incorporating the Cabibbo-favoured de-
cay D+ → K 0π+ in the measurement. There, the measured raw 
asymmetry consists of the production asymmetry A P (D+), the de-
tection asymmetry of the neutral kaon AD (K 0), and the detection 
asymmetry of the pion AD(π+)

Araw(D+ → K 0π+) = A P (D+) + AD(K 0) + AD(π+). (6)

The specific choice that the pion with the higher (lower) trans-
verse momentum in the decay D+ → K −π+π+ is used to cancel 
the effect of the detection asymmetry of the pion in D+ → K 0π+
(D0 → K −π+) is based on the comparison of the kinematic spec-
tra of the respective pions. The detection asymmetry AD(K 0) in-
cludes CP violation, mixing and different cross-sections for the 
interaction of neutral kaons with the detector material. However, 
all of these effects are known, and AD (K 0) is calculated to be small 
since only neutral kaons that decay within the first part of the de-
tector are selected [18]. The combination of Eqs. (3)–(6) yields an 
expression for ACP(D0 → K −K +) that only depends on measurable 
raw asymmetries and the calculable K 0 detection asymmetry,

ACP(D0 → K −K +) (7)

= Araw(D0 → K −K +) − Araw(D0 → K −π+)

+ Araw(D+ → K −π+π+) − Araw(D+ → K 0π+)

+ AD(K 0).

2. Detector and event selection

The LHCb detector [22,23] is a single-arm forward spectrome-
ter covering the pseudorapidity range 2 < η < 5, designed for the 
study of particles containing b or c quarks. The detector includes 
a high-precision tracking system consisting of a silicon-strip ver-
tex detector surrounding the pp interaction region, a large-area 
silicon-strip detector located upstream of a dipole magnet with a 
bending power of about 4 Tm, and three stations of silicon-strip 
detectors and straw drift tubes placed downstream of the magnet. 
The tracking system provides a measurement of the momentum of 
charged particles with a relative uncertainty that varies from 0.5% 
at low momentum to 1.0% at 200 GeV/c. The minimum distance 
of a track to a primary vertex (PV), the impact parameter (IP), is 
measured with a resolution of (15 + 29/pT) μm, where pT is the 
component of the momentum transverse to the beam, in GeV/c.

Different types of charged hadrons are distinguished using in-
formation from two ring-imaging Cherenkov detectors. Photons, 
electrons and hadrons are identified by a calorimeter system con-
sisting of scintillating-pad and preshower detectors, an electromag-
netic calorimeter and a hadronic calorimeter. Muons are identified 
by a system composed of alternating layers of iron and multi-
wire proportional chambers. The magnetic field inside the detector 
breaks the symmetry between trajectories of positively and neg-
atively charged particles as the positive particles are deflected in 
one direction, and the negative particles in the opposite direc-
tion. Due to the imperfect symmetry of the detector, this can 
lead to detection asymmetries. Periodically reversing the magnetic 
field polarity throughout data-taking almost cancels the effect. The 
configuration with the magnetic field pointing upwards, MagUp 
(downwards, MagDown), bends positively (negatively) charged par-
ticles in the horizontal plane towards the centre of the LHC ring.

The singly Cabibbo-suppressed decay mode D0 → K −K + and 
the Cabibbo-favoured modes D0 → K −π+ , D+ → K −π+π+ and 
D+ → K 0π+ are selected, where the D0 candidates come from 
the D∗+ → D0π+ decay. The D∗+ and D+ candidates must satisfy 
an online event selection performed by a trigger, which consists of 
a hardware and software stage, and a subsequent offline selection. 
The hardware stage of the trigger is based on information from 
the calorimeter and muon systems, followed by a software stage, 
which applies a full event reconstruction. In order to avoid asym-
metries arising from the hardware trigger, each of the four decay 
channels is required to satisfy a trigger that is independent of the 
decay considered. Both the software trigger and offline event se-
lection use kinematic variables and decay time to isolate the signal 
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decays from the background. To ensure a cancellation of possible 
trigger asymmetries in the software stage, for each of the cali-
bration channels a specification about which particle triggers the 
event is made.

All secondary particles from D0 and D+ decays are required to 
be significantly displaced from any primary pp interaction vertex, 
and have momentum and transverse momentum pT larger than a 
minimum value. The final state hadrons are combined into a D0

(D+) candidate. The D∗+ vertex is formed by D0 and π+
s candi-

dates, and is constrained to coincide with the associated PV [24]. 
Similarly, a vertex fit of the D+ decay products is made, where 
the D+ candidate is constrained to originate from the correspond-
ing PV. In D+ → K 0π+ decays, the neutral kaon is reconstructed 
via decays into two charged pions, which are dominated by decays 
of the short-lived neutral kaon, K 0

S . The mass of the K 0 meson is 
constrained to the nominal mass of the K 0

S state [25]. Decays of 
K 0

S → π+π− are reconstructed using only K 0
S mesons that decay 

early enough for the secondary pions to be reconstructed in the 
vertex detector.

Further requirements are placed on: the track fit quality; the 
D∗+ and D0 (D+) vertex fit quality; the D0 (D+) meson trans-
verse momentum and its decay distance; the smallest value of χ2

IP , 
of both the D0 (D+) candidate and its decay products with respect 
to all PVs in the event. The χ2

IP is defined as the difference be-
tween the vertex-fit χ2 of the PV reconstructed with and without 
the considered particle. For D0 candidates, a selection criterion is 
placed on the angle between the D0 momentum in the laboratory 
frame and the momentum of the kaon or the pion in the D0 rest 
frame. For D+ candidates, additional requirements on the pseudo-
rapidities, momenta and transverse momenta of the particles are 
applied in order to match the kinematic distributions of the two 
D+ decay modes.

Cross-feed backgrounds from D meson decays with a kaon 
misidentified as a pion, and vice versa, are reduced using parti-
cle identification requirements. After these selection criteria, the 
dominant background in D∗+ → D0π+

s decays consists of genuine 
D0 candidates paired with unrelated pions originating from the 
primary interaction vertex. The main background in the distribu-
tions of D+ → K −π+π+ and D+ → K 0π+ decays is combina-
torial. For the D0 channels, fiducial requirements are imposed to 
exclude kinematic regions having a large asymmetry in the soft 
pion reconstruction efficiency [16]. These regions occur because 
low momentum particles of one charge at large or small angles in 
the horizontal plane may be deflected either out of the detector ac-
ceptance or into the non-instrumented beam pipe region, whereas 
particles with the other charge are more likely to remain within 
the acceptance. About 70% of the selected candidates are retained 
after these fiducial requirements.

The D0 candidates satisfying the selection criteria are accepted 
for further analysis if the mass difference δm ≡ m(h+h−π+

s ) −
m(h+h−) for h = K , π is in the range 139.77–151.57 MeV/c2. 
To reduce the combinatorial background, the mass of the re-
constructed D0 candidate is required to lie in the range 1850–
1884 MeV/c2 and 1847–1887 MeV/c2 for D0 → K −K + and D0 →
K −π+ decays, respectively. This window corresponds to about two 
standard deviations of the mass resolution, as estimated from a fit 
to the mass distribution of the charm meson candidates. The D+
candidates are selected by requiring the reconstructed mass to lie 
in a 1820–1920 MeV/c2 mass window.

The data sample includes events with multiple D∗+ candidates. 
The majority of these events contains the same reconstructed D0

meson combined with different soft pion candidates. The frac-
tion of events with multiple candidates in the considered range 
of δm is about 6.5% for D0 → K −K + events and about 4.9% for 

D0 → K −π+ events. These fractions are approximately the same 
for each magnet polarity. One of the multiple candidates is ran-
domly selected and retained, the others are discarded.

