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1. Introduction

Maps of mortality or morbidity standardised rates at the small areas level are
common tools used by epidemiologists to describe the geographical variation of
diseases. For area i (i = 1, . . . ,m), the standardised mortality/morbidity rates
(SMRi), an estimate of the area’s relative risk associated with a specific disease,
is defined as the ratio of the observed number of cases (Yi) to the expected count
(Ei). In other words, SMRi = Yi/Ei. The expected incidence Ei would be
observed if the disease risk was constant over the entire study region and if the
spatial variations in incidence were caused exclusively by variations in population
density and structure with respect to gender, age or other relevant variables. The
expected incidence reflects the ’null-hypothesis spatial distribution’ of the cases.
The goal of disease mapping is to identify features of the geographical variation of
the risks that are not captured by the null-hypothesis distribution (Lawson, 2001).

When the disease under study is rare, counts Yi are heavily affected by ran-
dom variability, and the estimates of the relative risk at the small-area level are
unstable, particularly in areas with small populations. This instability leads to
overdispersed maps, which are characterised by the presence of (possibly false)
‘hot spots’, and many estimates equal to 0. Using model-based techniques to ob-
tain smoother maps is very popular, and a vast literature has been devoted to
the topic (see Lawson (2009) for a recent review). The basic idea underpinning
disease mapping models is ‘borrowing strength’, that is improving the precision
of estimation, through the use of auxiliary area-level information or linking neigh-
bouring areas through random effects. The latter strategy seeks to capture spatial
and non-spatial structures that are unaccounted for by the auxiliary information.
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In this article we consider a popular disease mapping model known as the
Besag-York-Mollié model (BYM, see Besag et al. (1991)). A distinguishing feature
of this model is the use of two sets of random effects: one spatially structured to
model spatial autocorrelation and the other spatially unstructured to describe
residual unstructured heterogeneity. As the BYM model belongs to the class
of generalised linear mixed models with complex random effects structures, it is
often analysed with a Bayesian approach and typically assisted by MCMC or other
computer-intensive integration techniques.

Bayesian analysis requires prior specification for all the unknown parameters in
the model. This article examines prior specification for the variance components
related to random effects in the BYM model. This topic has received attention
in the literature (see Bernardinelli et al. (1995); Mollié (1999); Eberly and Carlin
(2000) and Wakefield (2007)) because the choice of priors has a non-negligible
influence on the posterior distribution of relevant parameters given the structure
of the BYM model. Moreover, non-informative reference choices may lead to
serious computational problems (Eberly and Carlin, 2000).

We propose using generalised inverse Gaussian (GIG) distributions for the pri-
ors on variance components. GIGs comprise many distributions used as priors for
variance components as special cases, such as the gamma, inverse gamma and in-
verse Gaussian distributions. Using this general class of priors allows us to control
the weights of the tails of the implied marginal priors on relative risks and to select
hyperparameters such that these priors have finite moments up to a prespecified
order. Priors on relative risks with finite expectations (and variances) make the
inclusion of prior information straightforward and allows the implementation of
our new proposal of balancing the prior weight of the spatially structured and
unstructured components of variance. Moreover, GIG priors also provide an easy
way to control the amount of shrinkage associated with posterior means of relative
risks. The use of GIG priors in the estimation of the parameters of a log-normal
distribution has been explored by Fabrizi and Trivisano (2012).

The rest of this article is organised as follows. In section 2, we review the
Besag-York-Mollié model and the problems associated with prior specification on
its variance components. In section 3, the GIG distribution is introduced, along
with the related family of generalised hyperbolic distributions. Section 4 contains
the description of our proposal about prior specification. In section 5, we use a
simulation study to compare the performances of posterior estimates of relative
risks obtained under the proposed priors with the performances of a wide range of
priors on variance components now popular in the literature. Section 6 contains
an application of the Besag-York-Mollié model to the analysis of two real data
sets. Some conclusions are offered in section 7.

2. The Besag-York-Mollié model

Consider a study region subdivided into m contiguous areas. Let Yi and Ei de-
note, respectively, the observed and expected counts for a disease in the i-th area
(i = 1, . . . ,m). Expected counts for each area can be obtained by applying a stan-
dard table of group-specific sex and age rates to each area-specific background
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population, subdivided by age and sex. The Besag-York-Mollié (BYM) model
consists in the following set of assumptions:

Yi|θi ∼ Poisson(θiEi) (1)

log θi = µi + vi + ui (2)

in which µi = xtiβ describes the effect of area-level covariates xi, whereas vectors
v = (v1, . . . , vm) and u = (u1, . . . , um) represent unstructured and spatially struc-
tured random effects, respectively. Specifically, the following priors are assumed:

v|σ2
v ∼ MVN

(

0, σ2
vI
)

(3)

u|σ2
u ∝ exp

(

− σ−2
u

2
utQu

)

(4)

