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Abstract

The notion of reversible computation is attracting increasing interest because
of its applications in diverse fields, in particular the study of programming
abstractions for reliable systems. In this paper, we continue the study un-
dertaken by Danos and Krivine on reversible CCS by defining a reversible
higher-order π-calculus, called rhoπ. We prove that reversibility in our cal-
culus is causally consistent and that the causal information used to support
reversibility in rhoπ is consistent with the one used in the causal semantics
of the π-calculus developed by Boreale and Sangiorgi. Finally, we show that
one can faithfully encode rhoπ into a variant of higher-order π, substantially
improving on the result we obtained in the conference version of this paper.

Keywords: reversible computation, process algebra, π-calculus

1. Introduction

Motivation. The notion of reversible computation has already a long history
[1]. It has its origin in physics with the observation by Landauer that only
irreversible computations need to consume energy [2]. It has since attracted
interest in diverse fields, including e.g. hardware design [3], computational
biology [4], program debugging [5], and quantum computing [6]. Of partic-
ular interest is its application to the study of programming abstractions for
reliable systems. For instance, Bishop advocates using reversible comput-
ing as a means to achieve fail-safety in a sequential setting [7]. Moreover,

1Partly funded by the ANR-11-INSE-007 project REVER.
2Partly funded by the ANR-2010-BLAN-0305-01 project PiCoq.
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most fault-tolerant schemes exploiting system recovery techniques [8], includ-
ing exception handling [9], checkpoint/rollback [10] and transaction manage-
ment [11], rely on some form of undo or another. All this suggests it can be
worthwhile to formally investigate reversibility in concurrent systems, with
the hope that reversible computing ideas can lead us to more systematic and
more composable abstractions for the design and construction of recoverable
systems.

The seminal work of Danos and Krivine on reversible CCS (RCCS) con-
stitutes a first step on this research programme. They develop in [12] a
basic reversible concurrent programming model in the form of a reversible
variant of CCS, and introduce the notion of causal consistency as the least
constraining correctness criterion for reversing a concurrent system. Requir-
ing a concurrent system to go back in a computation by undoing actions in
the inverse order with respect to the one described by its interleaving se-
mantics for the forward computation is too restrictive, since forward actions
could have executed concurrently. Causality constraints should be respected,
however: first the consequences have to be undone, then the causes. Causal
consistency captures exactly this: when reversing a computation, actions are
undone in reverse order up to causal equivalence, i.e. up to swaps of con-
current actions. In [13] Danos and Krivine show how to leverage RCCS for
the design of transactional systems. They provide an interpretation of dis-
tributed transactions as “ballistic” processes, that freely explore the state
space defined by their reversible part until they commit by performing irre-
versible actions, and they show how reversibility can help in the design and
proof of correctness of complex transactional systems. Later on, Phillips and
Ulidowski [14] showed how to devise causally consistent reversible extensions
to process calculi specified by SOS rules in a subset of the path format.

A reversible CCS, or a process calculus defined by operators in the path
format, remains limited as a reversible programming model, however. The
same reasons that motivated the introduction of the π-calculus [15] apply to
motivate the study of a reversible π-calculus. As a first contribution in that
study, we introduced in [16] a causally-consistent reversible extension of an
asynchronous variant of the higher-order π-calculus [17], where we showed
how to preserve the usual properties of the π-calculus operators (e.g. as-
sociativity and commutativity of parallel composition), and that one could
faithfully encode (up to weak barbed bisimilarity) our reversible higher-order
π, called rhoπ, into a variant of the higher-order π-calculus with abstractions
and join patterns. The operational semantics of rhoπ was given in [16] by
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way of a reduction semantics. We then showed how to leverage the reversible
machinery in rhoπ for a calculus with explicit rollback [18] called rollπ, and
further, building on rollπ, how to faithfully encode certain kinds of com-
municating transactions [19]. Very recently, Cristescu, Krivine and Varacca
have proposed in [20] a reversible π-calculus, called Rπ, and defined a la-
belled transition system semantics for it. In addition, they showed their LTS
semantics for Rπ to be as liberal as possible in the sense that the causality
relation between labelled transitions is the smallest relation that is consistent
with the structural causality between reductions.

Contributions. In this paper, we revisit our work on rhoπ. Apart from pro-
viding proofs that where omitted from [16] for lack of space, we discuss in
more detail notions of barbed bisimilarity for rhoπ, and we study the rela-
tionship between the notion of causality that emerges from our reversibility
machinery and that introduced by Boreale and Sangiorgi in their causal π-
calculus [21]. Our discussion of barbed bisimilarity shows that the usual
notion of weak barbed bisimilarity is very coarse in rhoπ since it identifies
processes that have the same weak observables. Weak barbed bisimilarity re-
mains a non-trivial relation since the question of knowing whether two rhoπ
processes have the same weak observables is undecidable. However, since it
was used to show the faithfulness of our encoding of rhoπ in higher-order π,
one can wonder whether the result would still hold with a finer bisimilarity,
in particular one that could distinguish between forward and backward re-
ductions. We show in this paper that this is indeed the case, at the cost of
minor tweaks in our encoding, and at the expense of a much more complex
proof.

Outline. The paper is organized as follows. Section 2 defines the rhoπ cal-
culus. We explain the main constructions of the calculus and we contrast
our way of handling reversibility with that of Danos and Krivine. We also
define and discuss barbed equivalences in rhoπ. Section 3 is devoted to the
proof of our first main result, namely that reversibility in rhoπ proceeds in a
causally consistent way. We also show that the notion of causality built in the
rhoπ operational semantics agrees with that of Boreale and Sangiorgi. Sec-
tion 4 presents a compositional encoding of the rhoπ calculus into a variant
of HOπ and proves its faithfulness. Section 5 discusses related work. Sec-
tion 6 concludes the paper. Main proofs and auxiliary results are collected
in Appendix.
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This paper constitutes a revised and extended version of our conference
paper [16]. While the rhoπ calculus and its reversible machinery are un-
changed, the analysis in Section 3 of the relationship between our notion of
causality and that provided by Boreale and Sangiorgi for the π-calculus is
new. The material in Section 4, which makes up the bulk of the paper, is
entirely new.

2. The rhoπ calculus

2.1. Informal presentation
Building a reversible variant of a process calculus involves devising appro-

priate syntactic representations for computation histories. As already hinted
at in the Introduction, since a process models a concurrent system, asking
for a deterministic reverse execution, which traverses the exact same states
of the forward execution, is too restrictive. In fact, those states depend on
the chosen interleaving of concurrent actions. An approach more suitable
for a concurrent system is causally consistent reversibility, where states that
are reached during a backward computation are states that could have been
reached during the computation history by just performing independent ac-
tions in a different order. In RCCS, Danos and Krivine achieve this with
CCS without recursion by attaching a memory m to each process P , in the
monitored process construct m : P . A memory in RCCS is a stack of infor-
mation needed for processes to backtrack. Thus, if two processes P1 and P2

can synchronize on a channel a in order to evolve into P ′1 and P ′2, respectively,
(e.g., P1 = a.P ′1 and P2 = a.P ′2) then the parallel composition of monitored
processes m1 : (P1 +Q1) and m2 : (P2 +Q2) can evolve, according to RCCS
semantics, as follows:

m1 : (P1 +Q1) | m2 : (P2 +Q2)→ 〈m2, a,Q1〉 ·m1 : P ′1 | 〈m1, a,Q2〉 ·m2 : P ′2

In the reduction above, a memory of the form 〈m2, a,Q1〉 · m1 represents
the fact that its monitored process has performed an input on the channel
a (a represents an output), interacting with a process monitored by the
memory m2, and discarded the alternative process Q1. By exploiting all
the information stored in the memories, the above synchronization can be
reverted as follows:

〈m2, a,Q1〉 ·m1 : P ′1 | 〈m1, a, Q2〉 ·m2 : P ′2 → m1 : (P1 +Q1) | m2 : (P2 +Q2)

Additionally, Danos and Krivine rely on the following rule:

m : (P | Q) ≡ 〈1〉 ·m : P | 〈2〉 ·m : Q
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so as to ensure that each primitive thread, i.e. some process with no par-
allel composition at top level, gets its own unique identity. Since this rule
stores the exact position of a process in a parallel composition, it is not com-
patible with the usual structural congruence rules for the parallel operator,
namely associativity, commutativity, and 0 as neutral element. Danos and
Krivine suggest that it could be possible to work up to tree isomorphisms on
memories, but this would indeed lead to a more complex syntax, as well as
additional difficulties (see Remark 5).

We adopt for rhoπ a different approach: instead of associating each thread
with a stack that records, essentially, past actions and positions in parallel
branches, we rely on simple thread tags, which act as unique identifiers but
have little structure, and on new process terms, which we call memories,
which are dedicated to undoing a single (forward) computation step.

More precisely, a forward computation step in rhoπ (denoted by arrow
�) consists in the receipt of a message (rhoπ is an asynchronous calculus).
The receipt of a message a〈P 〉 on channel a by a receiver process (or trigger)
a(X) . Q takes in rhoπ the following form:

(κ1 : a〈P 〉) | (κ2 : a(X) . Q) � νk. k : Q{P/X} | [M ; k]

Each thread (message and trigger) participating in the above computation
step is uniquely identified by a tag: κ1 identifies the message a〈P 〉, and κ2

identifies the trigger a(X) . Q. The result of the message receipt consists in
a classical part and two side effects. The classical part is the launch of an
instance Q{P/X} of the body of the trigger Q, with the formal parameter
X instantiated by the received value, i.e. the process P (rhoπ is a higher-
order calculus). The two side effects are: (i) the tagging of the newly created
process Q{P/X} by a fresh new key k (ν is the standard restriction operator
of the π-calculus), and (ii) the creation of a memory process [M ; k]. M
is simply the configuration on the left hand side of the reduction, namely
M = (κ1 : a〈P 〉) | (κ2 : a(X) . Q).

In this setting, a backward computation step takes the form of an interac-
tion between a memory and a process tagged with the appropriate key: when
a memory [M ; k] is put in presence of a process tagged with k, a backward
reduction (denoted by arrow  ) can take place. Such a reduction kills the
process tagged with k and reinstates the configuration M :

(k : P ) | [M ; k]  M
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We thus have:

M � νk. k : Q{P/X} | [M ; k]  νk.M

Since k is fresh, νk.M is actually structurally equivalent to M . We thus
have a perfect reversal of a forward computation: M � M .

Remark 1. Following Danos and Krivine [13], one could consider also taking into

account irreversible actions. We do not do so in this paper for the sake of simplicity.

Adding irreversible actions to rhoπ would be conceptually straightforward.

Remark 2. Using memories as presented here to enable reversibility simplifies

the formal development but leads to a space explosion of computations in rhoπ. We

do not consider implementation and related space efficiency issues in this paper.

This issue has been analysed in [22] in the context of the Oz language.

2.2. Syntax

Names, keys, and variables. We assume the existence of the following de-
numerable infinite mutually disjoint sets: the set N of names, the set K of
keys, and the set V of process variables. The set I = N ∪K is called the set
of identifiers. N denotes the set of natural integers. We let (together with
their decorated variants): a, b, c range over N ; h, k, l range over K; u, v, w
range over I; X, Y, Z range over V . We denote by ũ a finite set of identifiers
{u1, . . . , un}.

Syntax. The syntax of the rhoπ calculus is given in Figure 1 (in writing rhoπ
terms, we freely add balanced parenthesis around terms to disambiguate
them). Processes of the rhoπ calculus, given by the P,Q productions in
Figure 1, are the standard processes of the asynchronous higher-order π-
calculus [23]. A receiver process (or trigger) in rhoπ takes the form a(X).P ,
which allows the receipt of a message of the form a〈Q〉 on channel a.

Processes in rhoπ cannot directly execute, only configurations can. Con-
figurations in rhoπ are given by the M,N productions in Figure 1. A config-
uration is built up from threads and memories.

A thread κ : P is just a tagged process P , where the tag κ is either a single
key k or a pair of the form 〈h, h̃〉 · k, where h̃ is a set of keys, with h ∈ h̃. A
tag serves as an identifier for a process. As we will see below, together with
memories tags help capture the flow of causality in a computation.
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P,Q ::= 0 | X | νa. P | (P | Q) | a〈P 〉 | a(X) . P

M,N ::= 0 | νu.M | (M | N) | κ : P | [µ; k]

κ ::= k | 〈h, h̃〉 · k
µ ::= ((κ1 : a〈P 〉) | (κ2 : a(X) . Q))

u ∈ I a ∈ N X ∈ V h, k ∈ K κ ∈ T

Figure 1: Syntax of rhoπ

A memory is a process of the form [µ; k], which keeps track of the fact that
a configuration µ was reached during execution, that triggered the launch
of a thread tagged with the fresh tag k. In a memory [µ; k], we call µ
the configuration part of the memory, and k the thread tag of the memory.
Memories are generated by computation steps and are used to reverse them.
The configuration part µ = (κ1 : a〈P 〉) | (κ2 : a(X) . Q) of the memory
records the message a〈P 〉 and the trigger a(X) . Q involved in the message
receipt, together with their respective thread tags κ1, κ2.
P denotes the set of rhoπ processes, and C the set of rhoπ configurations.

We call agent an element of the set A = P ∪ C. We let (together with their
decorated variants) P,Q,R range over P ; L,M,N range over C; and A,B,C
range over agents. We call primitive thread process, a process that is either
a message a〈P 〉 or a trigger a(X) . P . We let τ and its decorated variants
range over primitive thread processes.

Remark 3. We have no construct for replicated processes, output prefixing, or

guarded choice in rhoπ: as in the asynchronous HOπ, also in rhoπ these can be

easily encoded.

Free names and free variables. Notions of free identifiers and free (process)
variables in rhoπ are classical. It suffices to note that constructs with binders
are of the forms: νa. P , which binds the name a with scope P ; νu.M , which
binds the identifier u with scope M ; and a(X).P , which binds the variable X
with scope P . We denote by fn(P ), fn(M) and fn(κ) the set of free names,
free identifiers, and free keys, respectively, of process P , of configuration M ,
and of tag κ. Note in particular that fn(κ : P ) = fn(κ)∪fn(P ), fn(k) = {k}
and fn(〈h, h̃〉 · k) = h̃ ∪ {k}. We say that a process P or a configuration
M is closed if it has no free (process) variable. P• denotes the set of closed
processes, C• the set of closed configurations, and A• the set of closed agents.
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Remark 4. In the remainder of the paper, we adopt Barendregt’s Variable Con-

vention: If terms t1, . . . , tn occur in a certain context (e.g. definition, proof), then

in these terms all bound identifiers and variables are chosen to be different from

the free ones.

Consistent configurations. Not all configurations allowed by the syntax in
Figure 1 are meaningful. In a memory [µ; k], tags occurring in the configu-
ration part µ must be different from the thread tag k. This is because the
key k is freshly generated when a computation step (a message receipt) takes
place, and it is used to identify the newly created thread. Tags appearing
in the configuration part identify threads (message and trigger) which have
participated in the computation step. In a configuration M , we require all
the threads to be uniquely identified by their tag, and we require consistency
between threads and memories: if M contains a memory [µ; k] (i.e. [µ; k] oc-
curs as a subterm of M), we require M to also contain a thread tagged with
k: components of this thread, i.e. threads whose tags have k as a suffix, can
occur either directly in parallel with [µ; k] or in the configuration part of an-
other memory contained in M (because they may have interacted with other
threads). We call consistent a configuration that obeys these constraints.
We defer the formal definition of consistent configurations to Section 2.3.

2.3. Operational semantics

The operational semantics of the rhoπ calculus is defined via a reduction
relation →, which is a binary relation over closed configurations → ⊂ C• ×
C•, and a structural congruence relation ≡, which is a binary relation over
processes and configurations ≡ ⊂ P2 ∪ C2. We define evaluation contexts as
“configurations with a hole ·” given by the following grammar:

E ::= · | (M | E) | νu.E

General contexts C are just processes or configurations with a hole replacing
a 0 (process or configuration). A congruence on processes and configurations
is an equivalence relation R that is closed for general contexts: P RQ =⇒
C[P ]RC[Q] and M RN =⇒ C[M ]RC[N ].