The full data sets recorded in 2011 and 2012 at 7 and 8 TeV, 
respectively, are used for this analysis. They correspond to an inte-
grated luminosity of about 1 fb−1 and 2 fb−1, respectively. In 2011, 
approximately 60% of the data was recorded with magnet polarity 
MagDown, whereas in 2012 approximately the same amount of 
data was taken with each magnet polarity. The data are split into 
four subsamples according to the magnet polarity and the data-
taking year.

3. Measurement of the asymmetries

The raw asymmetries and the signal yields are determined from 
binned likelihood fits to the δm distributions in the D0 decay 
modes, and to the invariant mass distributions m(D+) in the D+
channels. The fits are simultaneous for both flavours and the back-
ground yields are allowed to differ between them. The fits to the 
four decay channels are made independently in the four subsam-
ples.

The signal shape of the δm distribution is described by the sum 
of three Gaussian functions, two of which have a common mean. 
The means and widths of the Gaussian distributions are allowed to 
differ between D0 and D0 because of a possible charge-dependent 
bias in the measurement of the momentum, while all the other pa-
rameters are shared. The background is described by an empirical 
function consisting of the product of an exponential function and 
a power-law function modelling the phase-space threshold [26]

Pbkg(δm|A, B, δm0) ∝ (δm − δm0)
A e−B(δm−δm0), (8)

where the threshold δm0 is fixed to the known π+ mass [25]. The 
parameters A and B describe the shape and are common to D0

and D0 decays.
The signal shape of the D+ decays is described by the sum of 

two Gaussian distributions and a bifurcated Gaussian distribution. 
The bifurcated Gaussian distribution describes the asymmetric tails 
of the invariant mass distribution arising from radiative processes 
in the decay. The background is modelled by a single exponential 
function, with the same slope for the D+ and D− states.

The production and detection asymmetries depend on the kine-
matics of the particles involved. If the kinematic distributions are 
very different, this may lead to an imperfect cancellation of the 
nuisance asymmetries in ACP(K −K +). To remove any residual ef-
fect, the kinematic distributions of the four decay channels are 
equalised by means of a weighting procedure [19]. Fiducial re-
gions where this weighting procedure is not possible due to a 
lack of events in one of the channels are already excluded by 
the requirements on kinematic variables of the D+ decays. Fits 
to the δm and m(D+) distributions of the unweighted data sam-
ples are used to obtain the kinematic distribution of the signal 
component by disentangling the signal and background compo-
nents with the sPlot technique [27]. Then, the normalised signal 
distributions of the four channels are compared. To obtain the 
greatest possible statistical sensitivity, especially for the channel 
with the lowest yield D+ → K 0π+ , the following order of the 
weighting steps is chosen: first, the D+ → K −π+π+ kinematic 
distributions are weighted to reproduce the D+ → K 0π+ kinemat-
ics; second, D0 → K −π+ distributions are weighted to reproduce 
the D+ → K −π+π+ kinematics, and, last, the D0 → K −K + dis-
tributions are weighted to reproduce the D0 → K −π+ kinematics. 
At each step, the weights already calculated in the previous steps 
are applied. Some of the steps are repeated until a satisfactory 
agreement of the distributions is achieved. The underlying D∗+
kinematic distributions are independent of the D0 decay mode, 
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Table 1
Signal yields of the four channels before and after the kinematic weighting. In the 
case of the weighted samples, effective yields are given.

Channel Before weighting After weighting

D0 → K − K + 5.56 M 1.63 M
D0 → K −π+ 32.4 M 2.61 M
D+ → K −π+π+ 37.5 M 13.67 M
D+ → K 0π+ 1.06 M 1.06 M

but the selection requirements can introduce differences for the 
K −K + and K −π+ final states, which are observed in the kinemat-
ical distributions of the D∗+ candidates. The variables used for the 
weighting procedure are: pT, η and azimuthal angle ϕ of the D∗+
candidates; pT and η of the D+ mesons; pT, η and ϕ of the pion in 
the D+ → K 0π+ channel and of the higher-transverse-momentum 
pion in D+ → K −π+π+ decays; pT, η and ϕ of the kaon and 
the pion in the D0 → K −π+ and D+ → K −π+π+ modes. For 
the weighting of the D+ → K −π+π+ decay to agree with the 
D0 → K −π+ decay, the pion with the lower transverse momen-
tum in the D+ → K −π+π+ channel is used. For all weighting 
steps, by default, each variable is divided in 20 uniform bins. If 
necessary, the transverse momenta are transformed to the interval 
[0, 1] to account for long tails in the distributions. The procedure 
leads to a few events in scarcely populated bins having very large 
weights. In order to mitigate such an effect, an upper bound to the 
weights is applied.

After applying the weights, the effective sample size is given 
by Neff = (

∑N
i=1 wi)

2/(
∑N

i=1 w2
i ), where wi is the weight of can-

didate i and N is the total number of candidates. The numbers of 
signal decays determined from fits to the samples before and after 
weighting are given in Table 1.

The detection asymmetry AD(K 0) of the neutral kaon is identi-
fied as one of the sources of the residual asymmetry. The method 
of calculation is described in full detail in Ref. [18] and is applied 
here in the same way. Based on the reconstructed trajectories and 
a model of the detector material, the expected asymmetries are 
determined for all neutral kaon candidates individually and then 
averaged. The calculated values are (−0.052 ± 0.013)% for 2011, 
and (−0.054 ± 0.014)% for 2012 data. The individual values for the 

different categories do not differ between samples taken with dif-
ferent magnet polarities.

The raw asymmetries of the weighted samples, determined by 
the fits to the δm and m(D+) distributions shown in Fig. 1, are 
presented in Table 2. The raw asymmetries are combined with the 
calculated detection asymmetry of the neutral kaon. Testing the 
four independent measurements of ACP(K −K +) for mutual con-
sistency gives χ2/ndf = 0.80, corresponding to a p-value of 0.50. 
The asymmetries obtained with the two magnet polarities within 
each year are arithmetically averaged in order to ensure the can-
cellation of detection asymmetries which reverse sign with magnet 
polarity. The final result is then calculated as the weighted mean 
of the two data-taking periods. The weighted average of the val-
ues corresponding to all subsamples is calculated as ACP(K −K +) =
(0.14 ± 0.15)%, where the uncertainty is statistical. The weighting 
procedure shifts the observed value of ACP(K −K +) by 0.04%.

4. Systematic uncertainties

Possible systematic shifts of the measured CP asymmetry can 
be caused by biases in the determination of individual raw asym-
metries and non-cancellation of detection and production asym-
metries. The determination of raw asymmetries is studied using 
several suitable alternative signal and background models in the fit 
of the mass distributions. Pseudoexperiments are generated based 
on the alternative fit results. The baseline model is fitted to the 
pseudoexperiment distributions. This is independently done for the 
four data categories and all channels. The maximum observed de-
viations between the alternative results and the results of the fits 
to the generated pseudoexperiment distributions are combined, 
and a value of 0.025% is assigned as systematic uncertainty. This 
strategy allows systematic shifts and statistical fluctuations to be 
disentangled.

Partially reconstructed and misidentified three-body charm de-
cays might produce a peaking background in the δm distribution 
of the Cabibbo-suppressed decay D0 → K −K + . This background 
could therefore contribute to the signal yields obtained with the 
fit. If these incorrectly reconstructed decays were to have an asym-
metry different from that of signal decays, the determined signal 
asymmetry would be shifted. Simulated events are used to esti-
Table 2
Measured asymmetries in % with their statistical uncertainties.