The implied prior on vi+ui is termed a ’convolution prior’ since it is the sum of two
independent components. Prior (4) is typically obtained from a univariate speci-
fication in terms of conditional distributions ui|uj , i 6= j, for instance by means of
Gaussian conditionally autoregressive models (CAR, see Besag (1968)), a special
case of Gaussian Markov Random Fields. The basic idea of these models is that,
conditional upon its neighbours, ui is independent of all ujs at non-neighbouring
areas. A neighbouring structure needs to be specified. Many structures have been
proposed in the literature; in this paper, we follow the most popular approach:
areas are considered to be neighbours if they share a boundary, and information
about neighbouring is summarised in the m×m matrix W, whose entries wij = 1
if areas i and j share a boundary and 0 otherwise (wii = 0 completes the speci-
fication). In the BYM model, the full conditional distributions are expressed as
follows:

ui|uj, j 6= i, σ2
u ∼ N

(

∑

j

uj
ni
,
σ2
u

ni

)

(5)

in which ni is the number of neighbours of the i-th area. As a consequence,
Q = (D − W), where D = diag(ni). The matrix Q, defined in this way, is of
rank m− 1. Therefore, according to prior (4), the intercepts ui are only uniquely
determined up to an additive constant. In line with Besag and Kooperberg (1995),
we impose the constraint

∑m
i=1 ui = 0. We may define A = [Im−1|1] a matrix

such that Aw = 0, ∀w ∈ ℜm. The vector of random effects

z = Au (6)

is characterised by an (m−1)-dimensional proper distribution z ∼MVN(0, σ2
uΣz)

with Σz =
[

Āt(D−W)Ā
]−1

where Ā is the Moore-Penrose inverse of A. Under
the constraint

∑m
i=1 ui = 0, we may write u = Āz whose positive-semidefinite

covariance matrix is σ2
uĀ
[

Āt(D−W)Ā
]−1

Āt = σ2
uΣu. We may eventually write

u|σ2
u ∼MVN(0, σ2

uΣu) (7)

i.e., u follows an Intrinsic Conditional Autoregressive Gaussian distribution.
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2.1. Priors on the variance components

To complete the specification of the model, the priors for the variance components
σ2
v and σ

2
u are needed. Priors for these parameters should be chosen carefully, and a

rich literature is devoted to this topic (see Bernardinelli et al. (1995); Mollié (1999);
Eberly and Carlin (2000) and Wakefield (2007)). The problem in choosing these
priors is with the marginal priors on ui and vi, which are induced from those on σ2

v

and σ2
v . Intuitively, a single data point (Yi) cannot provide information about ui

and vi individually, it can only provide information about their sum; ui and vi are
said to be Bayesianly unidentified (Eberly and Carlin, 2000). Although Bayesian
inference may be conducted on these parameters, improper priors on the random
effects lead to improper posteriors that manifest themselves as convergence failures
when the model is analysed using MCMC algorithms. Similarly, nearly improper
(i.e., proper but very heavy-tailed) prior distributions may lead to near-improperty
and very slowly converging MCMC chains. For computational convenience, proper
inverse gamma priors on the variance components are popular. Some of the most
popular choices of hyperparameters are as follows:

p(σ2
v) = p(σ2

u) = Inv −Gamma(0.5, 0.0005) (8)

(Wakefield and Morris, 2001);

p(σ2
v) = p(σ2

u) = Inv −Gamma(0.001, 0.001) (9)

(Best et al., 1999).
If priors σ2

v ∼ Inv − Gamma(av, bv) and σ2
u ∼ Inv − Gamma(au, bu) are

assumed, the implied distributions on v and u are multivariate t; in particular
vi ∼ t2a(0, bv/av) is a heavy-tailed distribution. The first moment of vi does
not exist in any of the previously mentioned parameter choices. More generally,
inversa gamma priors give rise to a multivariate log−t distribution on the relative
risk scale, i.e. considering exp(v) and exp(u); this distribution has no moments
of all orders.

In this weakly informative setting, the priors keep their influence on the posteri-
ors for θi (particularly when Ei s are small), and heavy-tailed priors, inconsistent
with small amounts of variability observed in many practical applications, lead
to inefficient ”Bayes estimators” of the relative risks (i.e. E(θi|data) with large
frequentist mean square error).

Another problem in prior specification is balancing the priors of the two random
effects, which is related to inference on parameters such as

φ =
SD(u)

SD(v) + SD(u)
(10)

(see Best et al. (1999)) in which SD(.) is the marginal standard deviation of a
vector. This parameter is relevant to analysts, as it expresses the relative weights
of spatial clustering and unstructured heterogeneity characterising the residual
variation in log-relative risks (i.e., unaccounted for by the area-level covariates
xi). Posterior inference on φ is sensitive to the priors chosen for σ2

v and σ2
v .
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Moreover, p(σ2
v) = p(σ2

u) is not a neutral choice because σ2
v is a marginal variance

whereas σ2
u is a conditional variance.