The relation ≡ is defined as the smallest congruence on processes and
configurations that satisfies the rules in Figure 2. We write t =α t′ when
terms t, t′ are equal modulo α-conversion. If ũ = {u1, . . . , un}, then νũ. A
stands for νu1. . . . νun. A (there is no need to indicate the order of binders
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(E.ParC) A | B ≡ B | A (E.ParA) A | (B | C) ≡ (A | B) | C

(E.NilM) A | 0 ≡ A (E.NewN) νu.0 ≡ 0 (E.NewC) νu. νv.A ≡ νv. νu.A

(E.NewP) (νu.A) | B ≡ νu. (A | B) (E.α) A =α B =⇒ A ≡ B

(E.TagN) κ : νa. P ≡ νa. κ : P

(E.TagP) k :
n∏
i=1

τi ≡ νh̃.
n∏
i=1

(〈hi, h̃〉 · k : τi) h̃ = {h1, . . . , hn} n > 1

Figure 2: Structural congruence for rhoπ

thanks to rule E.NewC). We write
∏n
i=1 Ai for A1 | . . . | An (as before, there

is no need to indicate how the latter expression is parenthesized because the
parallel operator is associative by rule E.ParA). In rule E.TagP, processes
τi are primitive thread processes (i.e., messages or triggers). Recall the use
of the variable convention in these rules: for instance, in the rule (νu.A) |
B ≡ νu. (A | B) the variable convention makes implicit the condition u 6∈
fn(B). The structural congruence rules are the usual rules for the π-calculus
(E.ParC to E.α) without the rule dealing with replication, and with the
addition of two new rules dealing with tags: E.TagN and E.TagP. Rule
E.TagN is a scope extrusion rule to push restrictions to the top level. Rule
E.TagP allows to generate unique tags for each primitive thread process in
a configuration. An easy induction on the structure of terms provides us
with a kind of normal form for configurations (by convention

∏
i∈I Ai = 0 if

I = ∅):

Lemma 1 (Thread normal form). For any closed configuration M , we
have:

M ≡ νũ.
∏
i∈I

(κi : ρi) |
∏
j∈J

[µj ; kj ]

with ρi = 0, ρi = ai〈Pi〉, or ρi = ai(Xi) . Pi.

We say that a binary relation R on closed configurations is evaluation-
closed if it satisfies the inference rules:

(R.Ctx)
M R N

E[M ] R E[N ]
(R.Eqv)

M ≡M ′ M ′ R N ′ N ′ ≡ N

M R N
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(R.Fw) (κ1 : a〈P 〉) | (κ2 : a(X) . Q)� νk. (k : Q{P /X}) | [(κ1 : a〈P 〉) | (κ2 : a(X) . Q); k]

(R.Bw) (k : P ) | [M ; k] M

Figure 3: Reduction rules for rhoπ

The reduction relation→ is defined as the union of two relations, the forward
reduction relation � and the backward reduction relation  : → =� ∪ .
Relations � and  are defined to be the smallest evaluation-closed binary
relations on closed configurations satisfying the rules in Figure 3 (note again
the use of the variable convention: in rule R.Fw the key k is fresh).

The rule for forward reduction (R.Fw) is the standard communication
rule of the higher-order π-calculus with two side effects: (i) the creation of
a new memory to record the configuration that gave rise to it, namely the
parallel composition of a message and a trigger, properly tagged (tags κ1 and
κ2 in the rule); (ii) the tagging of the continuation of the message receipt with
the fresh key k. The rule for backward reduction (R.Bw) is straightforward:
in presence of the thread tagged with key k, memory [M ; k] reinstates the
configuration M that gave rise to the tagged thread. We use�∗, ∗ and⇒
to denote the reflexive and transitive closure of �,  and →, respectively.
With the reduction rules and the structural laws in place, we can see how the
structural rule E.TagP is used by the reduction. In particular the rule, if
used from left to right after a forward step, lets the continuation of a trigger
(if it is a parallel composition) continue executing in the forward direction.
On the other side, when used from right to left, E.TagP gathers back all
the primitive thread processes belonging to the same parallel composition
identified by a particular key. An example of execution will make it clear.
Let M = (k1 : a〈P 〉) | (k2 : a(X) . b〈X〉 | b(X) . 0), we have that:

M � νk. k : (b〈P 〉 | b(X) . 0) | [M ; k] (1)

≡ νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) . 0) | [M ; k] (2)

� νk, h1, h2, k3. (k3 : 0) | [M ; k] | [M1; k3] (3)

 νk, h1, h2. (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) . 0) | [M ; k] (4)

≡ νk. k : (b〈P 〉 | b(X) . 0) | [M ; k] (5)

 νk. (k1 : a〈P 〉) | (k2 : a(X) . b〈X〉 | b(X) . 0) (6)

with h̃ = {h1, h2}, M1 = (〈h1, h̃〉 · k : b〈P 〉) | (〈h2, h̃〉 · k : b(X) . 0). We can

10



note in (2) the use of the rule E.TagP from left to right, in order to allow
the two primitive processes to execute (3). On the other side, we use the rule
in the opposite way in (5) in order to build back the parallel composition
and enable the backward reduction in (6).

Remark 5. One could have thought of mimicking the structural congruence rule
dealing with parallel composition in [12], using a monoid structure for tags:

(E.TagP∗) κ : (P | Q) ≡ νh1, h2. (h1 · κ : P ) | (h2 · κ : Q)

Unfortunately using E.TagP∗ instead of E.TagP would introduce some unde-
sired non-determinism, which would later complicate our definitions (in relation
to causality) and proofs. For instance, let M = k : a〈Q〉 | (h : a(X).X). We have:

M →M ′ = νl. (l : Q) | [M ; l]

Now, assuming ETagP∗, we would have:

M ≡ (k : (a〈Q〉 | 0)) | (h : a(X) . X) ≡
νh1, h2. ((h1 · k : a〈Q〉) | (h2 · k : 0)) | (h : a(X) . X)

Let M1 = (h1 · k : a〈Q〉) | (h : a(X) . X). We would then have: M → M ′′,
where M ′′ = νh1, h2, l. (l : Q) | [M1; l] | (h2 · k : 0). Clearly M ′ 6≡ M ′′, which
means that a seemingly deterministic configuration, M , would have in fact two
(actually, an infinity of) derivations towards non structurally equivalent configu-
rations. By insisting on tagging only primitive thread processes, E.TagP avoids
this unfortunate situation.

We can characterize this by proving a kind of determinacy lemma for rhoπ,
which fails if we replace rule E.TagP with rule E.TagP∗. Extend the grammar of
rhoπ with marked primitive thread processes of the form τ∗. This extended calculus
has exactly the same structural congruence and reduction rules as rhoπ, but with
possibly marked primitive thread processes. Now call primed a closed configuration
M with exactly two marked processes of the form a〈P 〉∗ and (a(X) . Q)∗. By
extending ≡ and → to marked processes we have:

Lemma 2 (Determinacy). Let M be a primed configuration such that M ≡
M1 = E1[κ1 : a〈P 〉∗ | κ2 : (a(X) . Q)∗] and M ≡ M2 = E2[κ′1 : a〈P 〉∗ | κ′2 :
(a(X) . Q)∗]. Assume M1 → M ′1 and M2 → M ′2 are derived by applying R.Fw
with configurations κ1 : a〈P 〉∗ | κ2 : (a(X) .Q)∗, and κ′1 : a〈P 〉∗ | κ′2 : (a(X) .Q)∗,
respectively, followed by R.Ctx. Then M ′1 ≡M ′2.
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Proof. By induction on the form of E1, and case analysis on the form of κ1 and
κ2. �

We can now formally define the notion of consistent configuration.

Definition 1 (Consistent configuration).
Let M ≡ νũ.

∏
i∈I(κi : ρi) |

∏
j∈J [µj; kj], with ρi = 0 or ρi a primitive

thread process, µj = δj : Rj | γj : Tj, Rj = aj〈Pj〉, Tj = aj(Xj) . Qj be
a configuration. Let K be the multiset containing all the tags κi for i ∈ I,
δj, γj for j ∈ J . M is said to be consistent if the following conditions are
met:

1. K is a set (i.e. all the elements in K are distinct)

2. For all j ∈ J , kj 6= δj and kj 6= γj
3. For all j1, j2 ∈ J , j1 6= j2 =⇒ kj1 6= kj2
4. If there exists a tag κ ∈ K of the form 〈h, h̃〉 · k then:

• for each hl ∈ h̃ there is κ′ ∈ K of the form 〈hl, h̃〉 · k
• k /∈ K
• there is no κ′ ∈ K of the form 〈h′l, h̃′〉 · k with h̃ 6= h̃′

5. For all j ∈ J , there exist E ⊆ I, D ⊆ J \ {j}, G ⊆ J \ {j}, such that:

νũ. kj : Qj{Pj/Xj
} ≡ νũ.

∏
e∈E

κe : ρe |
∏
d∈D

δd : Rd |
∏
g∈G

γg : Tg

Roughly, consistent configurations enjoy two properties: (i) uniqueness of
tags and (ii) that for each memory [µ; k] there are processes corresponding to
the continuation of µ in the configuration. In more detail, condition 1 ensures
that processes (inside or outside memory) have unique tags. Condition 2 en-
sures that the thread tag of a memory never occurs in its own configuration
part. Condition 3 states that all thread tags of memories are distinct. Con-
dition 4 ensures that if a process (inside or outside memory) has a complex
tag 〈h, h̃〉 · k then there are processes tagged with all the tags 〈hl, h̃〉 · k with
hl ∈ h̃, and that no process is tagged by k or by a different complex tag with
the same suffix key k. Condition 5 is the most tricky one. It requires that
for each memory [δj : aj〈Pj〉 | γj : aj(Xj) . Qj; kj] there are threads in the
configuration whose composition gives the continuation νũ. kj : Qj{Pj/Xj

}.
Note that because of the use of ≡ there are only two possibilities: either
there is a unique thread corresponding to the continuation tagged with kj,
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or there are many of them, all tagged with complex tags having kj as a suffix,
generated by one application of rule E.TagP. These threads may be at top
level or inside the configuration parts of other memories (as participants to
other communications).

Consistency is a global property, so the composition of consistent configu-
rations may lead to a non consistent configuration, and subterms of consistent
configurations may not be consistent. To better understand consistency let
us consider a few examples:

k1 : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) . b〈0〉); k] (1)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) . b〈0〉); k] (2)

k : a〈0〉 | [(k1 : a〈0〉) | (k2 : a(X) . a〈X〉); k] (3)

(〈h1, h̃〉 · k : a〈0〉) | (k : b〈0〉) (4)

Configuration (1) is not consistent since it violates condition 1 on key k1 and
condition 5 on the memory. Configuration (2) is not consistent because it
violates condition 5. Configuration (3) is consistent since all the tags are
unique and k : a〈X〉{0/X} ≡ k : a〈0〉. Configuration (4) is not consistent
since it violates condition 4.

Consistent configurations are closed under reduction:

Lemma 3 (Consistency preservation). Let M be a consistent configura-
tion. If M → N then N is a consistent configuration.

Proof. See Appendix A.1. �

Remark 6. The presented semantics and machinery for reversing HOπ can be

easily adapted to define reversibility in first order π-calculus. In general, the

combination of memories and identifiers should be enough to define reversibility in

calculi with implicit substitutions. Indeed, the need for memories stems from the

fact that substitution is not a bijective, hence reversible, function: the only way

to reverse a substitution is to record additional information to recover the exact

form of the process before the substitution was applied.

2.4. Basic properties of reduction in rhoπ

In this section we show two main properties of rhoπ: (i) that rhoπ is a
conservative extension of HOπ, and (ii) that each rhoπ reduction step can
indeed be reversed.
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We first recall HOπ syntax and semantics. The syntax of HOπ processes
coincides with the syntax of rhoπ processes in Figure 1 (but HOπ has no
concept of configuration). HOπ structural congruence, denoted ≡π, is the
least congruence generated by rules in Figure 2 (restricted to processes) but
E.TagN and E.TagP. Evaluation contexts in HOπ are given by the follow-
ing grammar:

E ::= · | (P | E) | νu.E

HOπ reduction relation →π is the least binary relation on closed processes
closed under HOπ structural congruence and HOπ evaluation contexts de-
fined by the rule:

(HO.Red) a〈P 〉 | a(X) . Q→π Q{P/X}

In order to show (i) we define the erasing function γ : C → P , which maps a
rhoπ configuration to its underlying HOπ process.

Definition 2 (Erasing function). The erasing function γ : C → P is de-
fined inductively by the following clauses:

γ(0) = 0 γ(νa.M) = νa. γ(M) γ(νk.M) = γ(M)

γ(M | N) = γ(M) | γ(N) γ(κ : P ) = P γ([µ; k]) = 0

Let us note that γ directly deletes the creation of new keys (νk) since they
have no meaning in HOπ (they are not names). Moreover it deletes all the
extra machinery (tags and memories) used to reverse HOπ.

Lemma 4 below shows that rhoπ forward computations are indeed deco-
rations on HOπ reductions.

Lemma 4. For all closed configurations M,N , if M � N then γ(M) →π

γ(N)

Proof. See Appendix A.2. �

We can prove a converse of Lemma 4. More precisely, Lemma 5 shows
that for each HOπ process R, each HOπ reduction R →π S and each rhoπ
configuration M such that γ(M) = R we have a forward reduction in rhoπ
corresponding to R→π S.
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Lemma 5. For all closed HOπ processes R, S if R→π S then for all closed
configurations M such that γ(M) = R there is N such that M � N and
γ(N) = S.

Proof. See Appendix A.2.

Remark 7. A canonical way of lifting a closed HOπ process P to a closed con-
sistent configuration in rhoπ is by defining δ(P ) = νk. k : P . As a corollary of
Lemma 4 we have:

Corollary 1. For each closed HOπ process P , if δ(P )� N then P →π γ(N).

We now prove the Loop Lemma, which shows that forward and backward
reductions in rhoπ are really the inverse of each other.

Lemma 6 (Loop Lemma). For all closed consistent configurations M,N
if M � N then N  M , and if M  N then N �M .

Proof. Let us start from the first implication. From Lemma 36 (see Ap-
pendix A.1) we have M ≡ M ′ and N ′ ≡ N with M ′ = νũ. κ1 : a〈P 〉 |
κ2 : a(X) . Q | ∏

i∈I κi : ρi |
∏
j∈J [µj; kj] and N ′ = νũ, k. k : Q{P/

X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] | ∏i∈I κi : ρi |
∏
j∈J [µj; kj]. Then by

applying rules (R.Fw), (R.Ctx) and (R.Eqv) we have N  M , as desired.
For the other direction from Lemma 37 (see Appendix A.1) we have M ≡

M ′ with M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] | ∏i∈I κi : ρi |∏
j∈J [µj; kj] and νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q | ∏i∈I κi : ρi |

∏
j∈J [µj; kj] ≡

N . Since M is a consistent configuration and consistency is preserved by
structural congruence also M ′ is consistent. From consistency we know that
k : R is the only thread tagged by k and that νũ, k. k : R ≡ νũ, k. k : Q{P/X}.
Then the result follows by applying rules (R.Bw), (R.Ctx) and (R.Eqv).
�

An easy induction on the length n of the sequence of reductions M ⇒ N
shows that:

Corollary 2. For all closed consistent configurations M,N if M ⇒ N then
N ⇒M .
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2.5. Contextual equivalence in rhoπ

Barbed congruence. We can classically complement the operational semantics
of the rhoπ calculus with the definition of a contextual equivalence between
configurations, which takes the form of a barbed congruence. We first define
observables in configurations. We say that name a is observable in configu-
ration M , noted M ↓a, if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ. Note that
keys are not observable: this is because they are just an internal device used
to support reversibility. We write MR ↓a, where R is a binary relation on
configurations, if there exists N such that MRN and N ↓a. The following
definitions are classical:

Definition 3 (Barbed bisimulation and congruence). A relation R ⊆
C•×C• on closed configurations is a strong (resp. weak) barbed simulation if
whenever M RN

• M ↓a implies N ↓a (resp. N ⇒↓a)

• M →M ′ implies N → N ′, with M ′RN ′ (resp. N ⇒ N ′ with M ′RN ′)

A relation R ⊆ C•×C• is a strong (resp. weak) barbed bisimulation if R and
R−1 are strong (resp. weak) barbed simulations. We call strong (resp. weak)
barbed bisimilarity and write ∼ (resp. ≈) the largest strong (resp. weak)
barbed bisimulation. The largest congruence included in ∼ (resp. ≈) is called
strong (resp. weak) barbed congruence and is denoted ∼c (resp. ≈c).

A direct consequence of the Loop Lemma is that each closed consistent
configuration M is weakly barbed congruent to any of its descendants or
predecessors.

Lemma 7. For all closed consistent configurations M,N , if M ⇒ N , then
M ≈c N .