2011 MagUp MagDown Mean

Araw(D0 → K + K −) −1.85 ± 0.24 0.05 ± 0.20 −0.90 ± 0.16
Araw(D0 → K −π+) −2.87 ± 0.18 −1.43 ± 0.15 −2.15 ± 0.12
Araw(D+ → K −π+π+) −1.946 ± 0.095 −2.044 ± 0.079 −1.995 ± 0.062
Araw(D+ → K 0π+) −0.95 ± 0.30 −0.93 ± 0.25 −0.94 ± 0.20
AD (K 0) −0.052 −0.052 −0.052

ACP(K − K +) −0.03 ± 0.43 0.32 ± 0.37 0.14 ± 0.28

2012 MagUp MagDown Mean

Araw(D0 → K − K +) −1.92 ± 0.15 −0.03 ± 0.15 −0.98 ± 0.10
Araw(D0 → K −π+) −2.23 ± 0.11 −1.65 ± 0.11 −1.939 ± 0.079
Araw(D+ → K −π+π+) −1.291 ± 0.045 −1.993 ± 0.044 −1.642 ± 0.031
Araw(D+ → K 0π+) −0.92 ± 0.17 −0.83 ± 0.17 −0.88 ± 0.12
AD (K 0) −0.054 −0.054 −0.054

ACP(K − K +) −0.11 ± 0.26 0.40 ± 0.26 0.14 ± 0.18

2011 + 2012 MagUp MagDown Mean

Araw(D0 → K − K +) −1.90 ± 0.12 −0.01 ± 0.12 −0.95 ± 0.10
Araw(D0 → K −π+) −2.411 ± 0.095 −1.574 ± 0.090 −2.005 ± 0.079
Araw(D+ → K −π+π+) −1.411 ± 0.041 −2.005 ± 0.038 −1.714 ± 0.031
Araw(D+ → K 0π+) −0.93 ± 0.15 −0.86 ± 0.14 −0.89 ± 0.12
AD (K 0) −0.053 −0.053 −0.053

ACP(K − K +) −0.09 ± 0.22 0.37 ± 0.21 0.14 ± 0.15
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Fig. 1. Fits to the δm and to the m(D+) distributions corresponding to the whole data sample and both flavours. Data samples after the kinematic weighting described in the 
text are used.
mate the relative fraction of peaking background, which is then 
combined with production and detection asymmetries measured 
at LHCb [18,28] in order to obtain a conservative estimate of the 
asymmetry of this background. A value of 0.015% is assigned as 
systematic uncertainty.

In order to test the influence of kinematic regions with high 
asymmetries of the final state particles in the channels D0 →
K −π+ , D+ → K −π+π+ and D+ → K 0π+ , such regions are ex-
cluded in analogy to the treatment of the soft pion. The difference 
in the values for ACP(K −K +), 0.040%, is taken as systematic un-
certainty.

Possible incomplete cancellation of detection and produc-
tion asymmetries is accounted for in several different ways. The 
weighting procedure is designed to equalise kinematic distribu-
tions, but a perfect agreement cannot be reached because of bin-
ning effects, the sequential rather than simultaneous weighting 
and the reduction of large weights. This effect is estimated by 
repeating the weighting with alternative configurations, which in-
cludes changing the number of bins, an alternative way of dealing 
with high weights and weighting in a reduced set of kinematic 
variables. For each configuration, the CP asymmetry is determined 
and the maximum deviation from the baseline result, 0.062%, is 
propagated as a systematic uncertainty. Additionally, the kine-
matic dependence of the raw asymmetries observed in data are 
modelled with kinematically dependent detection and production 
asymmetries assigned to each particle in the decay. These mod-
elled detection and production asymmetries are then combined 
with the weighted kinematic distributions in data to calculate the 
raw asymmetries present in the individual channels. The modelled 
raw asymmetries are combined to give the final CP asymmetry 
according to Eq. (7). Since no CP asymmetry in D0 → K −K + is 
included in this calculation, an ideal kinematic weighting, corre-
sponding to a perfect cancellation of all detection and production 
asymmetries, would result in this CP asymmetry being zero. The 
obtained deviation is 0.054% and is treated as an independent sys-
tematic uncertainty.

Charmed mesons produced in the decay of beauty hadrons are 
suppressed by the requirement of a small χ2

IP of the charm meson 

candidates with respect to the PV. Nevertheless, a certain frac-
tion of these decay chains passes the selection. This leads to an 
effective production asymmetry that depends on the production 
asymmetry of the charm mesons, the production asymmetry of 
the beauty hadrons and the fraction of secondary charm decays. 
The latter is determined for the D0 decays by a fit to the χ2

IP
distributions when the selection requirement on this quantity is 
removed. This yields an estimated secondary fraction of 4.0% for 
the channel D0 → K −K + and 4.9% for the channel D0 → K −π+ . 
For the D+ decay channels, a conservative estimate of the dif-
ference in the fraction of secondary charm fsec based on these 
numbers and on a comparison with simulated events, is made: 
fsec(D+ → K −K +π+) − fsec(D+ → K 0π+) = 4.5%. A combination 
of these numbers with the production asymmetries measured at 
LHCb [28–31] yields a value of 0.039%, which is assigned as a sys-
tematic uncertainty.

The systematic uncertainty on the neutral kaon detection asym-
metry is 0.014%. Further sources of systematic uncertainty are 
investigated by performing consistency checks. The analysis is re-
peated using more restrictive particle identification requirements 
and the result is found to be compatible with the baseline result. 
Additionally, the measurement of the CP asymmetry is repeated 
splitting the data-taking period into smaller intervals, and in bins 
of the momentum of the kaon in the decays D0 → K −π+ and 
D+ → K −π+π+ . No evidence of any dependence is found. All 
quoted systematic uncertainties are summarised in Table 3 and 
added in quadrature to obtain the overall systematic uncertainty.

5. Summary and combination with previous LHCb 
measurements

The time-integrated CP asymmetry in D0 → K −K + decays is 
measured using data collected by the LHCb experiment and deter-
mined to be

ACP(K −K +) = (0.14 ± 0.15 (stat) ± 0.10 (syst))%. (9)

This result can be combined with previous LHCb measurements of 
the same and related observables. In Ref. [18], ACP(K −K +) was 
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Table 3
Systematic uncertainties from the different categories. The quadratic sum is used to 
compute the total systematic uncertainty.

Category Systematic uncertainty [%]

Determination of raw asymmetries:
Fit model 0.025
Peaking background 0.015

Cancellation of nuisance asymmetries:
Additional fiducial cuts 0.040
Weighting configuration 0.062
Weighting simulation 0.054
Secondary charm meson 0.039

Neutral kaon asymmetry 0.014

Total 0.10

measured to be Asl
CP(K −K +) = (−0.06 ± 0.15 (stat) ± 0.10 (syst))%

for D0 mesons originating from semileptonic b-hadron decays. 
Since the same D+ decay channels were employed for the cancel-
lation of detection asymmetries, the result is partially correlated 
with the value presented in this Letter. The statistical correlation 
coefficient is calculated as shown in Appendix A, and is ρstat =
0.36 and the systematic uncertainties are conservatively assumed 
to be fully correlated. A weighted average results in the following 
combined value for the CP asymmetry in the D0 → K −K + channel

Acomb
CP (K −K +) = (0.04 ± 0.12 (stat) ± 0.10 (syst))%. (10)

The difference in CP asymmetries between D0 → K −K + and D0 →
π−π+ decays, �ACP , was measured at LHCb using prompt charm 
decays [16]. A combination of the measurement of ACP(K −K +)

presented in this Letter with �ACP yields a value for ACP(π
+π−)

ACP(π
+π−) = ACP(K +K −) − �ACP

= (0.24 ± 0.15 (stat) ± 0.11 (syst))%. (11)

The statistical correlation coefficient of the two measurements is 
ρstat = 0.24, and the systematic uncertainties of the two analyses 
are assumed to be fully uncorrelated.