Mollié (1999) notes that V (ui+ vi|uj , j 6= i, σ2
u, σ

2
v) =

σ2
u

ni
+σ2

v , so she proposes
to approximately balance a priori the two set of random effects using the variance
of the log-SMRs as a guess on the total variability of the log relative risks and scal-
ing the prior mean of σ2

u with the average number of neighbours n̄ = m−1
∑

i ni.
An interesting balancing procedure is suggested by Wakefield (2007). He consid-
ers the set of random effects zi, i, . . . ,m− 1 defined in (6). The procedure starts
by defining the average marginal variance σ̄2

z = āσ2
u, in which ā, a constant de-

pending on the neighbouring structure, is the average of the marginal variances
of zi (i.e., the average of the diagonal entries of the matrix Σz ). Next, Wakefield
(2007) specifies a prior on τT = (σ2

v + σ̄2
z)

−1, which is approximately the marginal
precision of the residual relative risk ui + vi. He assumes τT ∼ Gamma(a, b),
introduces the parameter p = σ2

v/(σ
2
v + āσ̄2

z) to govern the relative weights of the
random effects and suggests p ∼ Beta(c, d). Priors on the variance components
are induced from the identities σ2

v = (1− p)τ−1
T and σ2

u = pτ−1
T /ā. Specifically, in

the empirical analysis of Scottish lip cancer data discussed in the paper, Wakefield
(2007) specifies τT ∼ Gamma(1, 0.0260) and p ∼ Beta(1, 1).

3. The generalised inverse Gaussian and the multivariate gener-

alised hyperbolic distributions

In this section, we briefly introduce the generalised inverse Gaussian (GIG) and
generalised hyperbolic (GH) distributions, establish the notation and mention
some key properties that will be used later. For more details on these distri-
butions, see Bibby and Sørensen (2003) and Bibby and Sørensen (2004), among
others.

The density of the GIG distribution may be written as follows:

f(x) =
(γ

δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{

− 1

2

(

δ2x−1 + γ2x
)

}

1ℜ+ (11)

in which Kλ(.) is the modified Bessel function of the third kind (see Bibby and
Sørensen (2004) for more details). If δ > 0, the permissible values for the other
parameters are γ ≥ 0 if λ < 0 and γ > 0 if λ = 0. If δ ≥ 0, then γ, λ should be
strictly positive.

The moments of the GIG can be expressed as functions of the Bessel-K func-
tions by

E(Xj) =

(

δ

γ

)j

Kλ+j(δγ)

Kλ(δγ)
. (12)

Many important distributions may be obtained as special cases of the GIG. For
λ > 0 and γ > 0, the gamma distribution emerges as the limit when δ → 0. The
inverse gamma is obtained when λ < 0, δ > 0 and γ → 0, whereas an inverse
Gaussian distribution results when λ = − 1

2 .
Barndorff-Nielsen (1977) shows that the marginal distribution of a random

vector X (of size d) for which we have that X|W = w ∼ MVN(0, wΣ) with
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W ∼ GIG(λ, δ, γ) is a multivariate generalised hyperbolic distribution that is
symmetric around 0, i.e., X ∼ MGH(λ, δ, γ,0,Σ,0), a distribution characterised
by the density

fd(x) =
(δ/γ)λ(γ2)

d

2
−λ

(2π)
d

2 |Σ| 12Kλ(δγ)

Kλ− d

2

(
√

(δ2 + xTΣ−1x)γ
)

(
√

(δ2 + xTΣ−1x)γ
)

d

2
−λ

(13)

Many important multivariate distributions may be obtained as special cases: the
Gaussian, for λ → ±∞ or for γ → +∞; the Student’s t for −∞ ≤ λ ≤ −2
and γ = 0; and the multivariate Normal inverse Gaussian (NIG) distribution for
λ = − 1

2 . This distribution is in the class of elliptically contoured distributions, so
it is closed under passing to marginal distributions. Diagonal Σ does not imply
independence.

For the purposes of this paper, the moment generating function of the multi-
variate generalised hyperbolic distribution is important and is as follows:

MMGH(t) = E(et
TX) =

(

γ2

γ2 − tTΣt

)
λ

2
Kλ

(

δ
√

γ2 − tTΣt
)

Kλ(δγ)
(14)

provided that γ2 > tTΣt. Note that if λ = −.5, the moment generating function
simplifies to MMGH(t) = exp

(

− δ
√

γ2 − tTΣt+ δγ
)

.

The reason for considering the moment generating function is that the resulting
marginal distributions for v, u will be MGH , assuming a prior for the variance
components in the GIG class; moments of exp(v), exp(u) may be studied directly
using the moment generating functions.

4. Generalised inverse Gaussian priors on variance components

In this section, we propose a strategy for choosing the hyperparameters for the
priors p(σ2

v) and p(σ2
u) within the GIG class. Our aims are the following: i)

to properly balance the relative weights of spatially structured and unstructured
effects;

ii) to specify priors that induce light tails on p(v) and p(u) in the sense that
E{exp(v)}, E{exp(vtv)}, E{exp(u)} and E{exp(utu)} < +∞; and iii) to make
prior information easy to include when it is available.