Proof. We show that the relation

R = {(C[M ],C[N ]) |M ⇒ N,C is a configuration context}

is a weak barbed bisimulation. Since R is symmetric by the corollary of the
Loop Lemma (Corollary 2), we only need to show that it is a weak barbed
simulation. Consider a pair (C[M ],C[N ]) ∈ R. We have M ⇒ N , and
hence by Corollary 2 N ⇒ M . Noting that a configuration context C is an
execution context, i.e. if M → N then C[M ] → C[N ], then we also have
C[N ]⇒ C[M ]. We now check easily the two barbed simulation clauses:
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• if C[M ] ↓a, then C[N ]⇒ C[M ] ↓a, and hence C[N ]⇒↓a as required.

• if C[M ] → M ′, then C[N ] ⇒ C[M ] → M ′, and hence C[N ] ⇒ M ′, as
required.

Since R is a congruence by construction the thesis follows. �

Lemma 7 shows that barbed congruence is not very discriminative among
configurations: if N is derived from M then M ≈c N . Barbed bisimilarity
is even less discriminative: a configuration M is weak barbed bisimilar to a
dummy configuration that shows directly all the possible barbs of M .

Lemma 8. For each closed consistent configuration M let S be the set of
weak barbs of M . Then M ≈MD =

∏
a∈S(ka : a〈0〉).

Proof. Let R = {(N,MD) | M ⇒ N,MD =
∏
a∈S(ka : a〈0〉}. We show

that R is a weak barbed bisimilarity. All the challenges from N are matched
by MD by staying idle, since it has by construction all the required barbs. MD

performs no actions to be matched. Let a be a barb of MD. By construction
a is a weak barb of M , and also of N since N ⇒M by the Loop Lemma.�

We will leave finding a general notion of observational equivalence for
rhoπ, and for reversible calculi in general, for further study. For our purposes,
i.e. proving the correctness of our encoding of rhoπ in a variant of higher-order
π, it is enough to consider a custom notion of back and forth bisimulation.

Back and Forth Bisimulations. Notions of back and forth bisimulation, re-
quiring essentially that forward moves are matched by forward moves and
backward moves by backward moves, have already been studied in the lit-
erature (see [24, 25, 14, 26]). However, those works consider only strong
equivalences, and use backward actions to better understand calculi with
only forward actions, while we use them to study reversible calculi. Indeed,
this kind of back and forth bisimulations can distinguish true concurrency
aspects of forward calculi better than other equivalences such as classical
strong bisimulation. For example, the two (CCS) processes:

P = a | b Q = a.b+ b.a

are strongly bisimilar, but they are not back and forth bisimilar. Suppose
that P performs the computation ab and then it undoes a. This computa-
tion cannot be matched by Q: if Q does the computation ab (left part of the
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choice) then it cannot undo a before b, since b causally depends on a.

We adapt this idea of back and forth bisimulation by defining an ad-
hoc notion of weak behavioral equivalence allowing also reductions which are
neither forward nor backward. They are needed since the encoding of rhoπ
needs some auxiliary steps for managing bookkeeping information. We call
such reductions administrative reductions. The equivalence we present below
works up to administrative reductions. While we think that such a notion
is useful for reasoning on our encoding, we do not claim that it is a good
candidate to become a canonical equivalence on reversible calculi. Indeed,
if it is used to relate processes of calculi with no administrative reductions,
then this relation becomes a strong back and forth bisimulation.

We write ↪→ for the reduction relation composed by administrative steps,
and ↪→∗ for its reflexive and transitive closure. Note that in rhoπ relation ↪→
is empty.

Definition 4 (Bf barbed bisimulation and congruence).
A relation R ⊆ C• × C• on closed configurations is a strong (resp. weak)
backward and forward barbed simulation (or bf barbed simulation for brevity)
if whenever M RN

• M ↓a implies N ↓a (resp. N ↪→∗↓a)

• M � M ′ implies N � N ′, with M ′RN ′ (resp. N ↪→∗�↪→∗ N ′ with
M ′RN ′)

• M  M ′ implies N  N ′, with M ′RN ′ (resp. N ↪→∗ ↪→∗ N ′ with
M ′RN ′)

• M ↪→M ′ implies N ↪→ N ′, with M ′RN ′ (resp. N ↪→∗ N ′ with M ′RN ′)

A relation R ⊆ C• × C• is a strong (resp. weak) bf barbed bisimulation
if R and R−1 are strong (resp. weak) bf barbed simulations. We call strong

(resp. weak) bf barbed bisimilarity, denoted by
·∼ (resp.

·≈), the largest strong
(resp. weak) bf barbed bisimulation. The largest congruence included in

·∼
(resp.

·≈) is called strong (resp. weak) bf barbed congruence and is denoted

by
·∼c (resp.

·≈c).

Weak bf barbed bisimulation is actually strong with respect to forward
and backward reductions, thus showing that the encoding correctly matches
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the behavior of rhoπ processes, but weak with respect to administrative steps
↪→, thus allowing the encoding to perform them at any moment. If bf barbed
bisimulation is used to compare rhoπ processes, the strong version and the

weak one coincide, that is
·≈ =

·∼. Hence, in rhoπ, weak bf barbed bisim-
ulation becomes stronger than (classical) strong barbed bisimulation, since
it is able to distinguish the direction of reductions. In fact, one forward
(backward) step has to be matched by one forward (backward) step.

From the definitions, it is clear that
·∼⊆∼,

·≈⊆≈,
·∼c⊆∼c, and

·≈c⊆≈c,
i.e., backward and forward equivalences are more discriminating than the cor-
responding standard counterparts. We show below that all these inclusions
are strict.

Let us start from strong equivalences. Consider:

M = νk1, k2. (k1 : a〈0〉) | (k2 : a(X) . b〈0〉)
N = νk1, k2, k. [(k1 : b〈0〉) | (k2 : b(X) . a〈0〉); k] | k : a〈0〉

Both the configurations have a barb at a, a reduction to a configuration with
a barb at b and its inverse, and no other reduction nor barb, thus M ∼ N .
However, the reduction creating the barb at b is forward in M and backward
in N , thus M 6 ·∼ N . The same counterexample and the same reasoning can
be used also for weak equivalences.

Let us consider now congruences, starting from the weak ones. Consider
the following configurations:

M = νk1, k2, k3. (k1 : a〈0〉) | (k2 : a(X) . b〈0〉) | (k3 : a(X) . c〈0〉)
N = νk1, k2, k3, k4. (k4 : b〈0〉) | (k3 : a(X) . c〈0〉) |

[(k1 : a〈0〉) | (k2 : a(X) . b〈0〉); k4]

M ′ = νk1, k2, k3, k5. (k5 : c〈0〉) | (k2 : a(X) . b〈0〉) |
[(k1 : a〈0〉) | (k3 : a(X) . c〈0〉); k5]

Since M � N by Lemma 7 M ≈c N , but M 6 ·≈ N and hence M 6 ·≈c N . To
prove this last part, assume that there exists a weak bf barbed bisimulation
R between M and N , i.e. such that (M,N) ∈ R. We have M � M ′, and
we have no N ′ such that N � N ′ nor N ↪→ N ′, thus the reduction cannot
be matched.

For the strong congruences, consider:

M = νk1, k2, a, b. (k1 : a〈0〉) | (k2 : a(X) . b〈0〉)
N = νk1, k2, k, a, b. [(k1 : a〈0〉) | (k2 : a(X) . b〈0〉); k] | k : b〈0〉
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The two configurations have no barbs, and they cannot interact with their
contexts. Thus M ∼c N , since they can both do infinite reductions. However
M 6 ·∼c N , since M can perform a forward step while N cannot perform
forward nor administrative steps.

3. Causality in rhoπ

We now proceed to the analysis of causality in rhoπ. We first show that
reversibility in rhoπ is causally consistent. We then show that the causality
information in rhoπ is at least as fine as the causality information from [21].

3.1. Causal consistency

In order to prove causal consistency, we mostly adapt the terminology
and arguments of [12].

We call transition a triplet of the form M
m�−−→M ′, or M

m −−→M ′, where
M,M ′ are closed consistent configurations, M → M ′, and m is the memory
involved in the reduction M → M ′. We say that a memory m is involved
in a forward reduction M � M ′ if M ≡ E[κ1 : a〈P 〉 | κ2 : a(X) . Q],
M ′ ≡ E[νk. (k : Q{P/X}) | m], and m = [κ1 : a〈P 〉 | κ2 : a(X).Q; k]. In this
case, the transition involving m is denoted by M

m�−−→ M ′. Likewise, we say
that a memory m = [N ; k] is involved in a backward reduction M  M ′ if
M ≡ E[(k : Q) | m], M ′ ≡ E[N ]. In this case, the transition involving m is
denoted by M

m −−→M ′. We let η and its decorated variants range over labels
m� and m . If η = m�, we set η• = m and vice versa. In a transition
M

η−→ N , we say that M is the source of the transition, N is its target, and
η is its label (of the form m� or m , where m is some memory).

Definition 5 (Name-preserving transitions). We say a transition t :

M
η−→ M ′ is name-preserving if M and M ′ are in thread normal form and if

one of the following assumptions holds:

1. M = νũ.
∏
i∈I(κi : ρi) |

∏
j∈J [µj; kj] and M ′ = νũ.

∏
i∈I′(κi : ρi) |∏

j∈J ′ [µj; kj], with J ′ = J ∪{j′}, I ′ ⊂ I and η = m� with m = [µj′ ; kj′ ];

2. M = νũ.
∏
i∈I(κi : ρi) |

∏
j∈J [µj; kj] and M ′ = νũ.

∏
i∈I′(κi : ρi) |∏

j∈J ′ [µj; kj], with J = J ′∪{j′}, I ⊂ I ′ and η = m with m = [µj′ ; kj′ ].

Intuitively, a name-preserving transition keeps track of the set of re-
stricted identifiers of its configurations (and especially the tag of memory
m). In the rest of this section we only consider name-preserving transitions
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and “transition” used in a definition, lemma or theorem, stands for “name-
preserving transition”. Note that working with name-preserving transitions
only is licit because of the determinacy lemma (Lemma 5).

Two transitions are said to be coinitial if they have the same source,
cofinal if they have the same target, composable if the target of one is the
source of the other. A sequence of pairwise composable transitions is called
a trace. We let t and its decorated variants range over transitions, σ and its
decorated variants range over traces. Notions of target, source and compos-
ability extend naturally to traces. We note εM the empty trace with source
M , σ1;σ2 the composition of two composable traces σ1 and σ2. The stamp
λ(m�) of a memory m = [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] is defined to be the
set {κ1, κ2, k}; we set λ(m ) = λ(m�).

Definition 6 (Concurrent transitions). Two coinitial transitions t1 =

M
η1−→ M1 and t2 = M

η2−→ M2 are said to be in conflict if there is a tag
κ ∈ λ(η1) such that κ ∈ λ(η2) or κ is a key k and there is a complex tag with
suffix k in λ(η2) or there is a tag κ ∈ λ(η2) such that κ ∈ λ(η1) or κ is a key
k and there is a complex tag with suffix k in λ(η1). Two coinitial transitions
are concurrent if they are not in conflict.

Remark 8. Note that the stamp of a memory [M ; k] includes its tag k. This is
necessary to take into account possible conflicts between a forward action and a
backward action, as in the following example. The configuration

M = νl, k, h. (k : a〈P 〉) | [N ; k] | (h : a(X) . Q)

has two possible transitions t = M
m −−→ νl, k, h.N | (h : a(X) . Q), where m =

[N ; k], and t′ = M
m′�−−→ νl, k, h. [N ; k] | m′ | l : Q{P /X}, where m′ = [(k : a〈P 〉) |

(h : a(X) . Q); l]. The two transitions t and t′ are in conflict over the use of the
resource k : a〈P 〉.

Consider now the configuration

M = νl, k, h, h1, h2. (〈h1, h̃〉 · k : a〈P 〉) | (〈h2, h̃〉 · k : b〈0〉) | [N ; k] | (h : a(X) . Q)

where h̃ = {h1, h2}. Again we have a conflict, since the backward action involving

memory [N ; k] is in conflict with any forward action by descendants of k, even if

not all of them are involved.

The Loop Lemma ensures that each transition t = M
η−→ N has a reverse

one t• = N
η•−→ M . The above definition of concurrent transitions makes

sense:
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Lemma 9 (Square lemma). If t1 = M
η1−→ M1 and t2 = M

η2−→ M2 are
two coinitial concurrent transitions, then there exist two cofinal transitions
t2/t1 = M1

η2−→ N and t1/t2 = M2
η1−→ N .

Proof. By case analysis on the form of transitions t1 and t2. See Appendix
B.1 for details. �

We are now in a position to show that reversibility in rhoπ is causally
consistent. Following Lévy [27] we define first the notion of causal equivalence
between traces that abstracts away from the order of causally independent
reductions. We define � as the least equivalence relation between traces
closed under composition that obeys the following rules:

t1; t2/t1 � t2; t1/t2 t; t• � εsource(t) t•; t � εtarget(t)

Intuitively � states that if we have two concurrent transitions, then the
two traces obtained by swapping the order of their execution are the same,
and that a trace composed by a transition followed by its inverse is equivalent
to the empty one.

The proof of causal consistency proceeds along the exact same lines as
in [12], with simpler arguments because of the simpler form of our memory
stamps.

Lemma 10 (Rearranging Lemma). Let σ be a trace. There exists for-
ward traces σ′ and σ′′ such that σ � σ′•;σ

′′.

Proof. The proof is in Appendix B.1. �

Lemma 11 (Shortening Lemma). Let σ1, σ2 be coinitial and cofinal tra-
ces, with σ2 forward. Then, there exists a forward trace σ′1 of length at most
that of σ1 such that σ′1 � σ1.

Proof. The proof is in Appendix B.1. �

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces, then
σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. The proof is in Appendix B.1. �
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3.2. Causality in rhoπ and in the causal higher-order π-calculus

From what precedes, it should be clear that the core of the reversibility
machinery in rhoπ is the causality information built during execution. The
question therefore arises of the relationship between this notion of causality
and the one found in several studies on the causal semantics of the π-calculus,
e.g. [21, 28, 29, 30]. In this section we limit ourselves to the study of the
relationship between the causality information used in rhoπ and that used by
Boreale and Sangiorgi in their analysis of causality for the π-calculus [21].

For a meaningful comparison, we first adapt the causality apparatus from
that paper to the asynchronous higher-order π-calculus. We call “causal
higher-order π” (choπ for short) the resulting calculus. Processes of choπ are
exactly the processes in Figure 1. Following [21], causal processes in choπ,
ranged over by A,B, are processes decorated with causality information,
defined by the following grammar:

A ::= K :: A | A | A | νa.A | P

where K ranges over finite sets of keys, i.e. K ⊆fin K. Informally, a causal
process K :: P identifies the set of causes K that gave rise to process P .

We denote by fk(A) the set of free keys of a causal process A.
We define a reduction semantics for choπ (see Appendix B.2 for a com-

parison between this reduction semantics and a labelled transition system
semantics directly adapted from [21]), via a reduction relation that oper-
ates modulo structural congruence. The structural congruence relation ≡ is
the least congruence relation on causal processes that obeys the structural
congruence rules on HOπ processes given in Figure 2 and the rules in Fig-
ure 4. The reduction relation → is the least binary relation on closed causal
processes that is closed under structural congruence and evaluation contexts
defined by the rule:

(C-red) K1 :: a〈P 〉 | K2 :: a(X) . Q→ K1 ∪K2 :: Q{P/X}

Evaluation contexts for causal processes are given by the following grammar:

E ::= • | E | A | A | E | νa.E

An easy induction on the structure of a causal process gives us a normal
form for closed causal processes.
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(E-par) K :: A | B ≡ K :: A | K :: B (E-cau) K1 :: K2 :: A ≡ K1 ∪K2 :: A

(E-res) K :: νa.A ≡ νa.K :: A (E-void) ∅ :: A ≡ A (E-nil) K :: 0 ≡ 0

Figure 4: Structural congruence for choπ

Lemma 12 (Normal form for closed causal processes).
For any closed causal process A we have

A ≡ νc̃.
∏
i∈I
Ki :: τi

where each τi is of the form a〈P 〉 or the form a(X) . P .

As for rhoπ, we can inductively define a function γ that erases the causal-
ity information from a causal process to get a standard HOπ process via the
following clauses:

γ(P ) = P γ(νa.A) = νa. γ(A)

γ(A | B) = γ(A) | γ(B) γ(K :: A) = γ(A)

We can now present the relationship between causal information in causal
processes and in rhoπ configurations. This relationship takes the form of a
bisimulation which we call causal correspondence. Informally, causal cor-
respondence asserts that during execution, a causal process and its “corre-
sponding” rhoπ process ascribe the same causes to the same sub-processes.