The correlation coefficient between this value and the measure-
ment of Asl

CP(π
−π+) = (−0.19 ± 0.20 (stat) ± 0.10 (syst))% using 

semileptonically-tagged decays at LHCb [18] is ρstat = 0.28. The 
weighted average of the values is

Acomb
CP (π−π+) = (0.07 ± 0.14 (stat) ± 0.11 (syst))%,

where, again, the systematic uncertainties are assumed to be fully 
correlated. When adding the statistical and systematic uncertain-
ties in quadrature, the values for the CP asymmetries in D0 →
K −K + and D0 → π−π+ have a correlation coefficient ρfull = 0.61. 
Fig. 2 shows the LHCb measurements of CP asymmetry using both 
pion- and muon-tagged D0 → K −K + and D0 → π−π+ decays. 
Additionally, the latest combined values of the Heavy Flavour Av-
eraging Group [1] for these quantities are presented. The time-
integrated CP asymmetries can be interpreted in terms of direct 
and indirect CP violation as shown in Appendix B.

In conclusion, no evidence of CP violation is found in the 
Cabibbo-suppressed decays D0 → K −K + and D0 → π−π+ . These 
results are obtained assuming that there is no CP violation in 
D0–D0 mixing and no direct CP violation in the Cabibbo-favoured 
D0 → K −π+ , D+ → K −π+π+ and D+ → K 0π+ decay modes. 
The combined LHCb results are the most precise measurements 
of the individual time-integrated CP asymmetries ACP(K −K +) and 
ACP(π

−π+) from a single experiment to date.
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Appendix A. Calculation of correlations

Since the measurement of ACP(K −K +) using semileptonic 
b-hadron decays employs the same prompt D+ calibration chan-
nels, it is correlated to the value obtained from prompt charm 
decays. Due to different selection requirements and a different 
weighting procedure of the candidates, the asymmetries measured 
for the D+ channels are not fully correlated. The correlation fac-
tor ρ between two weighted subsamples X and Y of a larger data 
sample Z is given by

ρ =
√√√√ (∑

Z ωXωY
)2

∑
X ω2

X

∑
Y ω2

Y

, (12)

where ωX and ωY are the weights of candidates in the X and Y
subsamples. Whereas the four D+ → K 0

S π+ data samples have cor-
relation factors ρK 0

S π between 0.64 and 0.70, the correlation fac-

tors of the D+ → K −π+π+ samples, ρKππ , are in the range 0.07
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Table 4
Summary of the mean decay times of the D0 → h−h+ candidates used in the measurements of �ACP and ACP

using prompt and semileptonic D0 decays, and their combined values. The first uncertainty of the results is 
statistical, and the second one accounts for the systematics.

Tag Mode Measurement 〈t(hh)〉/τ (D0) Ref.

Prompt K − K + �ACP 2.1524 ± 0.0005 ± 0.0162 [16]
Prompt π− π+ �ACP 2.0371 ± 0.0005 ± 0.0151 [16]
Prompt K − K + ACP(K − K +) 2.2390 ± 0.0007 ± 0.0187 –
Prompt π− π+ ACP(K − K +) − �ACP 2.1237 ± 0.0008 ± 0.0375 –
Semileptonic K − K + �ACP 1.082 ± 0.001 ± 0.004 [18]
Semileptonic π− π+ �ACP 1.068 ± 0.001 ± 0.004 [18]
Semileptonic K − K + ACP(K − K +) 1.051 ± 0.001 ± 0.004 [18]
Semileptonic π− π+ ACP(K − K +) − �ACP 1.0370 ± 0.0011 ± 0.0089 –
Pr. + sl. π− π+ ACP(K − K +) − �ACP 1.7121 ± 0.0007 ± 0.0267 –
Pr. + sl. K − K + ACP(K − K +) 1.6111 ± 0.0007 ± 0.0109 –
to 0.08. The main reason for these small correlations is the prescal-
ing of the D+ → Kπ+π+ data in the semileptonic analysis which 
was removed in the prompt case. From these numbers, for each 
data category the correlation ρACP of the values for ACP(K −K +)

are calculated as

ρACP = 1

σ
prompt
ACP

σ sl
ACP

[
ρK 0

S πσ
prompt
K 0

S π
σ sl

K 0
S π

+ ρKππσ
prompt
Kππ σ sl

Kππ

]
.

(13)

Here, σ represents the statistical uncertainty of the measured 
asymmetry of the respective channel. This results in correlation 
factors between 0.34 and 0.37 for the four data categories. When 
combining these correlations in a similar way to Eq. (13), the 
statistical correlation ρstat between the semileptonic and prompt 
measurements of ACP(K +K −) is obtained to be ρstat = 0.36.

The other correlation factors presented in Sec. 5 are obtained 
using a similar strategy.

Appendix B. Mean decay times

The time-integrated CP asymmetry ACP(K −K +) is not only sen-
sitive to direct CP violation, but also has a contribution from indi-
rect CP violation. This contribution depends on the mean decay 
time in units of the lifetime of the D0 mesons, 〈t(hh)〉/τ (D0), as

ACP ≈ adir
CP − A�

〈t(hh)〉
τ (D0)

, (14)

where adir
CP is the direct CP violation term, τ (D0) the D0 lifetime 

and A� a measure of indirect CP violation. More details about the 
method and the systematic uncertainties considered can be found 
in [16,18].

When calculating ACP(π
−π+) from ACP(K −K +) and �ACP , a 

difference of the mean decay time of the D0 → K −K + samples 
used for measuring ACP(K −K +) and �ACP leads to an additional 
contribution which is proportional to this difference and the size of 
indirect CP violation. This can be accounted for by adding this dif-
ference to the mean decay time of the D0 → π−π+ sample used 
in the �ACP measurement. In Table 4 this modified mean decay 
time is labelled by ACP(K −K +) − �ACP .

Appendix C. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.physletb.2017.01.061.

References

[1] Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of b-hadron, c-hadron, 
and τ -lepton properties as of summer 2014, arXiv:1412.7515, updated results 
and plots available at http://www.slac.stanford.edu/xorg/hfag/.

[2] J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2π decay of 
the K 0

2 meson, Phys. Rev. Lett. 13 (1964) 138.
[3] BaBar collaboration, B. Aubert, et al., Observation of CP violation in the B0

meson system, Phys. Rev. Lett. 87 (2001) 091801, arXiv:hep-ex/0107013.
[4] Belle collaboration, K. Abe, et al., Observation of large CP violation in the neu-

tral B meson system, Phys. Rev. Lett. 87 (2001) 091802, arXiv:hep-ex/0107061.
[5] LHCb collaboration, R. Aaij, et al., First observation of CP violation in the decays 

of B0
s mesons, Phys. Rev. Lett. 110 (2013) 221601, arXiv:1304.6173.

[6] LHCb collaboration, R. Aaij, et al., Observation of CP violation in B± → D K ±
decays, Phys. Lett. B 712 (2012) 203;
Erratum: R. Aaij, et al., Phys. Lett. B 713 (2012) 351, arXiv:1203.3662.

[7] T. Feldmann, S. Nandi, A. Soni, Repercussions of flavour symmetry break-
ing on CP violation in D-meson decays, J. High Energy Phys. 06 (2012) 007, 
arXiv:1202.3795.

[8] B. Bhattacharya, M. Gronau, J.L. Rosner, CP asymmetries in singly-Cabibbo-
suppressed D decays to two pseudoscalar mesons, Phys. Rev. D 85 (2012) 
054014, arXiv:1201.2351.

[9] D. Pirtskhalava, P. Uttayarat, CP violation and flavor SU (3) breaking in 
D-meson decays, Phys. Lett. B 712 (2012) 81, arXiv:1112.5451.

[10] J. Brod, Y. Grossman, A.L. Kagan, J. Zupan, A consistent picture for large 
penguins in D0 → π−π+ , K − K + , J. High Energy Phys. 10 (2012) 161, 
arXiv:1203.6659.

[11] H.-Y. Cheng, C.-W. Chiang, SU (3) symmetry breaking and CP violation in D →
P P decays, Phys. Rev. D 86 (2012) 014014, arXiv:1205.0580.