We assume GIG priors for σ2
v and σ2

u. The GIG class of distributions includes
many special cases that are already popular as priors for variance components in
epidemiology.

i) We first consider the problem of balancing the two sets of random effects.
We specifically aim to balance their marginal variances, i.e. the expected variance
of a sample drawn from the joint distribution of the two random effect vectors. It
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may be shown that

E
{ 1

m− 1

m
∑

i=1

(

vi − v̄
)2|σ2

v

}

= σ2
v (15)

E
{ 1

m− 1

m
∑

i=1

(

ui − ū
)2|σ2

u

}

= σ2
u

tr(Σu)

m− 1
= σ2

utu (16)

with v̄ = m−1
∑

i vi, ū = m−1
∑

i ui. Note that because vis are independent
and identically distributed, identity (15) is straightforward. To prove (16), note
that because

∑m
i=1 ui = 0 by construction, the left hand side of (16) may be

written as (m− 1)−1E(utu|σ2
u). Identity (16) follows from general results on the

expectation of quadratic forms.
It is worth noting that the conditional variance σ2

u is not necessarily greater
than the marginal variance of the spatially structured random effects. In fact,
in graph theory, the number tu is related to the Kirchhoff index (KF) by the
relationship

tu =
KF

m(m− 1)

If we consider a cycle graph Cm of sizem, thenKF (Pm) = m(m−1)(m+1)
12 (Palacios,

2001), thus tu(Cm) > 1 for m > 11. In contrast, for a complete graph tu = m−1;
therefore, tu ≤ 1 ∀m.

We base the balancing of (15) and (16) on overall measures of the influence
of random effects; this overcomes the well-known problem of comparing an un-
conditional and a conditional variance. To consider two extreme situations, if, on
one hand, the total amount of variability is a result of unstructured heterogeneity,
then we denote the variance parameter with ς2v . If, on the other hand, the total
amount of variability is a result of structured heterogeneity, we denote the variance
parameter with (ς2u). Given the independence between us and vs, the marginal
variance of the residual log-relative risks ξi = log θi − µi, conditional upon ςv and
ςu, can be expressed as a linear combination of the variance parameters in the two
extreme situations posited above:

E
{ 1

m− 1

m
∑

i=1

(

ξi − ξ̄
)2 |ς2v , ς2u, ψ

}

= (1− ψ)ς2v + ψς2utu

If we set σ2
v = (1 − ψ)ς2v , σ

2
utu = ψς2utu, this expression may be useful for

managing the balance between structured and unstructured components. The pa-
rameter ψ ∈ (0, 1) weights the contributions that the two random effects give to
the empirical variance of the residual log relative risks; ψ = 0.5 implies an equal
a priori weight.

Thus, assuming p(ς2v ) ∼ GIG(λv , δv, γv) and p(tuς
2
u) ∼ GIG(λu, δu, γu) in

the purely spatial and non-spatial scenarios and using the properties of the GIG
distribution, it follows that the priors on the variance components are given by
p(σ2

v |ψ) ∼ GIG(λv , δv
√
1− ψ, γv√

1−ψ ) and p(σ
2
u|ψ) ∼ GIG(λu, δu

√
ψ, γu√

ψ
).

Regarding the parameters of these distributions, we suggest a convenience
choice for the λ paramters, namely λv = λu = −0.5. This choice dramatically
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simplifies the expression of the residual relative risks’ prior moments. Note that
this choice implies that the priors being considered in this section are actually
inverse Gaussians.

In choosing the remaining parameters, we want the prior to hold the first two
moments equal when the variability of log ξi is entirely due to spatially unstruc-
tured (structured) random effects; this allows for an adequate prior balance of the
two types of heterogeneity. This is achieved if

γv =
γu√
tu

(17)

and

δu =
δv√
tu

(18)

In fact, because E(ς2v ) =
δv
γv
, E(tuς

2
u) =

δutu
γu

, and V (ς2v ) =
δv
γ3
v

, V (tuς
2
u) =

δut
2
u

γ3
u

,

the equalities E(ς2v ) = E(ς2utu) and V (ς2v ) = V (ς2utu) follow from (17) and (18).
As for ψ, it may specified by the user as a constant in the (0, 1) interval.

Alternatively, the model can be made more flexible by adding a further level to
the hierarchy, i.e. specifying

ψ ∼ Beta(a, b). (19)

The choice a = 1, b = 1 leads to a prior on the parameter φ, defined in (10),
quite peaked around 0.5. An alternative choice, leading to approximately p(φ) ∼
Unif(0, 1), may be more advisable. It can be shown numerically that this may be
approximately achieved specifying

ψ ∼ Beta(0.4, 0.4) (20)

that is the prior that will be used in the subsequent sections of this paper.
Our approach to the a priori balancing of the two sets of random effects is

quite similar to that of Wakefield (2007) in the sense that it depends on the
neighbouring structure. Nonetheless, note that our strategy is based on σ2

utu,
which is a measure of the variability of structured random effects, whereas the
approach proposed in Wakefield (2007) is based on āσ2

u (i.e., an average marginal
variance). Calibration on the basis of ā downweights the contribution of the
structured component because ā ≥ tu. To see this, first note that tr(Σu) =

tr
(

AΣzA
t
)

= tr
(

A
t
AΣz

)

. Because the i−th diagonal element of the matrix

A
t
A is equal to m−1

m
by construction, and the off-diagonal elements of this matrix

are equal to − 1
m
, we find that

tr
(

A
t
AΣz

)