We first define causal barbs on causal processes and rhoπ configurations.
For causal processes, a causal barb K :: a corresponds to the ability to

communicate on a channel a due to causes in K. More precisely:

Definition 7 (Causal barbs for causal processes). A choπ causal pro-
cess A has a causal barb K :: a, noted A ↓K::a, if A ≡ νc̃.K :: a〈P 〉 | B, with
a 6∈ c̃, for some c̃, P, B. A choπ causal process A has a causal barb K :: a,
noted A ↓K::a, if A ↓K::a implies A ≡ νc̃.K :: a(X) . P | B, with a 6∈ c̃, for
some c̃, P, B.

For configurations, the notion of causal barb depends on a causality de-
pendence relation between tags.
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Definition 8 (Causal dependence). Let M be a configuration and let TM
be the set of tags occurring in M . The binary relation >M on TM is defined
as the smallest relation satisfying the following clauses:

• k >M 〈hi, h̃〉 · k;

• κ′ >M k if κ′ occurs in µ for some memory [µ; k] that occurs in M .

The causal dependence relation :>M is the reflexive and transitive closure of
>M .

κ :>M κ′ reads “κ is a causal antecedent of κ′ according to M”. We also write
κ <:M κ′ for κ′ :>M κ. When configuration M is clear from the context, we
write κ :> κ′ for κ :>M κ′, and κ <: κ′ for κ <:M κ′. When K is a set of
keys, we write κ <: K if for all h ∈ K, we have κ <: h. We denote by fk(M)
the set of free keys of a configuration M . Note that fk(M) ⊆ fn(M).

Definition 9 (Causal barbs for configurations). A rhoπ configuration
M has a causal barb K :: a where K ⊆ fk(M), noted M ↓K::a, if and
only if M ≡ νũ. (κ : a〈P 〉) | N , with a 6∈ ũ and κ <: K. Likewise, M ↓K::a

where K ∈ fk(M), if and only if M ≡ νũ. (κ : a(X) .P ) | N , with a 6∈ ũ and
κ <: K.

Definition 10 (Causal correspondence). A relation R is a causal cor-
respondence between choπ causal processes and rhoπ configurations if the
following condition holds: if 〈A,M〉 ∈ R, then

• γ(A) ≡ γ(M) and fk(A) = fk(M)

• if A ↓K::α, then M ↓K::α

• if A→ B, then there exists N such that M → N and 〈B,N〉 ∈ R

• if M ↓K::α and (M ↓K′::α =⇒ K ′ ⊆ K), then A ↓K::α

• if M → N , then there exists B such that A→ B and 〈B,N〉 ∈ R

A causal process A and a configuration M are said to be in causal correspon-
dence if there exists a causal correspondence R such that 〈A,M〉 ∈ R.
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Consider now a rhoπ configuration M with the following constraints: M
has no bound key and no memory, and all tags in M are simple keys, i.e. if
M ≡ νũ.

∏
i∈I ki : τi, where each τi is of the form a〈P 〉 or a(X) . P for some

a, P , with ki ∈ K and ũ∩K = ∅. We will call initial such a configuration. An
initial configuration M can easily be seen as a choπ causal process if we apply
to it the syntactic transformation χ that replaces configurations k : P in M ,
with causal processes {k} :: P , i.e. that is defined inductively as follows:

χ(0) = 0 χ(k : P ) = {k} :: P

χ(νa.M) = νa. χ(M) χ(M | N) = χ(M) | χ(N)

We can now state our causal correspondence theorem:

Theorem 2. Let M be an initial configuration. Then χ(M) and M are in
causal correspondence.

Proof. The proof consists in showing that the relation R, defined below, is
a causal correspondence. We first define the predicate corr that relates choπ
closed causal processes with rhoπ closed configurations: we have corr(A,M)
if the following conditions hold:

• A ≡ νc̃.
∏
i∈I Ki :: τi

• M ≡ νc̃, h̃. (
∏
i∈I κi : τi) | N

• for each i ∈ I, τi is of the form ai〈Pi〉 or ai(X) . Pi for some ai, Pi

• for each i∈ I, κi <:M Ki and for all k, κi <:M k =⇒ k ∈ Ki

• γ(N) ≡ 0 and h̃ ⊂ K
The relation R is defined as:

R = {〈U, V 〉 | A→n U,M →n V,M initial, A = χ(M), corr(U, V )}

where A→n U (resp. M →n N) denotes the fact that A reduces to U (resp.
M reduces to N) in n steps.

If M is initial, we have 〈χ(M),M〉 ∈ R by construction. We now check
the different clauses of causal correspondence.

Let 〈U, V 〉 ∈ R. Since corr(U, V ) we can write

U ≡ νc̃.
∏
i∈I
Ki :: τi V ≡ νc̃, h̃.

∏
i∈I
κi : τi | N

with γ(N) = 0 and for all i ∈ I, κi <:M Ki.
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• Since γ(N) = 0, we have γ(U) ≡ νc̃.
∏
i∈I τi ≡ γ(V ). Now by induction

on the length n of the derivations A→n U and M →n V , it is easy to
check that fk(U) = fk(A) and fk(M) = fk(V ). Since A = χ(M), we
have fk(A) = fk(M) and thus fk(U) = fk(V ).

• Assume that U ↓K::α, then we must have U ↓Ki::ai or U ↓Ki::ai for some
i ∈ I. Since corr(U, V ), we must then have V ↓κi:ai or V ↓κi:ai with
κi <:V Ki.

• Assume that U → U ′. Then, we must have j, l ∈ I such that aj = al
and τj = a〈P 〉, τl = a(X) . Q and

U ′ ≡ νc̃. (Kj ∪Kl :: Q{P/X}) |
∏

i∈I\{j,l}
Ki :: τi

for some P,Q. But then we have

V → νc̃, h̃, k. k : Q{P/X} | (
∏

i∈I\{j,l}
κi : τi) | [m; k] | N = V ′

where m = κj : a〈P 〉 | κl : a(X) . Q. We have k <:V ′ κi and k <:V ′ κl,
thus k <:V ′ Kj ∪ Kl. We check that 〈U ′, V ′〉 ∈ R, which amounts
to proving that corr(U ′, V ′). Assume, without loss of generality, that
Q ≡ νẽ.

∏
i∈J τi, with J ∩ I = ∅. Then

U ′ ≡ νc̃, ẽ.
∏

i∈(I∪J)\{j,l}
Ki :: τi

V ′ ≡ νc̃, ẽ, h̃, k, l̃.
∏

i∈(I∪J)\{j,l}
κi : τi | [m; k] | N

where l̃ = {li | i ∈ J} and, for all i ∈ J , Ki = Kj∪Kl, κi = 〈li, l̃〉·k. We
have γ([m; k] | N) ≡ 0, and for all i ∈ J κi <:V ′ k, and thus κi <:V ′ Ki.
Therefore U ′, V ′ have the required form and thus corr(U ′, V ′).

• Assume that V ↓K::α, with K maximal, then we must have V ↓Ki::ai or
V ↓Ki::ai for some i ∈ I and K = Ki. Since corr(U, V ), we must then
have U ↓Ki:ai or V ↓Ki:ai .

• Assume that V → V ′. Then, we must have j, l ∈ I such that aj = al
and τj = a〈P 〉, τl = a(X) . Q,

V ′ ≡ νc̃, h̃, k. k : Q{P/X} | (
∏

i∈I\{j,l}
κi : τi) | [m; k] | N

27



where m = κj : a〈P 〉 | κj : a(X) . Q. Assume that Q ≡ νẽ.
∏
i∈J τi,

with J ∩ I = ∅. Then

V ′ ≡ νc̃, ẽ, h̃, k, l̃.
∏

i∈(I∪J)\{j,l}
κi : τi | [m; k] | N

where l̃ = {li | i ∈ J} and for all i ∈ J , κi = 〈li, l̃〉 · k. Notice that we
have for all i ∈ J κi <:V ′ k and thus κi <:V ′ Kj ∪Kl. Now, we have

U → νc̃. (Kj ∪Kl :: Q{P/X}) |
∏

i∈I\{j,l}
Ki :: τi = U ′

Setting for all i ∈ J Ki = Kj ∪Kl, we obtain

U ′ ≡ νc̃, ẽ.
∏

i∈(I∪J)\{j,l}
Ki :: τi

and thus corr(U ′, V ′), as required.

�

4. Encoding rhoπ in HOπ

This section shows that rhoπ can be encoded in a variant of HOπ, which
we call HOπ+, that allows the use of bi-adic channels, join patterns [31,
32], sub-addressing, abstractions and applications. This particular variant
was chosen for convenience, because it simplifies our encoding. All HOπ+

constructs are well understood in terms of expressive power with respect to
HOπ (see [33, 34] for abstractions in π-calculus).

The encoding presented here is slightly different from the one presented
in [16], in order to obtain a finer correspondence result. Indeed [16] shows
that a rhoπ configuration and its translation are weak barbed bisimilar. Such
result allows us to encode reversibility in an already existing calculus, without
introducing any new ad-hoc primitive. Even if the result is quite surprising,
because of the coarseness of weak barbed bisimulation (as emerged in Sec-
tion 2.5), it does not establish a strong enough correspondence between rhoπ
and its encoding. Therefore, here we base our results on a stronger equiv-
alence, weak bf barbed bisimulation, able to distinguish forward reductions
from backward ones.
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P,Q ::= 0 | X | νu. P | (P | Q) | u〈F, v〉 | J . P | (F V )

F ::= (u)P | (X)P | (u)F | (X)F

V ::= u | F

J ::= u(X, v) | u(X, \v) | J | J
u, v ∈ I

Figure 5: Syntax of HOπ+

The remainder of the section is organized as follows: first we introduce
the syntax and the semantics of HOπ+, then we introduce our encoding and
show that a rhoπ consistent configuration M and its translation in HOπ+ are
weak bf barbed bisimilar. To ease the reading of the section, some proofs
and auxiliary results are reported in Appendix C.

4.1. HOπ+

The syntax of HOπ+ is given in Figure 5. Channels in HOπ+ are bi-abic
in the sense that they carry pairs of the form F, v, that is an abstraction and
a name; a trigger can receive a message on a given channel, or on a given
channel provided that the received message carries some given name (sub-
addressing). Actually triggers use Join patterns, i.e. they allow to specify
a set of messages that are read atomically. Join patterns are linear. HOπ+

supports abstractions over names (u)P and over process variables (X)P , and
applications (P V ), where a value V can be a name or an abstraction. We
take the set of names of HOπ+ to be the set I∪{?} where I is the set of rhoπ
identifiers (I = N ∪K). Thus both rhoπ names and rhoπ keys are names in
HOπ+. The set of (process) variables of HOπ+ is taken to coincide with the
set V of variables of rhoπ. Moreover we let B to range over processes P and
functions F .

The structural congruence for HOπ+, denoted by ≡, obeys the same rules
as those of rhoπ processes (see Figure 2), except for the rules E.TagN and
E.TagP, which are specific to rhoπ. Evaluation contexts in HOπ+, as in
HOπ, are given by the following grammar:

E ::= · | (P | E) | νu.E

The reduction relation for HOπ+, also denoted by →, is defined as the least
relation on closed processes closed under HOπ+ structural congruence and
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(Red)
match(Fi, Xi) = θ′i match(vi, ψi) = θi

n∏
i=1

ui〈Fi, vi〉 | (
n∏
i=1

ui(Xi, ψi) . P )→ Pθ′1 . . . θ
′
nθ1 . . . θn

(App)
match(V, ψ) = θ

((ψ)B V )→ Bθ

Figure 6: Reduction rules for HOπ+

HOπ+ evaluation contexts that satisfies the rules in Figure 6, where ψ is
either a name v, a process variable X or an escaped name \u. The function
match in Figure 6 is the partial function which is defined in the cases given
by the clauses below, and undefined otherwise:

match(u, v) = {u/v} match(u, \u) = {u/u} match(F,X) = {F/X}

Note that an escaped name \u will match just with name u. Rule Red is
a generalization (in the sense of join patterns) of the usual communication
rule for HOπ. If there are enough messages (left-hand side of the reduction
in the conclusion) satisfying a certain input process, then they are consumed
at once and the continuation of the input process is triggered with the nec-
essary substitutions. Rule App mimics the well known β-reduction of the
λ-calculus [35]. We use ⇒ to denote the reflexive and transitive closure of
→.

Remark 9. Even if HOπ+ allows using arbitrary join patterns, our encoding
will use just binary join patterns.

Conventions. In writing HOπ+ terms, u〈v〉 abbreviates u〈(X)0, v〉, u abbre-
viates u〈(X)0, ?〉 and u〈F 〉 abbreviates u〈F, ?〉. Likewise, a(u) . P abbre-
viates a(X, u) . P , where X 6∈ fv(P ), a . P abbreviates a(X, ?) . P , where
X 6∈ fv(P ), and a(X) . P abbreviates a(X, ?) . P . We adopt the usual con-
ventions for writing applications and abstractions: (F V1 . . . Vn) stands for
(((F V1) . . .) Vn), and (X1 . . . Xn)F stands for (X1) . . . (Xn)F . When there
is no potential ambiguity, we often write F V for (F V ). When defining
HOπ+ processes, we freely use recursive definitions for these can be encoded
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using e.g. the Turing fixed point combinator Θ defined as Θ = (A A), where
A = (X F )(F (X X F )) (cf. [35, p. 132]).

In the rest of the paper we denote by PHOπ+ the set of HOπ+ processes,
by Crhoπ the set of rhoπ configurations and by Prhoπ the set of rhoπ processes.

4.2. rhoπ encoding

The encoding L·M : Prhoπ → PHOπ+ of processes of rhoπ in HOπ+ is defined
inductively in Figure 7. It extends to an encoding L·M : Crhoπ → PHOπ+ of
configurations of rhoπ in HOπ+ as given in Figure 8 (the encoding for 0
in Figure 8 is the encoding for the null configuration). The two main ideas
behind the encoding are given now. First, a tagged process l : P is interpreted
as a process equipped with a special channel l (sometimes we will refer to it
as its key channel) on which to report that it has successfully rolled back.
This intuition leads to the encoding of a rhoπ process as an abstraction which
takes this reporting channel l (its own key) as a parameter. Second, each
rhoπ process translation generates also the process killer, that is a process
in charge of rolling it back. We have three kinds of such processes: KillM,
KillT and KillP representing respectively the killer of a message, of a trigger
and of a parallel composition of processes.