[12] S. Müller, U. Nierste, S. Schacht, Sum rules of charm CP asymmetries beyond 
the SU (3)F limit, Phys. Rev. Lett. 115 (2015) 251802, arXiv:1506.04121.

[13] M. Golden, B. Grinstein, Enhanced CP violations in hadronic charm decays, 
Phys. Lett. B 222 (1989) 501.

[14] H.-n. Li, C.-D. Lu, F.-S. Yu, Branching ratios and direct CP asymmetries in D →
P P decays, Phys. Rev. D 86 (2012) 036012, arXiv:1203.3120.

[15] G.F. Giudice, G. Isidori, P. Paradisi, Direct CP violation in charm and flavor mix-
ing beyond the SM, J. High Energy Phys. 04 (2012) 060, arXiv:1201.6204.

[16] LHCb collaboration, R. Aaij, et al., Measurement of the difference of time-
integrated CP asymmetries in D0 → K − K + and D0 → π−π+ decays, Phys. 
Rev. Lett. 116 (2016) 191601, arXiv:1602.03160.

[17] Y. Grossman, A.L. Kagan, Y. Nir, New physics and CP violation in singly Cabibbo 
suppressed D decays, Phys. Rev. D 75 (2007) 036008, arXiv:hep-ph/0609178.

[18] LHCb collaboration, R. Aaij, et al., Measurement of CP asymmetry in D0 →
K − K + and D0 → π−π+ decays, J. High Energy Phys. 07 (2014) 041, 
arXiv:1405.2797.

[19] CDF collaboration, T. Aaltonen, et al., Measurement of the difference in 
CP-violating asymmetries in D0 → K + K − and D0 → π+π− decays at CDF, 
Phys. Rev. Lett. 109 (2012) 111801, arXiv:1207.2158.

[20] BaBar collaboration, B. Aubert, et al., Search for CP violation in the de-
cays D0 → K − K + and D0 → π−π+ , Phys. Rev. Lett. 100 (2008) 061803, 
arXiv:0709.2715.

[21] Belle collaboration, M. Staric, et al., Search for a CP asymmetry in Cabibbo-
suppressed D0 decays, Phys. Lett. B 670 (2008) 190, arXiv:0807.0148;
B.R. Ko, CP violation and mixing in the charm sector at Belle, and current HFAG 
averages, arXiv:1212.5320.

[22] LHCb collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J. In-
strum. 3 (2008) S08005.

[23] LHCb collaboration, R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys. 
A 30 (2015) 1530022, arXiv:1412.6352.

[24] W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth-
ods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 552 (2005) 566, 
arXiv:physics/0503191.

[25] Particle Data Group, C. Patrignani, et al., Review of particle properties, Chin. 
Phys. C 40 (2016) 100001.

http://dx.doi.org/10.1016/j.physletb.2017.01.061
http://www.slac.stanford.edu/xorg/hfag/
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib436872697374656E736F6E3A313936346667s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib436872697374656E736F6E3A313936346667s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4175626572743A323030316E75s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4175626572743A323030316E75s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4162653A323030317865s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4162653A323030317865s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031332D303138s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031332D303138s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031322D303031s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031322D303031s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031322D303031s2
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib46656C646D616E6E3A323031326A73s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib46656C646D616E6E3A323031326A73s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib46656C646D616E6E3A323031326A73s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4268617474616368617279613A323031326168s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4268617474616368617279613A323031326168s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4268617474616368617279613A323031326168s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib50697274736B68616C6176613A323031317661s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib50697274736B68616C6176613A323031317661s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib42726F643A323031327564s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib42726F643A323031327564s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib42726F643A323031327564s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4368656E673A323031327862s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4368656E673A323031327862s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4D756C6C65723A32303135726E61s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4D756C6C65723A32303135726E61s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib476F6C64656E3A313938397178s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib476F6C64656E3A313938397178s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C693A32303132636661s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C693A32303132636661s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib476975646963653A323031327171s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib476975646963653A323031327171s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303535s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303535s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303535s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib47726F73736D616E3A323030366A67s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib47726F73736D616E3A323030366A67s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303133s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303133s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303133s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4344463A323031327177s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4344463A323031327177s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4344463A323031327177s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A6261626172706170657232303038s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A6261626172706170657232303038s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A6261626172706170657232303038s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A62656C6C65706170657232303038s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A62656C6C65706170657232303038s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A62656C6C65706170657232303038s2
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib6269623A62656C6C65706170657232303038s2
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib416C7665733A323030387A7As1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib416C7665733A323030387A7As1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D44502D323031342D303032s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D44502D323031342D303032s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib48756C7362657267656E32303035353636s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib48756C7362657267656E32303035353636s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib48756C7362657267656E32303035353636s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4F6C6976653A32303136786D77s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4F6C6976653A32303136786D77s1


184 The LHCb Collaboration / Physics Letters B 767 (2017) 177–187

[26] LHCb collaboration, R. Aaij, et al., Measurement of the time-integrated CP
asymmetry in D0 → K 0

S K 0
S decays, J. High Energy Phys. 10 (2015) 055, 

arXiv:1508.06087.
[27] M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions, 

Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. 
Equip. 555 (2005) 356, arXiv:physics/0402083.

[28] LHCb collaboration, R. Aaij, et al., Measurement of the D± production asym-
metry in 7 TeV pp collisions, Phys. Lett. B 718 (2013) 902, arXiv:1210.4112.

[29] LHCb collaboration, R. Aaij, et al., Measurement of the semileptonic CP asym-
metry in B0–B0 mixing, Phys. Rev. Lett. 114 (2015) 041601, arXiv:1409.8586.

[30] LHCb collaboration, R. Aaij, et al., Measurement of the B0–B0 and B0
s –B0

s pro-
duction asymmetries in pp collisions at √s = 7 TeV, Phys. Lett. B 739 (2014) 
218, arXiv:1408.0275.

[31] LHCb collaboration, R. Aaij, et al., Study of the productions of �0
b and B0

hadrons in pp collisions and first measurement of the �0
b → J/ψ pK − branch-

ing fraction, Chin. Phys. C 40 (2015) 011001, arXiv:1509.00292.
[32] LHCb collaboration, A search for time-integrated CP violation in D0 → K − K +

and D0 → π−π+ decays, LHCb-CONF-2013-003.