=
m− 1

m
tr(Σz)−

1

m





∑

ij

Σz (i, j)− tr(Σz)





= tr(Σz)−m−1
∑

ij

Σz (i, j)

Because
∑

ij Σz (i, j) > 0, it follows that a = tr(Σz)
m−1 > tr(Σu)

m−1 = tu. More-
over, Wakefield (2007) specifies a single prior on the marginal precision of the
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residual relative risk, allocated to two sets of random effects according to a pa-
rameter similar to our ψ, whereas we specify two independent priors with pa-
rameters chosen to guarantee the a priori balance. The assumption of GIG pri-
ors on σ2

v and σ2
u implies that v ∼ MGH(λv, δv

√
1− ψ, γv/

√
1− ψ,0, Im,0) and

u ∼ MGH(λu, δu
√
ψ, γu/

√
ψ,0,Σu,0). As a consequence, prior moments of the

residual relative risks are available in closed form and can be expressed as follows:

E(ξi|ψ) = exp
(

− δv

√

γ2u
tu

− (1− ψ)− δv√
tu

√

γ2u − ψΣu(i, i) + 2
δvγu√
tu

)

(21)

V (ξi|ψ) = exp
(

− δv

√

γ2u
tu

− 4(1− ψ)− δv√
tu

√

γ2u − 4ψΣu(i, i) + 2
δvγu√
tu

)

− (22)

−
{

E(ξi)
}2

ii) We set γu =
√

4max(diag(Σu)) + ε in order to have V {exp(ui)} < +∞
∀i for some positive (typically small) ε. Parameter γv is set according to (17).
When tu < 1, as is the case with ‘regular maps’ met in most applications in
which the number of neighbours is relatively high with respect to m, (17) and
(18) imply V (exp(vi)) < +∞ ∀i. The only parameter left to specify is δv. For
fixed γv, parameter δv characterizes the prior distribution of ς2v , the variance of
the unstructured heterogeneity when ψ = 0. More precisely, the value chosen for
δv will reflect prior assumptions on the variability of the risk in the study region.
We use a heuristic specification based on assuming that the log residual relative
risks coincide with v.

iii) Suppose that we dispose of prior information that enables us to assume
that residual relative risks are included in an interval in the form (c−1, c), c > 1,
with probability 1 − α. For ψ = 0, this is equivalent to say that each vi lies
in an interval (− log c, log c) with probability 1 − α. Because for ψ = 0, v ∼
MGH(λv, δv, γv,0, I,0) - a symmetric distribution around 0 whose distribution
will depend on δv - we can use numerical methods (for instance, the ghyp package
in R (W. Breymann, 2010)) to obtain a value of δv such that Pr(−log(c) ≤ vi ≤
log(c)) = 1 − α. Figure 1 plots the suggested value for δv based on a wide range
of values of c and α = 0.1.

If prior information about the variation of the residual relative risks is missing
a choice of δv in the interval (0.2, 0.4) may be reasonable for most applications.
Note that although the heuristic argument is assuming only spatially unstructured
heterogeneity, the balance between the priors on the two sets of random effects is
guaranteed by (17) and (18). The suggested argument for the choice of δv is not
based on an ‘average’ or ‘typical’ area but on the joint distribution of v; using a
parallel argument, we could, in principle, base our choice on the distribution of u.

5. A simulation exercise

In this section, we present the results of a simulation exercise aimed at evaluat-
ing the impact of the prior specification suggested in section 4 on the posterior
distribution of relative risks. Although the approach to estimation is Bayesian,
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Figure 1 – Suggested δv as a function of c at the probability level 0.90

we focus on frequentist properties, namely the average mean square error and the
amount of shrinkage. To this end, the posterior means E(θi|Yi, Ei) are assumed
to be the estimators of the unknown θi.

We compare these posterior summaries to those obtained using the Inv −
Gamma priors (8) and (9) mentioned in section 2.1. We also consider prior bal-
ancing of the two variance components according to Mollié (1999), as well as the
prior specified by Wakefield (2007).

We consider a region partitioned into m = 48 areas. For the purpose of com-
parison, we also consider a region partitioned intom = 95 areas; simulation results
obtained on this region are only partially shown for the sake of brevity. For each
simulation setting, a set of R = 500 relative risks vector θr = (θ1r, . . . , θmr) is
generated from the BYM model, assuming log(θir) = uir + vir. Expected counts
Ei and the proximity structure of the region are taken from a real mortality map
(ischemic heart disease in the municipalities of the provinces of Piacenza (48 areas)
and Parma (47 areas) in Italy) analysed in Greco and C.trivisano (2009).

Counts Yir are simulated from a multinomial distribution in order to have
∑

i Yir =
∑

i Ei. To study the effect of various rates of disease incidence on
the inference we will consider a multiplying factor k for Ei, Yir, specifically k =
0.25, 0.5, 1, 2.5; the implied average expected counts Ē = m−1

∑

Ei are equal to
3.5, 7.1, 14.2, 35.5, respectively.

The marginal variance V (ξ) is a function of σ2
u, σ

2
v and φ. We set V (ξ) = 0.07

in order to have approximately 90% of the relative risks in the interval (0.66, 1.5),
set specific values of φ and choose σ2

u and σ2
v accordingly. Here, we consider

φ = 0.5. Comments on alternative values for φ will be discussed later.