Let us now describe the encoding of configurations given in Figure 8. A
null configuration 0 is encoded as the null HOπ+ process 0. The parallel
and the restriction operator are mapped to the corresponding operators of
HOπ+. There are two ways of encoding a tagged process κ : P depending on
the kind of the tag. If the tag is a key, then the translation is the application
of the encoding of P to the name k, that is LP Mk. If the tag is complex, of
the form 〈hi, h̃〉 · k, then the translation is the application of the translation
of P to the name hi, in parallel with the killer of the complex tag. Since we
want to generate at once a tree of killer processes able to revert an entire
parallel composition made of n elements, with n being the size of h̃, we opt
for the first element of the sequence to generate it. Said otherwise, a killer
of a complex tag 〈hi, h̃〉 · k is the null process if i 6= 1, otherwise it is a
parallel composition of killer processes able to rollback all the branches in
which the key k has been split. Hence, the killer of the complex tag 〈h1, h̃〉 ·k
is in charge of mimicking the behavior of the rhoπ structural rule E.TagP
(see Figure 2 in Section 2.3) used (from right to left) to build back a tagged
parallel composition from a parallel composition of related threads. The
encoding of a memory will be explained later.
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L0M = Nil LXM = X

La〈P 〉M = (l)(Msg a LP M l) Lνa. P M = (l)νa. LP M l
LP | QM = (l)(Par LP M LQM l) if P,Q 6≡ 0 LP | 0M = LP M
La(X) . P M = (l)(Trig ((X c)c〈LP M〉) a l) L0 | P M = LP M

Nil = (l)(l〈Nil〉 | (Rew l))
Msg = (a X l)a〈X, l〉 | (KillM a l)
KillM = (a l)(a(X, \l) . l〈(h)Msg aX h〉 | Rew l)
Par = (X Y l)νh, k.X h | Y k | (KillP h k l)
KillP = (h k l)(h(W ) | k(Z) . l〈(l)ParW Z l〉 | Rew l)
Trig = (Y a l)νt. t | (a(X, h) | t .f νk, c. (Y X c) | (c(Z) . (Z k)) |

(Mem Y a X h k l)) | (KillT Y t l a)

KillT = (Y t l a)(t . l〈(h)TrigY a h〉 | Rew l)
Mem = ( Y a X h k l)k(Z) .b (Msg a X h) | (Trig Y a l)

Rew = (l)(l(Z) . Z l)

Figure 7: Encoding rhoπ processes

Before commenting the encoding of rhoπ processes in more detail, let us
introduce the Rew process, and the idea behind it. Killer processes allow a
process to rollback, but we have to give also the possibility to undo a rollback
decision. This is due to the fact that at any moment each process should
be given both the possibility to go forward and to go backward. Assume
this is not the case, and consider a parallel composition of processes. If one
branch decides (spontaneously) to rollback (by interacting with its killer pro-
cess) while the other branches do not, then the rolled-back process would be
stuck unless we add the possibility to undo its rollback decision. This is the
purpose of a process of the form (Rew l), whose behavior is to read an ab-
straction carried in a message on the key channel l and then to re-instantiate
the abstraction with the same key. Naturally this makes the encoding diver-
gent, but divergence is quite natural in a reversible calculus. In fact, each
rhoπ configuration which is not stuck can diverge by continuously doing and
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L0M = 0

LM | NM = LMM | LNM
Lνu.MM = νu. LMM
Lk : P M = (LP M k)

L〈hi, h̃〉 · k : P M = (LP M hi) | Kill〈hi,h̃〉·k
L[κ1 : a〈P 〉 | κ2 : a(X) . Q; k]M = (Mem ((X c)c〈LQM〉) a LP M Lκ1M k Lκ2M) |

Killκ1 | Killκ2
LkM = k

L〈hi, h̃〉 · kM = hi

Kill〈h1,h̃〉·k = νl̃. (KillP h1 l1 k) |
n−2∏
i=2

(KillP hi li li−1) | (KillP hn−1 hn ln−2)

Killκ = 0 otherwise

Figure 8: Encoding rhoπ configurations

undoing the same communication. Thus the issue is not particularly relevant.
Let us now comment on the encoding of rhoπ processes in Figure 7. As

we already said, all the translations of rhoπ processes are abstractions over
a channel, and this channel is the tag of the process (or part of it in the
case of a complex tag). The zero process 0 is translated as a message on
the abstracted channel along with a Rew process. This translation, as well as
translations of other processes, is by itself diverging. Consider the encoding
of the rhoπ process l : 0:

l〈Nil〉 | (Rew l)→ l〈Nil〉 | l(Z) . (Z l)→ (Nil l)→ l〈Nil〉 | (Rew l)

Divergence here could be avoided by removing the Rew process from the trans-
lation of 0, and considering it as just a message on its abstracted channel.
That is:

L0M = (l)l〈Nil〉

We stick however to the first translation to preserve the symmetry with the
translations of the other primitive processes (messages and triggers), since

33



this simplifies the statement of some invariants of our encoding, and since,
as already said, divergence here is not a relevant issue.

The translation of a message k : a〈P 〉 after a few applications becomes a
process of the form:

a〈LP M, k〉 | (KillM a k)

consisting in a message on channel a carrying a pair (here we can see why we
use bi-adic channels) in parallel with its killer process. The message carries
the translation of the original message content P along with the abstracted
channel. The abstracted channel k is needed to ensure that the message
will be rolled back only by its own KillM. Indeed, the process (KillM a k)
consumes a message on the channel a only if it carries the name k. This is
why the KillM process is an abstraction over two channels, and explains the
need of sub-addressing.

The translation of a parallel composition is quite straightforward: two
new key channels are created and given to the translations of the two sub-
processes. A KillP process will await on these two channels the rollback of
the two sub-processes, in order to notify its rollback by building back the
entire parallel process into its key channel. This is why we use binary join
patterns (the translation of triggers uses join patterns too).

The translation of a trigger l : a(X) . Q is a process of the form:

νt. t | (a(X, h) | t .f νk, c. (Y X c) | (c(Z) . (Z k)) | (Mem Y a X h k l)) |
(KillT Y t l a)

with Y = ((X c)c〈LQM〉). Here, a token t is used as a lock. In this way either
the trigger itself or its killer can acquire this lock and then execute by letting
the other process blocked forever. Since all the messages on channel a ∈ N
are translated into bi-adic messages, triggers are translated in order to read
such messages. The continuation of a translated trigger mimics exactly the
rhoπ forward rule: it creates a new key channel k, it substitutes the process
variable X with the message content (which is an abstraction) in the trigger
continuation. This substitution is mimicked by the application (Y X c). For
example, assume that after a communication we obtain the following process
k : Q{P/X} where Q is the body of the trigger. Then this substitution is
mimicked in our encoding by the following application:

((X d)d〈LQM〉) LP M c→ c〈LQM{LP M/X}〉
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The trigger continuation, resulting from the substitution, is then applied to
the new key channel as follows:

c〈LQM{LP M/X}〉 | c(Z) . Z k → (LQM{LP M/X})k

obtaining the process corresponding to the translation of k : Q{P/X}. A
memory process Mem is also created. The Mem process mimics exactly the
backward rule of rhoπ: it awaits the rollback of its continuation (a message
on the key channel k that the memory bears) and then it releases again the
translations of the original rhoπ message and trigger who gave rise to the
communication (and to the memory).

The next sections are devoted to prove that the encoding is faithful,
i.e. that it preserves the semantics of the original rhoπ configuration. More
precisely, we will prove the following theorem.

Theorem 3 (Faithfulness). For any closed rhoπ process P , νk. k : P
·≈

Lνk. k : P M.

Before proving the theorem we give a brief outline of our proof strategy.

Proof outline. Since the relation
·≈ (see Definition 4) distinguishes three

kinds of reductions, forward, backward and administrative, we first divide
all the reductions induced by the encoding into these three kinds. Then
we give a notion of normal form on HOπ+ processes, whose intent is to
consider processes equivalent up to applications in active contexts. Then
we characterize the garbage processes generated by the encoding, because of
the machinery added to simulate reversibility, with the function addG, and
we define a new congruence ≡Ex to ensure that translations of structurally
congruent rhoπ configurations are structurally congruent. We then study
the interplay between reduction in normal form and structural congruence
≡Ex, and between reduction in normal form and administrative steps. We
then show that a rhoπ reduction can be matched by the encoding, and that
≡Ex is itself a weak bf barbed bisimulation. We also prove that the garbage
produced by the encoding (characterized by addG) does not induce unwanted
behaviors. That is, if P is a process derived from the encoding, then P and
(any process in) addG(P ) are weakly bf barbed bisimilar. We then show that
all the reductions of the encoding are matched by rhoπ and finally compose
all the obtained results to prove our faithfulness theorem.
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4.3. Auxiliary relations

This section provides four main tools needed for proving the faithfulness
of the encoding: (i) the reduction system giving to the translation a backward
and forward structure, (ii) a characterization of the garbage added by the
machinery in the translation, (iii) a normal form for HOπ+ processes, and
(iv) a congruence on HOπ+ mimicking the one on rhoπ.

To give to the reduction system a backward and forward structure we
partition the reductions of the translation into forward, backward and ad-
ministrative. The basic idea is that administrative reductions can be used
both as forward and as backward. Remember that in HOπ+ we have two
kinds of reductions: applications and communications. All applications are
administrative reductions. Communications can be either administrative,
forward or backward according to the involved trigger. To distinguish the
different triggers, we decorate them with labels. This will not change the
operational semantics of the calculus.

A labelled trigger is a trigger of the form J .bP or J .f P . Triggers like the
first one will be referred to as backward while triggers like the second one will
be referred to as forward. From now on we will denote with R? the reflexive
closure of a relation R, and with R∗ its reflexive and transitive closure. We
now define the two reduction relations � and  on HOπ+ processes.

Definition 11 (Forward and backward HOπ+ reductions). Let � be
a reduction involving a forward trigger and  a reduction involving a back-
ward trigger. Moreover let ↪→ be the reduction relation composed by ap-
plications and communications involving non labelled triggers. We define
⇒f=↪→∗�↪→∗ and ⇒b=↪→∗ ↪→∗.

Definition 12 (Administrative communications). Let 7→ be the reduc-
tion relation involving communications due to non labelled triggers.

All the applications in the encoding have the form below.

Definition 13 (Applications in the encoding). Let ⇁ be the least eval-
uation closed relation including the pairs: {〈(h)P v, P{v/h}〉 | P ∈ P} ∪
{(X)P LQM , P{LQM/X} | P, LQM ∈ P}.

From the definitions above it is clear that 7→⊆↪→.
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One cannot simply prove that given a (consistent) configuration M , if
M � M ′ then LMM ⇒f LM ′M, and similarly for backward reductions. In
fact, this does not hold, since the translated processes produce some garbage
(in terms of additional processes) due to the execution, and since structural
congruent rhoπ processes do not always have structural congruent transla-
tions. Thus we need some auxiliary machinery.

First, we introduce a notion of well formed process, a HOπ+ process
obtained by letting a process of the form LRMl compute.

Definition 14 (Well formed process). A HOπ+ process P is well formed
if there is a rhoπ process R such that LRMl⇒ P .

Then, we characterize the garbage described above by defining a function
addG(P ) allowing to add arbitrary garbage to a HOπ+ process P .

Definition 15. Let P be a HOπ+ process such that P ≡ νã. P ′. Then,
addG(P ) = {PG | PG ≡ νã. (P ′ | νb̃. Q)}, where Q is a parallel composition
(possibly empty) of processes of one of the forms below, or obtained from
them by applications:

Rew l KillM a l

νc, t. (KillT ((X)c〈LP M〉) t l a) νt. (a(X, k)|t . S)

The last two closures of the addG function characterize the garbage processes
produced by the consumption of the token t in the translation of the trigger
process. Both processes are blocked (but for an application of the first one),
since the name t is restricted and the token t has been consumed. To better
understand how the token t is used and how garbage can be created, let us
consider the following reductions, where a trigger begins a rollback and then
undoes it, producing some garbage:

Lk : a(X) . 0M = La(X) . 0Mk = ((h)Trig Y a h) k → (Trig Y a k)⇒
νt. t | (a(X, \h)|t . Q) | (t . k〈(h)Trig Y a h〉 | (Rew k))→
νt. (a(X, \h)|t . Q) | k〈(h)Trig Y a h〉 | (Rew k)→
νt. (a(X, \h)|t . Q) | k〈(h)Trig Y a h〉 | (k(Z) . Z k)→
νt. (a(X, \h)|t . Q) | ((h)Trig Y a h) k ∈ addG(Lk : a(X) . 0M)
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where Q = νl, c. (Y X c) | (c(Z) . Z l) | (Mem Y a X h l k) and
Y = (X c)c〈L0M〉. The token allows us to avoid to use primitives such as
passivation (see [36, 37]) or mixed choice to kill input processes.

We now define a notion of normal form for processes, corresponding to
processes where all the enabled applications have been executed. Thus, a
process in normal form has no enabled applications.

Definition 16 (Normal form). Let nf(.) be a function from PHOπ+ to
PHOπ+ defined as follows:

nf(νu. P ) = νu. nf(P ) nf(P | Q) = nf(P ) | nf(Q)

nf(a〈P 〉) = a〈P 〉 nf(a(X) . P ) = a(X) . P

nf((X)P Q) = nf(P{Q/X}) nf((h)P l) = nf(P{l/h})
nf(0) = 0

Since reduction to normal form applies only applications in active context,
the reduction to normal form is the identity on triggers and messages.

We extend the congruence ≡ on HOπ+ processes to match the effect
of rhoπ structural congruence after the translation, in order to show that
congruent rhoπ processes are translated into congruent HOπ+ processes.

Definition 17. Let ≡Ax be the smallest congruence on HOπ+ processes sat-
isfying the rules for structural congruence ≡ plus the axioms below.

(Ax.C) KillP l h k ≡Ax KillP h l k

(Ax.A)
νl′. (KillP l1 l2 l

′) | (KillP l′ l3 l) ≡Ax
νl′. (KillP l1 l

′ l) | (KillP l2 l3 l′)

(Ax.P)
P,Q closed

l1〈LP M〉 | l2〈LQM〉 | KillP l1 l2 l ≡Ax l〈(h)Par LP M LQM h〉 | Rew l

(Ax.Unfold) LP Ml ≡Ax νũ. l〈LQM〉 | (Rew l) with P ≡ νũ. Q

(Ax.Adm) νc. (c〈LP M〉 | c(Z) . (Z k)) ≡Ax LP Mk

Definition 18. Let≡Ex be the smallest congruence including for each axiom
L ≡Ax R in ≡Ax both L ≡Ex R and nf(L) ≡Ex nf(R).
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Axioms Ax.C and Ax.A extend respectively the commutativity and asso-
ciativity of the parallel composition operator to the translation. Axioms
Ax.P and Ax.Adm capture the effect of some auxiliary reductions. Axiom
Ax.Unfold captures the property of the translation of rhoπ processes of
being able to rollback by sending their own code on their key channel.

We show now a few properties of the relations defined above.
The congruence ≡Ex captures the effect of rhoπ structural congruence ≡

on normal form of translations.

Lemma 13. Let M , N be closed consistent configurations. Then M ≡ N
implies nf(LMM) ≡Ex nf(LNM).

Proof. By induction on the derivation of M ≡ N . The proof is in Appendix
C.1. �

Structural congruence ≡Ex is preserved by normal form.

Lemma 14. If P and Q are well formed and P ≡Ex Q then nf(P ) ≡Ex
nf(Q).

Proof. See Appendix C.1. �

The congruence ≡Ex is not influenced by garbage introduced by function
addG(•).

Lemma 15. If nf(P ) ≡Ex nf(P ′) then for each Q ∈ addG(P ) there exists
Q′ ∈ addG(P ′) such that nf(Q) ≡Ex nf(Q′).

Proof. See Appendix C.1. �

We now prove two invariants on the form of well formed HOπ+ processes,
useful to study properties of the function addG(•).

If a translation contains a message on a key channel l, then the process
contains also the term Rew l.

Lemma 16 (Rew Invariant). If P ′ is well formed and P ′ ≡ C[l〈R〉] with
l ∈ K for some n-ary context C then P ′ ≡ C′[l〈R〉 | S] with S = Rew l or
S = l(Z) . Z l for some n-ary context C′.

Proof. See Appendix C.1.
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If a process contains a message on a channel a ∈ N , then the process
contains also a corresponding KillM process.

Lemma 17 (KillM Invariant). If P ′ is well formed and P ′ ≡ C[a〈LP M, l〉]
with a ∈ N for some n-ary context C then P ′ ≡ C′[a〈LP M, l〉 | S] with S =
(KillM a l) or S = (a(X, \l).l〈(h)Msg a X h〉 | Rew l) for some n-ary context
C′.

Proof. See Appendix C.1.

Function addG(•) does not add new behaviors.

Lemma 18. Let P be a well formed HOπ+ process and Q ∈ addG(P ). If
nf(Q) ↪→ Q′ then there exists P ′ such that P ↪→∗ P ′ with Q′ ∈ addG(P ′).

Proof. See Appendix C.1. �

Lemma 19. Let P be a well formed HOπ+ process and Q ∈ addG(P ). If
nf(Q)� Q′ then there exists P ′ such that P ⇁∗� P ′ with Q′ ∈ addG(P ′).

Proof. It is easy to see from the definition of function addG that the added
processes cannot enable � reductions. Hence the reduction � can be done
by nf(P ), and it is sufficient to chose P ′ such that P ↪→∗ nf(P )� P ′. �

Lemma 20. Let P be a well formed HOπ+ process and Q ∈ addG(P ). If
nf(Q) Q′ then there exists P ′ such that P ⇁∗ P ′ with Q′ ∈ addG(P ′).

Proof. Similar to the one of Lemma 19 �

4.4. Operational correspondance

This section proves a few results on the behavior of the translation, lead-
ing to the operational correspondance result at the end of the section.

We start by proving a few basic properties of the translation.
The encoding is well-behaved w.r.t. substitutions:

Lemma 21 (Substitution). For each rhoπ process P,Q: LP M{LQM/X} =
LP{Q/X}M.

Proof. By induction on the structure of P . �
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Names corresponding to keys in K are always bound.

Lemma 22. If Lνk. k : P M⇒ P ′ then fn(P ′) ∩ K = ∅.

Proof. By induction on the number of steps in ⇒. �

We now prove that, essentially, a translation of a rhoπ process P can
always rollback, and the result of the rollback is a message on the process
key channel. The rollback is not perfect, in the sense that the content of
the message is not exactly equal to the translation of the original process P .
This is due to the fact that, once a name has been created, there is no way to
reverse its creation. However we can prove that the content of the message,
wrapped by restrictions on extruded names, is structural congruent to the
original process P , plus some garbage. Formally we have:

Lemma 23. For each closed rhoπ process P , LP Mk ↪→∗ νũ. k〈LQM〉 | Rew k | S
with k 6∈ ũ, S =

∏
Ri, Ri = Rew ki or Ri = νt. (a(X, h)|t.R) and P ≡ νũ. Q.