The LHCb Collaboration

R. Aaij 40, B. Adeva 39, M. Adinolfi 48, Z. Ajaltouni 5, S. Akar 6, J. Albrecht 10, F. Alessio 40, M. Alexander 53, 
S. Ali 43, G. Alkhazov 31, P. Alvarez Cartelle 55, A.A. Alves Jr 59, S. Amato 2, S. Amerio 23, Y. Amhis 7, 
L. An 41, L. Anderlini 18, G. Andreassi 41, M. Andreotti 17,g , J.E. Andrews 60, R.B. Appleby 56, F. Archilli 43, 
P. d’Argent 12, J. Arnau Romeu 6, A. Artamonov 37, M. Artuso 61, E. Aslanides 6, G. Auriemma 26, 
M. Baalouch 5, I. Babuschkin 56, S. Bachmann 12, J.J. Back 50, A. Badalov 38, C. Baesso 62, S. Baker 55, 
W. Baldini 17, R.J. Barlow 56, C. Barschel 40, S. Barsuk 7, W. Barter 40, M. Baszczyk 27, V. Batozskaya 29, 
B. Batsukh 61, V. Battista 41, A. Bay 41, L. Beaucourt 4, J. Beddow 53, F. Bedeschi 24, I. Bediaga 1, L.J. Bel 43, 
V. Bellee 41, N. Belloli 21,i, K. Belous 37, I. Belyaev 32, E. Ben-Haim 8, G. Bencivenni 19, S. Benson 43, 
J. Benton 48, A. Berezhnoy 33, R. Bernet 42, A. Bertolin 23, F. Betti 15, M.-O. Bettler 40, M. van Beuzekom 43, 
Ia. Bezshyiko 42, S. Bifani 47, P. Billoir 8, T. Bird 56, A. Birnkraut 10, A. Bitadze 56, A. Bizzeti 18,u, T. Blake 50, 
F. Blanc 41, J. Blouw 11,†, S. Blusk 61, V. Bocci 26, T. Boettcher 58, A. Bondar 36,w, N. Bondar 31,40, 
W. Bonivento 16, A. Borgheresi 21,i, S. Borghi 56, M. Borisyak 35, M. Borsato 39, F. Bossu 7, M. Boubdir 9, 
T.J.V. Bowcock 54, E. Bowen 42, C. Bozzi 17,40, S. Braun 12, M. Britsch 12, T. Britton 61, J. Brodzicka 56, 
E. Buchanan 48, C. Burr 56, A. Bursche 2, J. Buytaert 40, S. Cadeddu 16, R. Calabrese 17,g , M. Calvi 21,i, 
M. Calvo Gomez 38,m, A. Camboni 38, P. Campana 19, D. Campora Perez 40, D.H. Campora Perez 40, 
L. Capriotti 56, A. Carbone 15,e, G. Carboni 25,j, R. Cardinale 20,h, A. Cardini 16, P. Carniti 21,i, L. Carson 52, 
K. Carvalho Akiba 2, G. Casse 54, L. Cassina 21,i, L. Castillo Garcia 41, M. Cattaneo 40, Ch. Cauet 10, 
G. Cavallero 20, R. Cenci 24,t , M. Charles 8, Ph. Charpentier 40, G. Chatzikonstantinidis 47, M. Chefdeville 4, 
S. Chen 56, S.-F. Cheung 57, V. Chobanova 39, M. Chrzaszcz 42,27, X. Cid Vidal 39, G. Ciezarek 43, 
P.E.L. Clarke 52, M. Clemencic 40, H.V. Cliff 49, J. Closier 40, V. Coco 59, J. Cogan 6, E. Cogneras 5, 
V. Cogoni 16,40,f , L. Cojocariu 30, G. Collazuol 23,o, P. Collins 40, A. Comerma-Montells 12, A. Contu 40, 
A. Cook 48, S. Coquereau 38, G. Corti 40, M. Corvo 17,g , C.M. Costa Sobral 50, B. Couturier 40, G.A. Cowan 52, 
D.C. Craik 52, A. Crocombe 50, M. Cruz Torres 62, S. Cunliffe 55, R. Currie 55, C. D’Ambrosio 40, 
F. Da Cunha Marinho 2, E. Dall’Occo 43, J. Dalseno 48, P.N.Y. David 43, A. Davis 59, O. De Aguiar Francisco 2, 
K. De Bruyn 6, S. De Capua 56, M. De Cian 12, J.M. De Miranda 1, L. De Paula 2, M. De Serio 14,d, 
P. De Simone 19, C.-T. Dean 53, D. Decamp 4, M. Deckenhoff 10, L. Del Buono 8, M. Demmer 10, 
D. Derkach 35, O. Deschamps 5, F. Dettori 40, B. Dey 22, A. Di Canto 40, H. Dijkstra 40, F. Dordei 40, 
M. Dorigo 41, A. Dosil Suárez 39, A. Dovbnya 45, K. Dreimanis 54, L. Dufour 43, G. Dujany 56, K. Dungs 40, 
P. Durante 40, R. Dzhelyadin 37, A. Dziurda 40, A. Dzyuba 31, N. Déléage 4, S. Easo 51, M. Ebert 52, 
U. Egede 55, V. Egorychev 32, S. Eidelman 36,w, S. Eisenhardt 52, U. Eitschberger 10, R. Ekelhof 10, 
L. Eklund 53, Ch. Elsasser 42, S. Ely 61, S. Esen 12, H.M. Evans 49, T. Evans 57, A. Falabella 15, N. Farley 47, 
S. Farry 54, R. Fay 54, D. Fazzini 21,i, D. Ferguson 52, V. Fernandez Albor 39, A. Fernandez Prieto 39, 
F. Ferrari 15,40, F. Ferreira Rodrigues 1, M. Ferro-Luzzi 40, S. Filippov 34, R.A. Fini 14, M. Fiore 17,g , 
M. Fiorini 17,g , M. Firlej 28, C. Fitzpatrick 41, T. Fiutowski 28, F. Fleuret 7,b, K. Fohl 40, M. Fontana 16,40, 
F. Fontanelli 20,h, D.C. Forshaw 61, R. Forty 40, V. Franco Lima 54, M. Frank 40, C. Frei 40, J. Fu 22,q, 
E. Furfaro 25,j, C. Färber 40, A. Gallas Torreira 39, D. Galli 15,e, S. Gallorini 23, S. Gambetta 52, 
M. Gandelman 2, P. Gandini 57, Y. Gao 3, L.M. Garcia Martin 68, J. García Pardiñas 39, J. Garra Tico 49, 
L. Garrido 38, P.J. Garsed 49, D. Gascon 38, C. Gaspar 40, L. Gavardi 10, G. Gazzoni 5, D. Gerick 12, 
E. Gersabeck 12,∗, M. Gersabeck 56, T. Gershon 50, Ph. Ghez 4, S. Gianì 41, V. Gibson 49, O.G. Girard 41, 
L. Giubega 30, K. Gizdov 52, V.V. Gligorov 8, D. Golubkov 32, A. Golutvin 55,40, A. Gomes 1,a, I.V. Gorelov 33, 
C. Gotti 21,i, M. Grabalosa Gándara 5, R. Graciani Diaz 38, L.A. Granado Cardoso 40, E. Graugés 38, 
E. Graverini 42, G. Graziani 18, A. Grecu 30, P. Griffith 47, L. Grillo 21,40,i, B.R. Gruberg Cazon 57, 
O. Grünberg 66, E. Gushchin 34, Yu. Guz 37, T. Gys 40, C. Göbel 62, T. Hadavizadeh 57, C. Hadjivasiliou 5, 

http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303330s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303330s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303330s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib5069766B3A323030347479s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib5069766B3A323030347479s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib5069766B3A323030347479s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031322D303236s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031322D303236s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303533s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303533s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303432s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303432s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031342D303432s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303332s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303332s1
http://refhub.elsevier.com/S0370-2693(17)30079-5/bib4C4843622D50415045522D323031352D303332s1
http://cdsweb.cern.ch/search?p=LHCb-CONF-2013-003&f=reportnumber&action_search=Search&c=LHCb+Conference+Contributions