To summarise, the simulation study is characterised by several simulation set-
tings in which we allow the number of areasm, the disease incidence (controlled by
k), the contribution of spatial and non-spatial heterogeneity (controlled by φ) and
the total variability of the ’true’ relative risk distribution to all vary. Simulation
results are only partially shown for the sake of brevity.
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Figure 2 – Different values of δv vs RAMSE(δv)/minRAMSE(δv)

For each simulated data set and for each model, inference is based on 10000
samples from the MCMC algorithm, after a burn-in of 15.000 iterations. All the
estimated models can be implemented in the Openbugs software (Thomas et al.,
2006). The code for estimating the BYM model with GIG priors is available upon
request from the authors.

The summary measures that we consider in the analysis of the simulation are
defined as follows:

RAMSE =
1

R

R
∑

r=1

1

m

m
∑

i=1

(

θ̂ir
θir

− 1

)2

(23)

SHR =
1

R

R
∑

r=1

√

∑m
i=1(θ̂ir − ˆ̄θr)2

∑m
i=1(θir − θ̄r)2

(24)

where θ̂ir = E(θir |Yir , Eir), ˆ̄θr = m−1
∑m

i=1 θ̂ir to simplify notation.
Figure 2 shows that the RAMSE is sensitive to the choice of the prior, partic-

ularly for small values of Ē. For a wide range of choices of δv, estimators based
on the GIG prior are characterised by lower RAMSE than the considered alter-
natives. On one hand, if we focus only on the priors (8) and (9), then this is
true for almost the entire range of δv that we study in the simulation. On the
other hand, the prior suggested in Wakefield (2007) is a more serious competitor,
especially for Ē = 3.5, when it may lead to more efficient estimators (when δv is
large), although it leads to (almost) uniformly larger RAMSE in the remaining
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Figure 3 – Different values of δv vs SHR(δv)

scenarios. The simulation study has been performed by varying the variability of
the log-relative risks to V (ξ) = 0.17. Results show that, as expected, the optimal
value of δv moves right in order to capture this higher variability. Nonetheless,
loss in RAMSE due to a choice of δv in the interval (0.2, 0.4) is not dramatic.

The priors (8) and (9) perform similarly when Ē = 3.5 whereas, for larger
Ē, the prior (9) improves its relative performances. For Ē = 35.4, the prior
(9) is the closest to the priors that we propose. The balancing of gamma priors
according to Mollié (1999) does not yield any improvement in terms of RAMSE;
although not reported in the plot, we observed that the performances of these
balanced specifications are always close to, although slightly worse than their
equivalents that are based on exactly the same prior distributions for the two
variance components.

Regarding GIG priors, the RAMSE is an approximately U-shaped function of
δv. In line with expectation, the curve becomes less pronounced as Ē grows. The
minimum seems to move to the right as Ē grows, but it should be noted that the
plot is rather flat around the minimum in all cases.

Figure 3 suggests an interpretation of δv as a shrinkage parameter, since the
shrinkage (as measured by (24)) decreases almost linearly with δv. As expected,
the slope of this line decreases as Ē grows. For δv ≥ 0.3, the posterior means
obtained under the prior specification that we suggest shrink less than all the
alternatives considered; the difference is rather large unless we consider the prior
(9) that leads to more moderate shrinkage with respect to the other two.

If evidence from figures 2 and 3 are combined, we see that small δvs, (i.e.



Prior distributions in disease mapping 105

δv ≤ 0.2) are suboptimal in terms of both efficiency (RAMSE) and the amount
of shrinkage. Large values (i.e. δv ≥ 0.4) imply less shrinkage with respect to the
alternatives, but may be not as efficient when the disease under study is very rare.
Intermediate choices of δv (i.e 0.2 < δv < 0.4), lead to improved efficiency and
comparable amount of shrinkage with respect to inverse gamma priors.

In table 1, we presentMonte Carlo expectations of posterior meansEMC{E(φ|d)}
and standard deviations EMC{SD(φ|d)} for different population values of the
parameter φ defined in (10), different levels of k and different number of areas
(m = 48, m = 95). Note that d = (Yi, Ei), i = 1, . . . ,m is shortcut notation for
the data on which the posterior is conditioned. The GIG priors considered in this
comparison are those obtained when setting δv = 0.25.

Alternative prior specifications have a moderate, although non-negligible, im-
pact on the posterior distributions of the parameter φ. All of the considered priors
seem to allow for a relevant learning about the parameter; posterior means get
closer to the actual φ population value as the information contained in the data
gets larger in terms of the average expected cases Ē and the number of areas (with
the exception of the Wakefield prior). The posterior means associated with the
GIG priors and with the Inv − Gamma(0.001, 0.001) specified for both variance
components are very close; nonetheless, GIG priors lead, on average, to smaller
posterior standard deviations, and thus to a better identification of the parameter
φ (which is notoriously difficult to estimate). Underestimation of the weight of the
spatial component is expected when using Wakefield priors, because ā is not suited
for prior balancing of the variances and because this prior is quite informative on
the total random effect variance. Moreover, without carefully balancing the mo-
ments of p(σ2

v) and p(σ
2
u), the GIG priors may also lead to poor identification of

φ, which is a consequence of the fact that these priors have lighter tails.