Proof. See Appendix C.2. �

The encoding never generates two messages on the same key channel,
never generates two KillP processes waiting for the same rollbacks or never
generates a KillP and a Mem waiting for the same rollback signal.

Lemma 24. For any rhoπ process R, if LRMl⇒ P then the following condi-
tions hold:

1. P 6≡ C[l1〈P1〉 | l1〈P2〉], with l1 ∈ K.

2. P 6≡ C[(KillP l1 l2 l3) | (KillP l4 l5 l6)], with l1, l2, l3, l4, l5, l6 ∈ K and
{l1, l2} ∩ {l4, l5} 6= ∅ or l3 = l6.

3. P 6≡ C[(KillP l1 l2 l) | (Mem P a Q h l3 k)], with l, l1, l2, l3, h, k ∈ K
and l1 = l3 or l2 = l3.

Proof. See Appendix C.2.

Processes congruent according to ≡Ex have the same weak reductions (up
to ≡Ex).

Lemma 25. If nf(P1) ≡Ex nf(P2) and nf(P1) → P ′1 then nf(P2) ⇒ nf(P ′2)
with nf(P ′′1 ) ≡Ex nf(P ′2) and P ′′1 ∈ addG(P ′1). Furthermore, if → is forward
then ⇒ is ⇒f , if → is backward then ⇒ is ⇒b, if → is administrative then
⇒ is ↪→∗.
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Proof. By case analysis on the used axiom P ≡Ex Q and on the structure
of nf(P1). The proof is in Appendix C.2. �

Two applications can always be swapped.

Lemma 26. For each HOπ+ process P , if P ⇁ P1 and P ⇁ P2 then there
is a HOπ+ process P3 such that P2 ⇁ P3 and P1 ⇁ P3.

More in general, applications can be swapped with arbitrary reductions,
but they can disappear becuase of the swap.

Reductions and applications commute.

Lemma 27. If P ⇒ P ′ and P ⇁∗ P ′′ then P ′ ⇁∗ Q and P ′′ ⇒ Q.

Proof. By induction on the length of ⇒ and ⇁∗, showing that if P →? P
′

and P ⇁? P
′′ then P ′′ →? Q and P ′ ⇁? Q. �

We now prove a form of Loop Lemma for auxiliary reductions. Hence, if
P is a translation and P ↪→∗ Q, Q can somehow go back to P . Reversibility
of this computation is however not perfect, but it holds up to garbage and
structural congruence ≡Ex.

Lemma 28. For any consistent configuration M , if LMM⇒ P and P ↪→∗ Q
then there exist Q′ and P ′ such that Q ↪→∗ Q′, P ′ ∈ addG(P ) with nf(P ′) ≡Ex
nf(Q′).

Proof. See Appendix C.2. �

The next theorem proves a form of behavioral correctness for our encod-
ing, showing that the encoding of a process can mimic the process reductions.

Theorem 4. For each consistent rhoπ configuration M , if M � N then
nf(LMM) ⇒f P and if M  N then nf(LMM) ⇒b P , and there exists P ′ ∈
addG(LNM) such that nf(P ) ≡Ex nf(P ′).

Proof. By induction on the derivation of M → N , with a case analysis on
the last rule applied.
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R.Fw: we have that

M = κ1 : a〈P 〉 | κ2 : a(X) . Q�

νk. (Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q ; k]) = N

Moreover we have that LMM = Lκ1 : a〈P 〉M | Lκ2 : a(X) . QM. We
distinguish four cases, depending on whether κ1, κ2 are complex or
not. Let us consider the case κ1 = k1 and κ2 = k2. Assume Y =
((X c)c〈LQM〉). Then:

nf(LMM) = nf((l)(Msg a LP M l)k1) | nf((l)(Trig Y a l)k2) =

νt. a〈LP M, k1〉 | nf(KillM a k1) | t |
(t|a(X, h) .f νk, c. (Y X c) | c(Z) . Z k | (Mem Y a X h k k2)) |
nf(KillT Y t k1 a)�

νc, k, t. nf(KillM a k1) | (Y LP M c) | (c(Z) . Z k) | (Mem Y a X k1 k k2) |
nf(KillT Y t k2 a) ⇁

νc, k, t. nf(KillM a k1) | c〈LQM{LP M/X}〉 | (c(Z) . Z k) |
(Mem Y a X k1 k k2) | nf(KillT Y t k2 a) ↪→

νc, k, t. nf(KillM a k1) | (LQM{LP M/X} k) | (Mem Y a X k1 k k2) |
nf(KillT Y t k2 a) = R

By using Lemma 21 we have that LQM{LP M/X} = LQ{P/X}M, thus:

R = νc, k, t. nf(KillM a k1) | (LQ{P/X}M k) |
(Mem Y a X k1 k k2) | nf(KillT Y t k2 a)

We can conclude by noting that:

nf(R) = nf(KillM a k1) | nf(LNM) | νc, t. nf(KillT Y t k2 a)

Since P ′ = (KillM a k1) | LNM | νc, t. (KillT Y t k2 a) ∈ addG(LNM)
and nf(R) ≡Ex nf(P ′) the thesis follows.

Let us consider the case in which κ1 = 〈hi, h̃〉 · k. We have that:

LMM = (l)(Msg a LP M l)hi | Kill〈hi,h̃〉·k | (l)(Trig Y a l)k2
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Using the same reductions as above we have that:

nf(LMM)⇒f

νc, k, t. nf(KillM a k1) | nf(Kill〈hi,h̃〉·k) | LQM{LP M/X} k |
(Mem Y a X hi k k2) | nf(KillT Y t k2 a) = R

and by using Lemma 21 we have that

R = νc, k, t. nf(KillM a hi) | nf(Kill〈hi,h̃〉·k) | (LQ{
LP M/X}M k) |

(Mem Y a X hi k k2) | nf(KillT Y t k2 a)

We can conclude by noting that P ′ = (KillM a hi) | Kill〈hi,h̃〉·k |
(LQ{LP M/X}M k) | (Mem Y a X hi k k2) | νc, t. (KillT Y t k2 a) ∈
addG(LNM) and nf(R) ≡Ex nf(P ′).

The two other cases are similar.

R.Bw: we have that M = k : R | [κ1 : a〈P 〉 | κ2 : a(X) . Q ; k]  κ1 :
a〈P 〉 | κ2 : a(X) . Q = N . Assume that Y = ((X c)c〈LQM〉). Then, by
definition of nf(•) we have:

nf(LMM) =

nf(LRMk) | nf(Mem Y a LP M Lκ1M k Lκ2M) | nf(Killκ1) | nf(Killκ2) =

nf(LRMk) | (k(Z) . (Msg a LP M Lκ1M) | (Trig Y a Lκ2M)) | Killκ1 | Killκ2
From Lemma 23 we know that LRMk ↪→∗ νũ. k〈LR′M〉 | nf(S) | Rew k
with S a parallel composition of garbage processes and R ≡ νũ. R′.
Thanks to Lemma 27 we have nf(LRMk) ↪→∗ νũ. k〈LR′M〉 | nf(S) |
nf(Rew k). Hence:

nf(LRMk) | (k(Z) . (Msg a LP M Lκ1M) | (Trig Y a Lκ2M)) |
nf(Killκ1) | nf(Killκ2) ↪→∗

νũ. k〈LR′M〉 | nf(S) | nf(Rew k) | (k(Z) .b (Msg a LP M Lκ1M) |
(Trig Y a Lκ2M)) | nf(Killκ1) | nf(Killκ2) 

νũ. (Msg a LP M Lκ1M) | (Trig Y a Lκ2M) | nf(Killκ1) | nf(Killκ2) |
nf(S) | nf(Rew k) = R

We have that P ′ = νũ. (Msg a LP M Lκ1M) | (Trig Y a Lκ2M) | Killκ1 |
Killκ2 | S | Rew k ∈ addG(Lκ1 : a〈P 〉 | κ2 : a(X) . QM) and nf(R) ≡Ex
nf(P ′) as desired.
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addG

Figure 9: The encoding respects ≡Ex (numbers refer to Lemmas).

Equiv: we have two cases, one for forward reductions and one for backward
reductions. We consider the first one, the second being analogous.
We have that M � N with hypothesis M ≡ M ′, M ′ � N ′ and
N ′ ≡ N . Figure 9 (numbers refers to the used lemmas, ind means
that inductive hypothesis is applied and addG that garbage is added)
shows the proof schema we use. By inductive hypothesis we have that
nf(LM ′M) ⇒f P with nf(P ) ≡Ex nf(R′) and R′ ∈ addG(LN ′M). By
Lemma 13, we have that if M ≡M ′ then nf(LMM) ≡Ex nf(LM ′M), and
by Lemma 25 we have that if nf(LM ′M) ⇒f nf(P ) then nf(LMM) ⇒f

nf(Q′) with Q′ ∈ addG(Q) and with nf(Q) ≡Ex nf(P ). By inductive
hypothesis we have that nf(P ) ≡Ex nf(R′), but since by hypothesis
we had N ′ ≡ N by Lemma 13 we have that nf(LN ′M) ≡Ex nf(LNM)
and by Lemma 15 we have that there exists R ∈ addG(LNM) such that
nf(R′) ≡Ex nf(R). Thanks to Lemma 15 there exists P ′ ∈ addG(P )
with nf(Q′) ≡Ex nf(P ′), and R′′′ ∈ addG(R′) = addG(LN ′M) and R′′ ∈
addG(R) = addG(LNM) such that nf(P ′) ≡Ex nf(R′′′) ≡Ex nf(R′′). We
can conclude by saying that nf(LMM) ⇒f Q′ and that nf(Q′) ≡Ex
nf(R′′) with R′′ ∈ addG(LNM), as desired.

Ctx: by simply induction on the structure of the context, noting that the
translation of active contexts is isomorphic. �
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4.5. Observations

In this section we study the properties of the encoding from an observa-
tional point of view.

Barbs are preserved by administrative steps.

Lemma 29. If M ↓a and LMM ↪→∗ Q then Q ↪→∗↓a.

Proof. See Appendix C.3. �

Weak barbs of encoded processes are originated by barbs of the original
process.

Lemma 30. If LMM ↪→∗↓a then M ↓a.

Proof. See Appendix C.3. �

The function addG does not remove barbs, that is:

Lemma 31. If P ↪→∗↓a then addG(P ) ↪→∗↓a.

Proof. Since P ↪→∗ P ′ ↓a, we can express P as E[0] and P ′ as E′[0] with
E[0] ↪→∗ E′[0] ↓a. Let addG(P ) = E[R], we still have that E[R] ↪→∗ E′[R] ↓a,
as desired. �

Axioms in ≡ are correct with respect to weak bf bisimulation.

Lemma 32. The relation R = {(P,Q) | P ≡ Q} where P,Q are HOπ+

processes is a weak bf barbed bisimulation.

Proof. By induction on the length of the derivation of P ≡ Q, with a case
analysis on the last applied axiom. All the cases are easy. �

The same holds for axioms in ≡Ex.

Proposition 1. The relation R = {(P,Q) | P ≡Ex Q} where P,Q are
HOπ+ processes is a weak bf barbed bisimulation.

Proof. See Appendix C.3. �
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4.6. Final proof

Before proving the theorem we show two results ensuring completeness
of forward and backward transitions, respectively.

The first one relies on the result below.

Lemma 33. If nf(LMM) � P then M � M ′ with P ↪→∗ P ′ and nf(P ′) ≡
nf(Q′) and Q′ ∈ addG(LM ′M).

Proof. See Appendix C.4. �

Lemma 34. Let M be a rhoπ configuration. If LMM ↪→∗ Q� Q′ then there
are M ′, Q′′ and Q′′′ such that M �M ′, Q′ ↪→∗ Q′′ and nf(Q′′) ≡Ex nf(Q′′′)
and Q′′′ ∈ addG(LM ′M).

Proof. Assume LMM ↪→∗ Q � Q′. By definition of normal form using
Lemma 27 we have that LMM ↪→∗ Q implies that nf(LMM) ↪→∗ Q1 with
Q ⇁∗ Q1. Moreover we have that Q1 ⇁∗ nf(Q1) and that nf(LMM) ↪→∗
nf(Q1). Since Q � Q′ and Q ⇁∗ nf(Q1) by Lemma 27 we have that also
nf(Q1)� Q2 for some Q2 such that Q′ ⇁∗ Q2. In order to apply Lemma 33
we have to show that also nf(LMM)� P for some P . We want to show that
we can re-arrange the trace nf(LMM) ↪→∗ nf(Q1) � Q2 in order to obtain a
trace of the form nf(LMM) �↪→∗ P2 with Q2 ∈ addG(P2). Using Lemma 26
we can write nf(LMM) ↪→∗ nf(Q1) as nf(LMM) 7→⇁∗ nf(R1) 7→⇁∗ . . . 7→⇁∗
nf(Rn) 7→⇁∗ nf(Q1).

We now proceed by induction on the length of this trace, showing that
we can either remove reductions or move them after the forward reduction
nf(Q1) � Q2. The base case (no auxiliary reductions) is trivial. For the
inductive case we have a case analysis on the last reduction 7→.

Internal reduction in a trigger: this case never happens. In fact, by in-
specting the encoding, one can see that such a reduction is enabled
only after a � reduction takes place.

Reduction due to a Rew process: a Rew process consumes a message on
a key channel, and this kind of message is not present in nf(LMM).
Thus, back in the trace there exists a 7→ reduction due to a killer
process producing it. Let us select the nearest such 7→. Since this
is the nearest one, there are no intermediate reductions that consume
the same message. Hence we can move the killer reduction forward in
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order to be adjacent to the Rew one, and we can then eliminate both the
reductions obtaining a shorter trace. Since garbage may be produced
by this pair of reductions, the process obtained by eliminating the two
reductions may contain less garbage.

Reduction due to a killer process: the 7→ reduction can be moved after
the � reduction since it does not remove processes that contribute to
the � reduction, and we obtain again a shorter trace.

Since nf(LMM) ↪→∗ nf(Q1) � Q2 implies nf(LMM) � P ↪→∗ P2 for some
P we can apply Lemma 33 and we have that M � M ′ and P ↪→∗ P ′ with
nf(P ′) ≡Ex nf(P ′′′) and P ′′′ ∈ addG(LM ′M). By using Lemma 28 there exists
Q3 such that P2 ↪→∗ Q3 with nf(P ) ≡Ex nf(P3) and P3 ∈ addG(Q3). Since
P ↪→∗ P ′ we have that nf(P ) ↪→∗ nf(P ′) and from Proposition 1 we have
that nf(P3) ↪→∗ Q4 ≡Ex nf(P ′). By definition of addG and by transitivity
we have that Q′ ↪→∗ Q′′ with Q′′ ∈ addG(Q4) and Q4 ≡Ex nf(P ′′′) and
P ′′′ ∈ addG(LM ′M). Then Q′′ ≡Ex nf(Q′′′) for a Q′′′ ∈ addG(LM ′M) by adding
further garbage. This concludes the proof. �

Lemma 35. Let M be a rhoπ configuration. If LMM ↪→∗ Q Q′ then there
exists M ′, Q′′ and Q′′′ such that M  M ′, Q′ ↪→∗ Q′′ and nf(Q′′) ≡Ex
nf(Q′′′) and Q′′′ ∈ addG(LM ′M).

Proof. We have that Q  Q′ and by applying Lemma 27 we also have
that nf(Q)  Q1 with Q′ ⇁∗ Q1. This implies that nf(Q) ≡ νũ. R |
nf(LMem Y a LP M k1 k k2M) | k〈LCM〉 with Y = (X c)c〈LP1M〉 and that Q′ ≡
νũ. R | (Msg a LP M k1) | (Trig Y a k2). Since administrative reductions ↪→
do not remove memories, the memory needs to be already present both in
the configuration M and in its normal form. Since LMM ↪→∗ Q and LMM ⇁∗
nf(LMM) by Lemma 27 we also have that nf(LMM) ↪→∗ R with Q ⇁∗ R,
hence LMM ↪→∗ R, moreover since Q  Q′ we also have that R  R′ with
Q′ ⇁∗ R′. By definition of L M and nf( ), the process nf(LMM) cannot contain
a message on a key channel such as k〈LCM〉. Hence, such a message has been
generated by the reductions nf(LMM) ↪→∗ R. We distinguish two cases: either
all the communications in ↪→∗ contribute to create such a message, or not.
In the first case all the communications are due to killer processes, and we
have that nf(LMM) ≡ νũ. nf(LNM) | nf(Mem Y a LP M k1 k k2) | nf(LCMk)
for some N , hence M ≡ νũ. N | [k1 : a〈P 〉 | k2 : a(X) . P1; k] | k : C.
Since the administrative reductions just create the message on the channel
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k, by using Lemma 23 (where S is garbage) we have that nf(LMM) ↪→∗
νũ. nf(LNM) | (k(Z) . (Msg a LP M k1) | (Trig Y a k2)) | k〈LCM〉 | S  R′ with
R′ = νũ. nf(LNM) | (Msg a LP M k1) | (Trig Y a k2)) | S. On the other side we
have that M  νũ. N | k1 : a〈P 〉 | k2 : a(X) . P1 = M ′ and we can conclude
since nf(R′) = nf(Q′′′) with Q′′′ ∈ addG(LM ′M).