The LHCb Collaboration / Physics Letters B 767 (2017) 177–187 185

G. Haefeli 41, C. Haen 40, S.C. Haines 49, S. Hall 55, B. Hamilton 60, X. Han 12, S. Hansmann-Menzemer 12, 
N. Harnew 57, S.T. Harnew 48, J. Harrison 56, M. Hatch 40, J. He 63, T. Head 41, A. Heister 9, K. Hennessy 54, 
P. Henrard 5, L. Henry 8, J.A. Hernando Morata 39, E. van Herwijnen 40, M. Heß 66, A. Hicheur 2, D. Hill 57, 
C. Hombach 56, H. Hopchev 41, W. Hulsbergen 43, T. Humair 55, M. Hushchyn 35, N. Hussain 57, 
D. Hutchcroft 54, M. Idzik 28, P. Ilten 58, R. Jacobsson 40, A. Jaeger 12, J. Jalocha 57, E. Jans 43, A. Jawahery 60, 
F. Jiang 3, M. John 57, D. Johnson 40, C.R. Jones 49, C. Joram 40, B. Jost 40, N. Jurik 61, S. Kandybei 45, 
W. Kanso 6, M. Karacson 40, J.M. Kariuki 48, S. Karodia 53, M. Kecke 12, M. Kelsey 61, I.R. Kenyon 47, 
M. Kenzie 49, T. Ketel 44, E. Khairullin 35, B. Khanji 21,40,i, C. Khurewathanakul 41, T. Kirn 9, S. Klaver 56, 
K. Klimaszewski 29, S. Koliiev 46, M. Kolpin 12, I. Komarov 41, R.F. Koopman 44, P. Koppenburg 43, 
A. Kozachuk 33, M. Kozeiha 5, L. Kravchuk 34, K. Kreplin 12, M. Kreps 50, P. Krokovny 36,w, F. Kruse 10, 
W. Krzemien 29, W. Kucewicz 27,l, M. Kucharczyk 27, V. Kudryavtsev 36,w, A.K. Kuonen 41, K. Kurek 29, 
T. Kvaratskheliya 32,40, D. Lacarrere 40, G. Lafferty 56, A. Lai 16, D. Lambert 52, G. Lanfranchi 19, 
C. Langenbruch 9, T. Latham 50, C. Lazzeroni 47, R. Le Gac 6, J. van Leerdam 43, J.-P. Lees 4, A. Leflat 33,40, 
J. Lefrançois 7, R. Lefèvre 5, F. Lemaitre 40, E. Lemos Cid 39, O. Leroy 6, T. Lesiak 27, B. Leverington 12, Y. Li 7, 
T. Likhomanenko 35,67, R. Lindner 40, C. Linn 40, F. Lionetto 42, B. Liu 16, X. Liu 3, D. Loh 50, I. Longstaff 53, 
J.H. Lopes 2, D. Lucchesi 23,o, M. Lucio Martinez 39, H. Luo 52, A. Lupato 23, E. Luppi 17,g , O. Lupton 57, 
A. Lusiani 24, X. Lyu 63, F. Machefert 7, F. Maciuc 30, O. Maev 31, K. Maguire 56, S. Malde 57, A. Malinin 67, 
T. Maltsev 36, G. Manca 7, G. Mancinelli 6, P. Manning 61, J. Maratas 5,v, J.F. Marchand 4, U. Marconi 15, 
C. Marin Benito 38, P. Marino 24,t , J. Marks 12, G. Martellotti 26, M. Martin 6, M. Martinelli 41, 
D. Martinez Santos 39, F. Martinez Vidal 68, D. Martins Tostes 2, L.M. Massacrier 7, A. Massafferri 1, 
R. Matev 40, A. Mathad 50, Z. Mathe 40, C. Matteuzzi 21, A. Mauri 42, B. Maurin 41, A. Mazurov 47, 
M. McCann 55, J. McCarthy 47, A. McNab 56, R. McNulty 13, B. Meadows 59, F. Meier 10, M. Meissner 12, 
D. Melnychuk 29, M. Merk 43, A. Merli 22,q, E. Michielin 23, D.A. Milanes 65, M.-N. Minard 4, D.S. Mitzel 12, 
A. Mogini 8, J. Molina Rodriguez 62, I.A. Monroy 65, S. Monteil 5, M. Morandin 23, P. Morawski 28, 
A. Mordà 6, M.J. Morello 24,t , J. Moron 28, A.B. Morris 52, R. Mountain 61, F. Muheim 52, M. Mulder 43, 
M. Mussini 15, D. Müller 56, J. Müller 10, K. Müller 42, V. Müller 10, P. Naik 48, T. Nakada 41, 
R. Nandakumar 51, A. Nandi 57, I. Nasteva 2, M. Needham 52, N. Neri 22, S. Neubert 12, N. Neufeld 40, 
M. Neuner 12, A.D. Nguyen 41, C. Nguyen-Mau 41,n, S. Nieswand 9, R. Niet 10, N. Nikitin 33, T. Nikodem 12, 
A. Novoselov 37, D.P. O’Hanlon 50, A. Oblakowska-Mucha 28, V. Obraztsov 37, S. Ogilvy 19, R. Oldeman 49, 
C.J.G. Onderwater 69, J.M. Otalora Goicochea 2, A. Otto 40, P. Owen 42, A. Oyanguren 68, P.R. Pais 41, 
A. Palano 14,d, F. Palombo 22,q, M. Palutan 19, J. Panman 40, A. Papanestis 51, M. Pappagallo 14,d, 
L.L. Pappalardo 17,g , W. Parker 60, C. Parkes 56, G. Passaleva 18, A. Pastore 14,d, G.D. Patel 54, M. Patel 55, 
C. Patrignani 15,e, A. Pearce 56,51, A. Pellegrino 43, G. Penso 26, M. Pepe Altarelli 40, S. Perazzini 40, 
P. Perret 5, L. Pescatore 47, K. Petridis 48, A. Petrolini 20,h, A. Petrov 67, M. Petruzzo 22,q, 
E. Picatoste Olloqui 38, B. Pietrzyk 4, M. Pikies 27, D. Pinci 26, A. Pistone 20, A. Piucci 12, S. Playfer 52, 
M. Plo Casasus 39, T. Poikela 40, F. Polci 8, A. Poluektov 50,36, I. Polyakov 61, E. Polycarpo 2, G.J. Pomery 48, 
A. Popov 37, D. Popov 11,40, B. Popovici 30, S. Poslavskii 37, C. Potterat 2, E. Price 48, J.D. Price 54, 
J. Prisciandaro 39, A. Pritchard 54, C. Prouve 48, V. Pugatch 46, A. Puig Navarro 41, G. Punzi 24,p, W. Qian 57, 
R. Quagliani 7,48, B. Rachwal 27, J.H. Rademacker 48, M. Rama 24, M. Ramos Pernas 39, M.S. Rangel 2, 
I. Raniuk 45, G. Raven 44, F. Redi 55, S. Reichert 10, A.C. dos Reis 1, C. Remon Alepuz 68, V. Renaudin 7, 
S. Ricciardi 51, S. Richards 48, M. Rihl 40, K. Rinnert 54, V. Rives Molina 38, P. Robbe 7,40, A.B. Rodrigues 1, 
E. Rodrigues 59, J.A. Rodriguez Lopez 65, P. Rodriguez Perez 56,†, A. Rogozhnikov 35, S. Roiser 40, 
A. Rollings 57, V. Romanovskiy 37, A. Romero Vidal 39, J.W. Ronayne 13, M. Rotondo 19, M.S. Rudolph 61, 
T. Ruf 40, P. Ruiz Valls 68, J.J. Saborido Silva 39, E. Sadykhov 32, N. Sagidova 31, B. Saitta 16,f , 
V. Salustino Guimaraes 2, C. Sanchez Mayordomo 68, B. Sanmartin Sedes 39, R. Santacesaria 26, 
C. Santamarina Rios 39, M. Santimaria 19, E. Santovetti 25,j, A. Sarti 19,k, C. Satriano 26,s, A. Satta 25, 
D.M. Saunders 48, D. Savrina 32,33, S. Schael 9, M. Schellenberg 10, M. Schiller 40, H. Schindler 40, 
M. Schlupp 10, M. Schmelling 11, T. Schmelzer 10, B. Schmidt 40, O. Schneider 41, A. Schopper 40, 
K. Schubert 10, M. Schubiger 41, M.-H. Schune 7, R. Schwemmer 40, B. Sciascia 19, A. Sciubba 26,k, 
A. Semennikov 32, A. Sergi 47, N. Serra 42, J. Serrano 6, L. Sestini 23, P. Seyfert 21, M. Shapkin 37, 
I. Shapoval 45, Y. Shcheglov 31, T. Shears 54, L. Shekhtman 36,w, V. Shevchenko 67, A. Shires 10, 
B.G. Siddi 17,40, R. Silva Coutinho 42, L. Silva de Oliveira 2, G. Simi 23,o, S. Simone 14,d, M. Sirendi 49, 