6. An application on real data

In this section two case studies are examined. Data refer to death counts observed
from 1998 to 2001 in the municipalities of the Italian provinces of Parma and
Piacenza, regions previously considered in section 5. We consider two different
diseases: stomach cancer (STC) and genitourinary system diseases (GSD). In the
study period, stomach cancer is characterised by an average municipality count of
14.2, whereas the average count for genitourinary disease is equal to 6.2. For each
disease, expected counts are obtained via external standardisation by applying the
sex-age specific disease rates for the region of Emilia Romagna (which includes the
two provinces along with seven others) to the municipal populations. In panels
[SMR] of figures 4 and 5, the SMRs for STC and GSD are mapped.

We analyse these data using the BYM model with four different prior specifi-
cations for the variance components. The considered priors are as follows:

• prior [1]: p
(

σ2
v

)

= p
(

σ2
u

)

= Inv − Gamma (0.5, 0.0005) i.e., prior (8) of
section 2.1;

• prior [2]: p
(

σ2
v

)

= p
(

σ2
u

)

= Inv − Gamma (0.001, 0.001) i.e., prior (9) of
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TABLE 1

EMC{SD(φ|d)} and EMC{SD(φ|d)} for various φ in the population, different levels of

k and prior specifications. For simplicity the notation mφ = EMC{SD(φ|d)} and

sdφ = EMC{SD(φ|d)} is adopted

m = 48
k φ GIG priors Wakefield priors IGamma(.5, .0005) IGamma(.001, .001)

mφ sdφ mφ sdφ mφ sdφ mφ sdφ
0.25 0.33 0.45 0.19 0.39 0.16 0.41 0.23 0.44 0.23
0.5 0.33 0.44 0.18 0.39 0.15 0.40 0.23 0.43 0.22
1 0.33 0.42 0.16 0.38 0.15 0.36 0.22 0.43 0.21
2.5 0.33 0.37 0.14 0.35 0.13 0.30 0.19 0.37 0.18
0.25 0.5 0.48 0.18 0.39 0.16 0.43 0.23 0.46 0.23
0.5 0.5 0.48 0.17 0.41 0.16 0.43 0.24 0.48 0.21
1 0.5 0.50 0.17 0.41 0.15 0.44 0.23 0.48 0.21
2.5 0.5 0.49 0.14 0.43 0.14 0.44 0.20 0.49 0.18
0.25 0.66 0.51 0.18 0.43 0.17 0.44 0.23 0.49 0.23
0.5 0.66 0.52 0.17 0.43 0.16 0.49 0.23 0.51 0.22
1 0.66 0.54 0.16 0.45 0.16 0.52 0.23 0.53 0.19
2.5 0.66 0.57 0.14 0.48 0.14 0.57 0.20 0.57 0.17

m = 95
k φ GIG priors Wakefield priors IGamma(.5, .0005) IGamma(.001, .001)

mφ sdφ mφ sdφ mφ sdφ mφ sdφ
0.25 0.33 0.43 0.15 0.40 0.14 0.38 0.20 0.42 0.20
0.5 0.33 0.39 0.14 0.36 0.13 0.32 0.17 0.38 0.18
1 0.33 0.34 0.12 0.34 0.12 0.28 0.15 0.36 0.16
2.5 0.33 0.32 0.11 0.33 0.10 0.24 0.13 0.33 0.13
0.25 0.5 0.49 0.16 0.44 0.15 0.47 0.21 0.48 0.20
0.5 0.5 0.49 0.15 0.43 0.14 0.48 0.18 0.49 0.18
1 0.5 0.50 0.13 0.44 0.13 0.50 0.18 0.51 0.16
2.5 0.5 0.47 0.12 0.45 0.11 0.44 0.15 0.48 0.14
0.25 0.66 0.52 0.16 0.45 0.15 0.50 0.20 0.52 0.20
0.5 0.66 0.56 0.14 0.48 0.14 0.55 0.18 0.55 0.17
1 0.66 0.59 0.13 0.53 0.13 0.62 0.16 0.60 0.15
2.5 0.66 0.608 0.11 0.54 0.10 0.62 0.13 0.61 0.12
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[SMR] [1] [2]

[3] [4]

< 0.836
0.836 − 1.111
1.111 − 1.208
1.208 − 1.349
1.349 − 1.785
> 1.785

Figure 4 – Maps of standardized mortality rates and posterior means of relative risks
under alternative prior specifications for stomach cancer

section 2.1;

• prior [3]: p (τT ) = Gamma (1, .026), p ∼ Unif (0, 1) and ā = 0.917. This
follows the prior specification strategy proposed in Wakefield (2007) and
discussed in section 2.1;

• prior [4]: p
(

σ2
v |ψ

)

= GIG
(

−0.5, 0.25
√
1− ψ, 3.7√

1−ψ

)

, p
(

σ2
u |ψ

)

=

= GIG
(

−0.5, 0.373
√
ψ, 2.5√

ψ

)

, p (ψ) = Beta (0.4, 0.4). Hyperparameters are

chosen according to the discussion of section 4 and tu = 0.45.