If there are administrative reductions that do not contribute to the cre-
ation of the message on k, we re-arrange the trace nf(LMM) ↪→∗ R  R′ so
to have first all the reductions that contribute to create the message on k,
then the reduction and finally all the unrelated reductions. We proceed by
induction on the length of the reduction nf(LMM) ↪→∗ R, with a case analysis
on the last reduction that does not contribute to the creation of the message
on k. It can be either a communication due to a killer process unrelated to
the process with tag k, or a communication due to a Rew l. In the first case
the kill does not concerns the process labelled by k nor a parallel composition
due to the split of the key k. Thus, it can be moved after the  reduction
and we can conclude by induction on a shorter trace.

If the reduction is due to a Rew process we have two cases: either it deals
with processes related to the one tagged by k, or not. In the second case
we proceed as in the case above and we conclude by induction on a shorter
trace. In the first case, note that a reduction due to a Rew process instanti-
ates a process. Since this reduction is related to the process on channel k,
the instantiated process must be re-killed by possibly many successive kills.
Hence, we can remove the Rew reduction and the corresponding kills, and we
can conclude by induction on a shorter trace.

At the end, we have a trace of the form nf(LMM) ↪→∗ R1  R′1 ↪→∗ R′
with the first trace ↪→∗ containing all the administrative reductions related
to the creation of the message on k. As in the first case we know that
nf(LMM) ↪→∗ R1  R′1 implies that M  M ′ with nf(R′1) = nf(R′2) and
R′2 ∈ addG(LM ′M). Moreover we have that R′1 ↪→∗ R′ and that nf(R′1) ↪→∗ R′′
with R′ ⇁∗ R′′. By using Lemma 28 we have that there exist Q′′ such that
R′′ ↪→∗ Q′′ and nf(Q′′) ≡Ex nf(Q3) with Q3 ∈ addG(R′1). Since nf(R′1) =
nf(R′2) and applications do not change garbage we have that there is Q′′′

such that nf(Q3) = nf(Q′′′) and Q′′′ ∈ addG(LM ′M), as desired. �

We can now prove our main result.

Proof of Theorem 3. We prove that the following relation is a weak
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backward and forward barbed bisimulation:

R = {(M,R) |
νk. k : P ⇒M ∧ nf(R) ≡Ex nf(Q′) ∧Q′ ∈ addG(Q) ∧ LMM ↪→∗ Q}

We have to check the different conditions for weak backward and forward
barbed bisimulation.

Assume M ↓a. Note that from the definition of barbs only names in N
produce barbs. From Lemma 29 Q ↪→∗↓a. Since addG never removes barbs
then, thanks to Lemma 31, Q′ ↪→∗↓a. Then also nf(Q′) ↪→∗↓a. Thanks to
Proposition 1 we have that nf(R) ↪→∗↓a and thus also R ↪→∗↓a.

Assume now R ↓a. Thanks to Lemma 22 we have that a ∈ N . We also
have that nf(R) ↓a. Thanks to Proposition 1 nf(Q′) ↪→∗↓a and also Q′ ↪→∗↓a.
Then Q ↪→∗↓a. Finally, thanks to Lemma 30 M ↓a.

Let us consider reductions. If M � M ′ then by Theorem 4 we have
nf(LMM)⇒f P with nf(P ) ≡Ex nf(P ′) and P ′ ∈ addG(LM ′M). By hypothesis
we have that LMM ↪→∗ Q, but also nf(LMM) ↪→∗ nf(Q) and by Lemma 28
we have that there are Q1, Q2 such that nf(Q) ↪→∗ nf(Q1) and nf(Q1) ≡Ex
nf(Q2) with Q2 ∈ addG(nf(LMM)). Since nf(LMM)⇒f P then Q2 ⇒f P1 with
P1 ∈ addG(P ). Since nf(Q2) ≡Ex nf(Q1) by Lemma 25 we also have that
nf(Q1) ⇒f P2 and nf(P2) ≡Ex nf(P1). Since nf(P ) ≡Ex nf(P ′) by transi-
tivity we have that there is P3 ∈ addG(LM ′M) such that nf(P2) ≡Ex nf(P3).
We can conclude by noting that the pair (M ′, P2) ∈ R (no administrative
reductions are performed from LM ′M). The backward case is similar.

For the other direction, assume R→ R′. We have a case analysis accord-
ing to the kind of reduction.

If R ⇁ R′ then the thesis follows trivially since nf(R) = nf(R′).
If instead R 7→ R′ then by Lemma 27 nf(R) ↪→∗ R′′ and R′ ⇁∗ R′′ for

some R′′. Thanks to Lemma 26 nf(R′′) = nf(R′). Thus we have nf(R) ↪→∗
nf(R′). Thanks to Proposition 1 from nf(R) ≡Ex nf(Q′) we have that there
is R1 such that nf(Q′) ↪→∗ R1 and nf(R′) ≡Ex R1. Thanks to Lemma 18
from nf(Q′) ↪→∗ R1 we have that Q ↪→∗ R2 with R1 ∈ addG(R2). By using
Lemma 14 from nf(R′) ≡Ex R1 we obtain nf(R′) ≡Ex nf(R1). We can
conclude since nf(R′) ≡Ex nf(R1) with R1 ∈ addG(R2) and LMM ↪→∗ Q ↪→∗
R2, thus (M,R′) ∈ R.

Assume now R� R′. By Lemma 27 nf(R)� R′′ and R′ ⇁∗ R′′ for some
R′′. Thanks to Lemma 26 nf(R′′) = nf(R′). Thanks to Proposition 1 we
have that ≡Ex is a weak bf barbed bisimulation, and from nf(R) ≡Ex nf(Q′)
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we have that there is R1 such that nf(Q′) ↪→∗�↪→∗ R1 and R′′ ≡Ex R1.
From Lemma 14 also nf(R′′) = nf(R′) ≡Ex nf(R1). From Lemma 18 and
Lemma 19 we have that there are R2, Q1 and Q′1 such that Q ↪→∗ Q1 �
Q′1 ↪→∗ R2 and nf(R1) = nf(R′′′) with R′′′ ∈ addG(R2). By hypothesis,
we have that LMM ↪→∗ Q. By Lemma 34 we have that LMM ↪→∗ Q1 � Q′1
implies that there exist M ′, Q2 and Q3 such that M � M ′ and Q′1 ↪→∗ Q2

with nf(Q2) ≡Ex nf(Q3) and Q3 ∈ addG(LM ′M).
We can apply Lemma 28 obtaining Q4 and Q5 such that Q2 ↪→∗ Q4

and nf(Q4) ≡Ex nf(Q5) with Q5 ∈ addG(Q′1). Since Q′1 ↪→∗ R2 we have
that nf(Q5) ↪→∗ nf(Q6) with Q6 ∈ addG(R2). Note that R′′′ and Q6 differ
only because of garbage. Since garbage has no impact on the semantics we
can consider them equal (this can be formalized more precisely as an up-to
technique). Thus nf(Q6) = nf(R1), and since nf(R′) ≡Ex nf(R1) we also
have nf(R′) ≡Ex nf(Q6). We want to show that the pair (M ′, R′) ∈ R.
We have that Q2 ↪→∗ Q4 but also nf(Q2) ↪→∗ nf(Q4) and since nf(Q3) ≡Ex
nf(Q2) and ≡Ex is a weak bf barbed bisimulation there exists R3 such that
nf(Q3) ↪→∗ R3 with R3 ≡Ex nf(Q4). Hence by using Lemma 18 we also have
that nf(LM ′M) ↪→∗ R4 with R3 ∈ addG(R4). We have nf(Q4) ≡Ex nf(Q5)
and nf(Q5) ↪→∗ nf(Q6). Since ≡Ex is a weak bf barbed bisimulation there
exists R5 such that nf(Q4) ↪→∗ R5 with R5 ≡Ex nf(Q6). Using the same
reasoning we have that R3 ↪→∗ R6 with R6 ≡Ex R5. Since R3 ∈ addG(R4) we
have that R4 ↪→∗ R7 with R6 ∈ addG(R7). Using Lemma 15 and Lemma 14
we have that nf(R5) ≡Ex nf(Q6) and nf(R6) ≡Ex nf(R5). To conclude we
can note that LM ′M ⇁∗ nf(LM ′M) ↪→∗ R4 ↪→∗ R7 with R6 ∈ addG(R7) and
nf(R6) ≡Ex nf(Q6) ≡Ex nf(R′). This implies that (M ′, R′) ∈ R, as desired.

IfR R′ we can use the same reasoning of the� case by using Lemma 35
and Lemma 20 instead of Lemma 34 and Lemma 19. �

5. Related work

Research into reversible computing has already a long history, that orig-
inates in the 1960s. Bennett provides an account [1] of early research on the
subject. A full review of works on reversible computing, and the closely re-
lated subjects of program inversion (see, e.g., [38] and the references therein)
and bidirectional transformation and languages (see, e.g., [39, 40] and the ref-
erences therein), is out of the scope of this paper but we can highlight works
related to our three main contributions: (i) reversible languages and mod-
els, (ii) causal semantics and back and forth bisimulation, (iii) translating
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between reversible and irreversible computations.

Reversible languages and models. The notion of reversible Turing machine
seems to date back at least to Lecerf in the early 60s [41], who provides an
early encoding of irreversible Turing machines into reversible ones, rediscov-
ered by Bennett in [42]. For a recent survey of reversible Turing machines,
their relation to reversible boolean logic, and various reversible models of
computation, see [43].

Several works have tackled the problem of adding reversibility to sequen-
tial programming languages or to sequential abstract machines. Early work
focused on reversible execution [44] and adding undo capabilities to pro-
gramming languages. Leeman [45] provides an early survey as well as a gen-
eral framework for adding an undo capability to a sequential programming
language. Computational history is saved by means of undo-lists, storing
previous states of the execution. Primitives dealing with undo-lists are for-
malized, and different undo operators can be defined by composing them.
A way to map compositionally high-level functional programs into a certain
kind of reversible automata is given by Abramsky in [46]. In [47], Danos
and Regnier give a compositional translation of the λ-calculus into a form
of reversible abstract machine called Interaction Abstract Machine (IAM).
Other reversible abstract machines for sequential programming such as the
SEMCD machine [48] and the Reversible Virtual Machine (RVM) [49] have
been proposed.

Whereas the latter virtual machines keep an explicit track of execution
history to reconstruct backward computation, several works study natively
reversible sequential programming languages where reversibility is obtained
without the need to keep additional information to reconstruct backward
computation. These include work on the Janus language whose origin dates
back to the early 1980s [50, 51], work on sequential flow charts [52], the Inv
[53], RFUN [54], and Π [55] reversible functional languages. The key aspect
of Janus is that all its constructs, including assignments, are made bijective
(and hence reversible), and the language does not allow I/O. The Π language
constitutes a reversible core programming model which is claimed to be at
the heart of linear logic and quantum computation. It is shown in [55] how
to translate a conventional first-order functional language with loops to Π,
making explicit the information effects implicit in the irreversible computa-
tion of a conventional functional program as manipulations of a global heap
and garbage dump.
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Reversibility in concurrent models has been considered only more re-
cently, starting with the seminal work of Danos and Krivine on RCCS [12].
In contrast to sequential settings, the notion of reversibility is less easy to
define, and the key contribution of [12] is to define the criterion of causal
consistency for semantic reversibility, i.e. the ability to go back in a compu-
tation along equivalent concurrent paths. This work later gave rise to several
studies (including the one reported in this paper), including [13] which shows
how to accommodate a notion of communicating transaction in the RCCS
setting, and how using RCCS as a means of specifying such transactions one
can gain both in expressivity of specifications and in ease of verification of
transactional systems. Phillips and Ulidowski show in [14] how to obtain
reversible variants of process calculi defined with GSOS inference rules. [56]
showed how the results obtained in [13] can be obtained by means of a univer-
sal categorical construction involving categories of fractions and categories
of computation paths. Extensions of Danos and Krivine’s work on CCS to
the (higher-order and first-order) π-calculus appear in our own work [16],
and in the recent paper by Cristescu, Krivine and Varacca [20], which de-
fines a labeled transition semantics for a reversible variant of the first-order
π-calculus called Rπ. The latter work is closest to ours, but the reversible
machinery in Rπ is substantially different: as in RCCS, Rπ processes are
built upon simple π processes to which a stack of events, called a memory,
is added to keep track of past actions. Every entry in a memory records a
past communication event and can be used to trigger backward moves. In
contrast, in rhoπ only simple keys are associated to processes, and specific
processes are used to record the causal relationships between keys. It is easy
to define a reversible variant of the first-order π-calculus using our reversible
machinery of keys. One can also define for such a calculus a labeled transi-
tion system (LTS) semantics where actions are standard π-calculus actions
annotated with keys, but it is less easy to directly compare the two result-
ing reversible π-calculi. We surmise that the reversible π obtained via our
late LTS semantics would indeed be strongly bisimilar to Rπ, whereas the
strong back and forth bisimulation associated with the early variant LTS of
our reversible π would provide a coinductive characterization of contextual
equivalence in rhoπ, but this is left for further study.

Foundational studies of reversible and concurrent computations have been
largely inspired by areas such as chemical and biological systems where op-
erations are reversible and only an injection of energy and/or a change of en-
tropy can move the computational system in a desired direction. A reversible
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variant of CCS to model biological systems is given in [57]. Frequently these
systems are massively concurrent, i.e. different processes of the same shape
are indistinguishable. Thus, unique tags like ours cannot be used, since there
is no way to distinguish different instances of the same molecule during in-
teraction. In these systems standard notions of causality and independence
of events need to be adapted. Reversible structures [4] allow to model such
systems. In reversible structures processes are called gates, and are expressed
as a sequence of inputs followed by a sequence of outputs. Following the ap-
proach of [14], the past computational history of a gate is stored in the gate
itself. That is, since gates are a sequence of actions, a cursor “ˆ” is used to
point to the next action of a gate. Said otherwise, the cursor ˆ divides a gate
into two parts: past actions and future actions. Each time a gate performs
a forward (backward) action its cursor is moved forward (backward) by one
position. Different output processes (called signals) on the same channel may
have the same identifier, hence they are indistinguishable. So it may happen
that while computing backward a gate gets back a signal that has not been
generated by the gate itself, but it is indistinguishable from it. Reversibility
is proven correct even in presence of indistinguishable signals. Another work
considering reversible concurrent systems in relation with biological modeling
is the recent work by Phillips and Ulidowski [58], which presents a reversible
concurrent model where backward moves are controlled by a form of super-
position construct. In this model, backward computations are not necessarily
causally consistent.

Notions of reversible computation appear also in works on reversible de-
buggers [59, 60, 61, 62, 63] and on computer simulation tools [64]. Two
techniques are commonly used in reversible debugging: replay and state sav-
ing. The first one, typical of interpreted languages, consists in re-executing
the program to the point at which the programmer wants to get back. This
technique can be improved by using periodic or incremental checkpoints, thus
reducing the number of instructions that have to be re-played. The second
technique consists in saving the entire program state during the computa-
tion, and then restoring it when needed. Usually, due to space overhead,
the range of actions that can be reverted is limited and it has to be de-
cided before launching the debugging mode. Both the techniques work fine
in the sequential setting. In the concurrent setting also information about
the scheduling, i.e. the order of execution of concurrent processes, has to be
taken into account. [65] gives a technique to achieve repeatable execution of
highly parallel programs. During execution, the relative order of significant
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events is saved. Then by imposing the same order during replay, and using
the same inputs from the external environment, it is possible to reproduce the
same behavior. Building on [18], which shows that one can build primitives
to control rhoπ reversibility, [63] shows how to force a concurrent execution
back in a causally consistent way so as to undo a specific past action in a way
similar to those of reversible debuggers but without impacting non causally
related threads. This is in contrast, for instance, with [66], where the user is
asked, while debugging, to specify all the actions to be undone and the order
in which to undo them. The partial order among concurrent actions induced
by the rhoπ tag mechanism can be exploited also in re-playing techniques.