186 The LHCb Collaboration / Physics Letters B 767 (2017) 177–187

N. Skidmore 48, T. Skwarnicki 61, E. Smith 55, I.T. Smith 52, J. Smith 49, M. Smith 55, H. Snoek 43, 
M.D. Sokoloff 59, F.J.P. Soler 53, B. Souza De Paula 2, B. Spaan 10, P. Spradlin 53, S. Sridharan 40, F. Stagni 40, 
M. Stahl 12, S. Stahl 40, P. Stefko 41, S. Stefkova 55, O. Steinkamp 42, S. Stemmle 12,∗, O. Stenyakin 37, 
S. Stevenson 57, S. Stoica 30, S. Stone 61, B. Storaci 42, S. Stracka 24,p, M. Straticiuc 30, U. Straumann 42, 
L. Sun 59, W. Sutcliffe 55, K. Swientek 28, V. Syropoulos 44, M. Szczekowski 29, T. Szumlak 28, 
S. T’Jampens 4, A. Tayduganov 6, T. Tekampe 10, G. Tellarini 17,g , F. Teubert 40, E. Thomas 40, 
J. van Tilburg 43, M.J. Tilley 55, V. Tisserand 4, M. Tobin 41, S. Tolk 49, L. Tomassetti 17,g , D. Tonelli 40, 
S. Topp-Joergensen 57, F. Toriello 61, E. Tournefier 4, S. Tourneur 41, K. Trabelsi 41, M. Traill 53, M.T. Tran 41, 
M. Tresch 42, A. Trisovic 40, A. Tsaregorodtsev 6, P. Tsopelas 43, A. Tully 49, N. Tuning 43, A. Ukleja 29, 
A. Ustyuzhanin 35, U. Uwer 12, C. Vacca 16,f , V. Vagnoni 15,40, A. Valassi 40, S. Valat 40, G. Valenti 15, 
A. Vallier 7, R. Vazquez Gomez 19, P. Vazquez Regueiro 39, S. Vecchi 17, M. van Veghel 43, J.J. Velthuis 48, 
M. Veltri 18,r , G. Veneziano 41, A. Venkateswaran 61, M. Vernet 5, M. Vesterinen 12, B. Viaud 7, D. Vieira 1, 
M. Vieites Diaz 39, X. Vilasis-Cardona 38,m, V. Volkov 33, A. Vollhardt 42, B. Voneki 40, A. Vorobyev 31, 
V. Vorobyev 36,w, C. Voß 66, J.A. de Vries 43, C. Vázquez Sierra 39, R. Waldi 66, C. Wallace 50, R. Wallace 13, 
J. Walsh 24, J. Wang 61, D.R. Ward 49, H.M. Wark 54, N.K. Watson 47, D. Websdale 55, A. Weiden 42, 
M. Whitehead 40, J. Wicht 50, G. Wilkinson 57,40, M. Wilkinson 61, M. Williams 40, M.P. Williams 47, 
M. Williams 58, T. Williams 47, F.F. Wilson 51, J. Wimberley 60, J. Wishahi 10, W. Wislicki 29, M. Witek 27, 
G. Wormser 7, S.A. Wotton 49, K. Wraight 53, S. Wright 49, K. Wyllie 40, Y. Xie 64, Z. Xing 61, Z. Xu 41, 
Z. Yang 3, H. Yin 64, J. Yu 64, X. Yuan 36,w, O. Yushchenko 37, K.A. Zarebski 47, M. Zavertyaev 11,c, L. Zhang 3, 
Y. Zhang 7, Y. Zhang 63, A. Zhelezov 12, Y. Zheng 63, A. Zhokhov 32, X. Zhu 3, V. Zhukov 9, S. Zucchelli 15

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 LAPP, Université Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France
5 Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
6 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
7 LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
8 LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
9 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
10 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
11 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13 School of Physics, University College Dublin, Dublin, Ireland
14 Sezione INFN di Bari, Bari, Italy
15 Sezione INFN di Bologna, Bologna, Italy
16 Sezione INFN di Cagliari, Cagliari, Italy
17 Sezione INFN di Ferrara, Ferrara, Italy
18 Sezione INFN di Firenze, Firenze, Italy
19 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20 Sezione INFN di Genova, Genova, Italy
21 Sezione INFN di Milano Bicocca, Milano, Italy
22 Sezione INFN di Milano, Milano, Italy
23 Sezione INFN di Padova, Padova, Italy
24 Sezione INFN di Pisa, Pisa, Italy
25 Sezione INFN di Roma Tor Vergata, Roma, Italy
26 Sezione INFN di Roma La Sapienza, Roma, Italy
27 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
29 National Center for Nuclear Research (NCBJ), Warsaw, Poland
30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Yandex School of Data Analysis, Moscow, Russia
36 Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
37 Institute for High Energy Physics (IHEP), Protvino, Russia
38 ICCUB, Universitat de Barcelona, Barcelona, Spain
39 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
40 European Organization for Nuclear Research (CERN), Geneva, Switzerland
41 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
42 Physik-Institut, Universität Zürich, Zürich, Switzerland
43 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
44 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
45 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
46 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
47 University of Birmingham, Birmingham, United Kingdom
48 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom



The LHCb Collaboration / Physics Letters B 767 (2017) 177–187 187

49 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
50 Department of Physics, University of Warwick, Coventry, United Kingdom
51 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
52 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
53 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
55 Imperial College London, London, United Kingdom
56 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
57 Department of Physics, University of Oxford, Oxford, United Kingdom
58 Massachusetts Institute of Technology, Cambridge, MA, United States
59 University of Cincinnati, Cincinnati, OH, United States
60 University of Maryland, College Park, MD, United States
61 Syracuse University, Syracuse, NY, United States
62 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil x

63 University of Chinese Academy of Sciences, Beijing, China y

64 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China y

65 Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia z

66 Institut für Physik, Universität Rostock, Rostock, Germany aa

67 National Research Centre Kurchatov Institute, Moscow, Russia ab

68 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain ac

69 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands ad

* Corresponding authors.
E-mail addresses: evelina.gersabeck@cern.ch (E. Gersabeck), stemmle@physi.uni-heidelberg.de (S. Stemmle).

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
b Laboratoire Leprince-Ringuet, Palaiseau, France.
c P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
d Università di Bari, Bari, Italy.
e Università di Bologna, Bologna, Italy.
f Università di Cagliari, Cagliari, Italy.
g Università di Ferrara, Ferrara, Italy.
h Università di Genova, Genova, Italy.
i Università di Milano Bicocca, Milano, Italy.
j Università di Roma Tor Vergata, Roma, Italy.
k Università di Roma La Sapienza, Roma, Italy.
l AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

m LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
n Hanoi University of Science, Hanoi, Viet Nam.
o Università di Padova, Padova, Italy.
p Università di Pisa, Pisa, Italy.
q Università degli Studi di Milano, Milano, Italy.
r Università di Urbino, Urbino, Italy.
s Università della Basilicata, Potenza, Italy.
t Scuola Normale Superiore, Pisa, Italy.
u Università di Modena e Reggio Emilia, Modena, Italy.
v Iligan Institute of Technology (IIT), Iligan, Philippines.

w Novosibirsk State University, Novosibirsk, Russia.
x Associated to Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
y Associated to Center for High Energy Physics, Tsinghua University, Beijing, China.
z Associated to LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France.

aa Associated to Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
ab Associated to Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.
ac Associated to ICCUB, Universitat de Barcelona, Barcelona, Spain.
ad Associated to Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.

† Deceased.

mailto:evelina.gersabeck@cern.ch
mailto:stemmle@physi.uni-heidelberg.de

	Measurement of CP asymmetry in D0->K-K+ decays
	1 Introduction
	2 Detector and event selection
	3 Measurement of the asymmetries
	4 Systematic uncertainties
	5 Summary and combination with previous LHCb measurements
	Acknowledgements
	Appendix A Calculation of correlations
	Appendix B Mean decay times
	Appendix C Supplementary material
	References
	The LHCb Collaboration