Constants ā and tu are calculated from the adjacency matrix of the map under
study.

For each considered model, inference is based on 50.000 samples from the
MCMC algorithm, after 50.000 burn-in iterations for all the estimated models.
Convergence has been checked via the graphical examination of the trace plots of
sample values against iteration, and of the autocorrelation plot in each chain.

The maps for STC and GSD are plotted in figure 4 and 5 respectively.
Spatial features of the distribution of relative risks are not evident from the

SMR maps because of sampling variation characterizing counts. Smoothed maps,
no matter what prior is chosen, show a clear spatial pattern for GSD, whereas a
less pronounced pattern is apparent for STC.

With reference to GSD, we note that the posterior mean of φ is 0.695 when
prior [4] is used, and that the posterior mean takes intermediate values (0.61 and
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[SMR] [1] [2]
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< 0.504
0.504 − 0.823
0.823 − 0.975
0.975 − 1.144
1.144 − 1.376
> 1.376

Figure 5 – Maps of standardized mortality rates and posterior means of relative risks
under alternative prior specifications for genitourinary system diseases

0.56) when priors [1] and [2] are considered, whereas it equals only 0.51 under prior
[3]. Thus, prior [4] to give a result that is more consistent with map appearance.
Regarding prior [3], underestimation of φ is expected because the balancing of
the priors favours the spatially unstructured effect. For STC, we find that all
posterior means of φ are lower than 0.5, which highlights a predominance of the
spatial component, consistent with the map appearance. More precisely, posterior
means of φ range from 0.29 under prior [1] to 0.40 under prior [2], whereas prior
[4] gives an intermediate value equal to .34.

From both sets of maps, we note that the BYM model shrinks the distribution
of the SMRs considerably. As expected, the shrinkage of the SMRs toward the
regional mean is far higher for GSD because of its rarity. Nonetheless, different
priors lead to estimates characterised by different empirical variances. Specifically,
the variance of the groups of estimates is maximised under prior [4] for both STC
and GSD. If we compare the models associated with the four priors in terms of DIC
, a popular model comparison tool, the model based on prior [4] is characterised
by the minimum DIC value for both STC and GSD. The reduced shrinkage caused
by this prior is therefore associated with the best fit.

7. Conclusions

In this paper, we discuss the use of generalised inverse Gaussian distributions as
priors for the variance components in a Besag-York-Mollié model. The main aim
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of this work is to propose a simple strategy for this specification that allows one to
highlight the meaning of prior specification in terms of a hypothesis on the amount
and structure of the variability of the disease under study. This problem has only
been partially addressed in a variety of papers on this topic, sometimes with
controversial results. The generalised inverse Gaussian distribution includes the
inverse-gamma, a popular choice for these parameters, as a special case. Working
with these more general distributions allows us to keep the weights of the tails of
the implied priors on random effects under control imposing the existence of prior
moments of relative risks up to a pre-specified order and employ a parameter that
can be used to incorporate prior information on the variability of residual relative
risks when it is available. In a simulation study, it is shown that this parameter
is also strongly related to the amount of shrinkage that characterises posterior
estimates. Moreover, we build our prior specification strategy in order to properly
balance the a priori weight attributed to each of the two sets of random effects
(the spatially structured and unstructured heterogeneity). Generalised inverse
Gaussian distributions thus provide a generalisation of the inverse gammas for
which the parameters may be easily and sensibly chosen. Both the simulation
study and the analysis of real case studies highlight that our prior specification
strategy seems to produce better results in terms of fit and similar (or lower)
amount of shrinkage when compared with results obtained under more popular
priors. We did not fully explore the potential of generalised inverse Gaussian
priors in the Bayesian analysis of disease mapping models; we illustrated only one
possible specification strategy and others could be considered. The same priors
may be applied to the analysis of different models, especially those based on a
log-normal likelihood or involving a log-normal prior, as in the case of count data
models, which are widely popular in epidemiology and in other fields of scientific
enquiry.
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Summary

In this paper, we consider the problem of specifying priors for the variance components
in the Bayesian analysis of the Besag-York-Mollié model, a model that is popular among
epidemiologists for disease mapping. The model encompasses two sets of random effects:
one spatially structured to model spatial autocorrelation and the other spatially unstruc-
tured to describe residual heterogeneity. In this model, prior specification for variance
components is an important problem because these priors maintain their influence on
the posterior distributions of relative risks when mapping rare diseases. We propose
using generalised inverse Gaussian priors, a broad class of distributions that includes
many distributions commonly used as priors in this context, such as inverse gammas.
We discuss the prior parameter choice with the aim of balancing the prior weight of the
two sets of random effects on total variation and controlling the amount of shrinkage.
The suggested prior specification strategy is compared to popular alternatives using a
simulation exercise and applications to real data sets.

Keywords: Hierarchical models; Spatial epidemiology; Generalised inverse Gaussian dis-
tribution; Intrinsic conditional autoregressive models.