Translating between reversible and irreversible models of computation. Inter-
est for translation between reversible and irreversible models of computation
has centered around encoding of irreversible models into reversible ones, or
between reversible ones.

As reported in [1], early interest was concerned with the encoding of
irreversible computations into a reversible computational model such as a
reversible Turing machine or reversible boolean logic. The more recent work
by Burhman et al. [67] provides a general upper bound on the tradeoff be-
tween time and space that suffices for the simulation by a reversible Turing
machine of an irreversible one. Together with a later paper by Vitanyi [68],
it provides a useful survey of prior work on this “reversible simulation” prob-
lem. The work by Cardelli and Laneve [4], already mentioned, shows that,
by disallowing indistinguishable signals, reversible structures can implement
the asynchronous version of RCCS. This is stated by a (weak) completeness
theorem but nothing is said about the correctness of the encoding. The sur-
vey paper [43] relates different reversible models, including reversible Turing
machines, reversible boolean logic and reversible cellular automata.

To the best of our knowledge, we are the first in [16] and in this paper
to study an encoding of a reversible concurrent model of computation into
an irreversible one. In our paper [16] we have defined an encoding very
similar to the one presented in this paper, but we were only able to prove
the faithfulness of the translation using a weak barbed congruence, which, as
discussed in Section 2.5, is a rather coarse equivalence. In this paper, with
a slight modification of our encoding, we have been able to prove a much
stronger result, which is optimal in the sense that the equivalence we use
is a strong back and forth simulation with weak administrative moves, i.e.
each forward or backward step in rhoπ translates into a forward or backward
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step, respectively, modulo administrative moves. Both encodings faithfully
implement the reversible calculus, but, as the operational semantics of rhoπ
itself, they are rather wasteful in terms of space. To see this informally, notice
first that a forward computation step in rhoπ requires retaining in a memory
the message a〈P 〉 and the receiver process a(X) . Q that participated in it.
Thus the space overhead of a computation step in reversible HOπ compared
to standard HOπ is at least ‖P‖, the size of the payload of message a〈P 〉.
Now consider the following recursive programs: P = c(X).P | a〈X | X〉 and
Q = a(X) . Q | c〈X | X〉. We have a〈R〉 | P | Q → P | Q | c〈R | R〉 so the
space overhead of this first step starting from a〈R〉 | P | Q is at least ‖R‖.
On the second step we have P | Q | c〈R | R〉 → P | Q | a〈R | R | R | R〉, so
the space overhead of this second step is at least 2‖R‖. By induction, one can
see that the space overhead associated with making the program a〈R〉 | P | Q
reversible is at least 2n−1‖R‖, where n is the number of computation steps
taken from the initial state a〈R〉 | P | Q. Our encodings are at least as
wasteful in terms of space. However we have shown in [22] that the space
overhead required to implement a small language close to rhoπ is only linear
in the number of computation steps, and in fact only linear in the number of
non-deterministic events occurring during a computation.

Causal semantics and back and forth simulations. For proving the correct-
ness of our encoding, we have used a notion of back and forth bisimulation,
where both forward and backward moves are taken into account in the bisim-
ulation game. Different forms of simulations taking into account forward and
backward moves have been studied in the past but mostly in the context of
verifying standard transition systems. Such notions appear in the late 80’s
and early 90’s in works such as [24, 69]. The two survey papers [70, 71]
by Lynch and Vaandrager study the relationships between different kinds
of simulations between (standard, timed and untimed) transition systems,
including refinements, forward and backward simulations, hybrid forward-
backward and backward-forward simulations, and history and prophecy rela-
tions. More recently, notions of forward and backward simulation have been
studied from a coalgebraic point of view by Hasuo [25].

More related to reversible models of computation are recent works by
Phillips and Ulidowski. The paper [72] proposes extensions to event struc-
tures to take into account reversibility in transition systems. The paper
[73] defines several forms of bisimulations mixing forward and reverse obser-
vations, and studies the relationships between various equivalences on sta-
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ble configuration structures, including step bisimulation, step bisimulation
with reverse steps, interleaving bisimulation with reverse steps, and hered-
itary history-preserving bisimulation. Notably, they show that, in absence
of auto-concurrency, interleaving bisimulation with reverse steps is as strong
as hereditary history-preserving bisimulation. The latter results illustrates
the observational power gained by the ability to take into account backward
moves in a bisimulation game. It squares nicely with our result in Section 3.2
that relates our reversible machinery in rhoπ to the causal semantics for π
developed by Boreale and Sangiorgi [21], and which states that a causally
consistent reversible semantics essentially constitutes a causal semantics for
(the forward part of) the calculus. This intuition is further compounded
by the work on Rπ [20], which shows that Rπ semantics provides a non-
interleaving semantics for the π-calculus that in addition agrees with the
causality induced by reductions (τ transitions). Much work remains to be
done, however, to better understand the relationships between our reduction
semantics for (higher-order) π and the resulting barbed congruence, the LTS
semantics of Rπ and its associated bisimilarity, and the various causal se-
mantics of the π calculus that have been developed in the past, including,
e.g., [21, 74, 29, 75].

6. Conclusion

We have presented a reversible asynchronous higher-order π-calculus,
called rhoπ, which we have shown to be causally consistent. The paper gets
its inspiration from Danos and Krivine work [12] and makes three original
contributions. The first one is a novel way to introduce reversibility in a pro-
cess calculus which preserves the classical structural congruence laws of the
π-calculus, and which relies on simple name tags for identifying threads and
explicit memory processes. Our approach contrasts with the two previous
approaches of RCCS [12], that relied on memory stacks as thread tags, and
of Phillips and Ulidowski [14], that relied on making the structure of terms
in SOS rules static and on keeping track of causality by tagging actions in
SOS rules, as well as with the recent work on Rπ, a reversible variant of
the π calculus developed by Cristescu, Krivine and Varacca [20]. The paper
by Danos et al. [56] provides an abstract categorical analysis of the RCCS
constructions, but it leaves intact the question of devising an appropriate
“syntactic representation of the reversible history category” for the target
formalism (in our case, asynchronous HOπ), which is not entirely trivial. The
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second contribution of the paper is the analysis, by means of a bisimulation
relation called causal correspondence, of the relationship between the causal
semantics of the π-calculus developed by Boreale and Sangiorgi [21], and the
causality tracking machinery used in our reduction semantics for rhoπ. The
third contribution of the paper is a faithful encoding of our reversible HOπ
calculus into a variant of HOπ, showing that adding reversibility does not
change substantially the expressive power of HOπ. The result obtained in
this paper considerably strengthens that obtained in our previous work [16]
by showing that, modulo administrative reduction steps, a rhoπ process and
its translation are strong back and forth bisimilar.
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Appendix A. Proofs of Section 2

Appendix A.1. Proofs of Section 2.3

We prove in this section the Consistency Preservation Lemma. We need a
few auxiliary results first. The lemma below gives a syntactic characterization
of forward reductions.

Lemma 36. Let M , N be configurations. Then M � N iff M ≡ M ′ and
N ′ ≡ N with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

N ′ = νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

Proof. Let us start with the if direction. The proof is by induction on the
derivation of the reduction �. We have a case analysis on the last applied
rule:

R.Fw: by hypothesis M = κ1 : a〈P 〉 | κ2 : a(X) . Q and M � νk. k : Q{P/
X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] = N . The thesis follows by choosing
M ′ = M and N ′ = N .

R.Eqv: the thesis follows by transitivity of structural congruence.

R.Ctx: the proof is by case analysis on the structure of the context. The
proof for the empty context is trivial. If the context is a restriction
then we have that νu.M � νu.N with M � N as hypothesis. The
thesis follows by adding u to ũ. For (left) parallel context we have
that M1 | M � M1 | N with M � N as hypothesis. By inductive
hypothesis M ≡M ′ and N ′ ≡ N with:

M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

N ′ = νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]
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Also, from Lemma 1 M1 ≡ νṽ.
∏
i∈I′(κi : ρi) |

∏
j∈J ′ [µj; kj]. Then

M1 |M ≡ νũ, ṽ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏

i∈I∪I′
κi : ρi |

∏
j∈J∪J ′

[µj; kj]

N ′′ = νũ, ṽ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |∏
i∈I∪I′

κi : ρi |
∏

j∈J∪J ′
[µj; kj]

with N ′′ ≡ M1 | N as desired. The case of right parallel context is
similar.

For the only if direction, the desired reduction can be derived by applying
rule (R.Fw) followed by (R.Ctx):

νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]�

νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

The thesis then follows by applying rule (R.Eqv). �

The following lemma is similar to Lemma 36, but it considers backward
reductions.

Lemma 37. Let M , N be configurations. Then M  N iff M ≡ M ′ and
N ′ ≡ N with:

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

N ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

Proof. Similar to the proof of Lemma 36. �

We can now prove Lemma 3.

Lemma 3 (Consistency preservation). Let M be a consistent configura-
tion. If M → N then N is a consistent configuration.
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Proof. The proof proceeds by case analysis on the derivation of M → N .
Let us consider the case M � N . By Lemma 36 we have M ≡ M ′ and

N ′ ≡ N with M ′ = νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q | ∏i∈I κi : ρi |
∏
j∈J [µj; kj]

and νũ, k. k : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] | ∏
i∈I κi : ρi |∏

j∈J [µj; kj] = N ′. By hypothesis M is a consistent configuration, thus M ′

is also consistent (consistency is preserved by ≡ since it is defined up to
≡ itself). We have to prove that N ′ is consistent. The properties 1-4 of
Definition 1 check uniqueness of keys. They are all satisfied for existing tags,
and they are satisfied by the new tag k since it is a fresh key. The condition 5
holds for the new memory [κ1 : a〈P 〉 | κ2 : a(X).Q; k] because of the form of
the continuation. It holds for the other memories by hypothesis. Note that
the condition on memories that generated the two threads identified by κ1

and κ2 participating to the communication still holds, since the two threads
are just moved from an active context to a memory.

The case M  N is similar to the previous one, using Lemma 37 instead
of Lemma 36. �

Appendix A.2. Proofs of Section 2.4

We prove in this section results relating rhoπ and HOπ reductions. We
first prove an auxiliary result relating rhoπ and HOπ structural congruences.

Lemma 38. For all closed configurations M,N if M ≡ N then γ(M) ≡π
γ(N).

Proof. It is enough to prove that the thesis holds for each axiom (since γ
is defined by structural induction). We have a case for each axiom. For the
rules E.ParC, E.ParA, E.NilM, E.NewN, E.NewC, E.NewP and E.α
there is a corresponding rule in HOπ. Rules E.TagN and E.TagP instead
reduce to the identity. �

Lemma 4. For all closed configurations M,N , if M � N then γ(M) →π

γ(N)

Proof. By induction on the derivation of M � N .

R.Fw: M = κ1 : a〈P 〉 | κ2 : a(X) . Q � νk. k : Q{P/X} | [a〈P 〉 | κ2 :
a(X) . Q; k] = N . By definition γ(M) = a〈P 〉 | a(X) . Q →π Q{P/
X} = γ(N).
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R.Eqv: M � N with hypothesis M ≡ M ′, M ′ � N ′ and N ′ ≡ N . By
using the inductive hypothesis we have that M ′ � N ′ implies that
γ(M ′)→π γ(N ′) and since structural equivalence is preserved by γ (by
Lemma 38) we can conclude.

R.Ctx: the proof is by induction on the context. The case of the empty
context is trivial. The case of a restriction of a key is trivial since the
restriction is removed by γ. The case of restriction of a name follows by
induction. The case of parallel composition follows by induction since
γ(M | N) = γ(M) | γ(N).

�

To prove Lemma 5 we need a few auxiliary results. The first one charac-
terizes the configurations M such that γ(M) = P for a given HOπ process
P .

Lemma 39. Let P be a HOπ process. If γ(M) = P and P ≡π P ′ with P ′ =
νã.

∏
i∈I ρi and ã ⊆ fn(

∏
i∈I ρi) then M ≡ νã, ã′, k̃.

∏
i∈I κi : ρi |

∏
j∈J mj

with ã′ ∩ fn(
∏
i∈I κi : ρi) = ∅.

Proof. By Lemma 1 M ≡ νũ.
∏
i′∈I′(κ

′
i : ρ′i) |

∏
j′∈J ′mj′ ≡ νb̃, h̃.

∏
i′∈I′(κ

′
i :

ρ′i) |
∏
j′∈J ′mj′ = M ′ where we distinguish between names b̃ and keys h̃. By

definition γ(M ′) = νb̃.
∏
i′∈I′ ρi′ , but since M ≡ M ′ by Lemma 38 we also

have γ(M) ≡π γ(M ′). Since γ(M) = P ≡π P ′ we have P ′ ≡π γ(M ′). Thus
we have to prove that if νb̃.

∏
i′∈I′ ρi′ ≡π νã.

∏
i∈I ρi then νb̃, h̃.

∏
i′∈I′(κ

′
i : ρ′i) |∏

j′∈J ′mj′ ≡ νã, ã′, k̃.
∏
i∈I κi : ρi |

∏
j∈J mj. We can set b̃ = b̃1, b̃2 where b̃1 ⊆

fn(
∏
i′∈I′ ρi′) and b̃2∩fn(

∏
i′∈I′ ρi′) = ∅. We have νb̃1.

∏
i′∈I′ ρi′ ≡π νã.

∏
i∈I ρi

which is derived using only α-conversion and axioms E.ParC, E.ParA and
E.NilM. Using the same axioms we can derive also νb̃, h̃.

∏
i′∈I′(κ

′
i : ρ′i) |∏

j′∈J ′mj′ ≡ νb̃2, ã, h̃.
∏
i∈I(κi : ρi) |

∏
j′∈J ′m

′
j′ (memories may be affected by

α-conversion). The thesis follows by choosing ã′ = b̃2, h̃ = k̃ and
∏
j′∈J ′m

′
j′ =∏

j∈J mj. �

The next lemma is the inverse of Lemma 38.

Lemma 40. Let P and P ′ be HOπ processes. If P ≡π P ′ then for each
configuration M such that γ(M) = P there is a configuration N such that
N ≡M and γ(N) = P ′.
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Proof. Since both ≡π and ≡ are equivalence relations, it is enough to show
the thesis for derivations of length one. The idea is that each axiom applied
on HOπ processes can be applied to each corresponding rhoπ configuration.
This may require additional applications of axioms to deal with the additional
rhoπ structure. For instance, lifting axiom E.NewC may require additional
applications of the same axiom to deal with restrictions on keys. We do not
report the detailed case analysis. �

We can finally prove the inverse of Lemma 4.

Lemma 5. For all closed HOπ processes R, S if R→π S then for all closed
configurations M such that γ(M) = R there is N such that M � N and
γ(N) = S.

Proof. By induction on the derivation of the reduction →π.

Com: R = a〈P 〉 | a(X) . Q →π Q{P/X} = S. Since γ(M) = R by Lemma
39 we have that M ≡ νã′, k̃. κ1 : a〈P 〉 | κ2 : a(X) . Q | M1 with
ã′ ∩ fn(

∏
i∈I κi : ρi) = ∅ and M1 composed only by memories. We have

that M � νã′, k̃, h. h : Q{P/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q;h] | M1 =
N . Also, γ(N) = νã′. Q{P/X} ≡π Q{P/X} = S as required.

Eqv: we have that R→π S with hypothesis R ≡π R′, R′ →π S
′ and S ′ ≡π S.

Taken M such that γ(M) = R from Lemma 40 there is M ′ ≡ M such
that γ(M ′) = R′. Then by inductive hypothesis there is M ′′ such that
M ′ � M ′′ and γ(M ′′) = S ′. By applying again Lemma 40 we know
that there is M ′′′ such that M ′′′ ≡ M ′′ and γ(M ′′′) = S. The thesis
follows by applying rule (R.Eqv).

Ctx: we have C[R] →π C[S] with hypothesis R →π S. Take M such that
γ(M) = C[R]. Then there are C′ and M ′ such that M = C′[M ′] and
γ(M ′) = R. Thus the thesis follows by inductive hypothesis using rule
(R.Ctx).

�
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Appendix B. Proofs of Section 3

Appendix B.1. Proofs of Section 3.1

We prove in this section that rhoπ is causal consistent.

Lemma 9 (Square Lemma). If t1 = M
η1−→ M1 and t2 = M

η2−→ M2 are
two coinitial concurrent transitions, then there exist two cofinal transitions
t2/t1 = M1

η2−→ N and t1/t2 = M2
η1−→ N .

Proof. By case analysis on the form of transitions t1 and t2.

• M
m1�−−−→ N1 and M

m2�−−−→ N2. By Lemma 36 if M � N1 then M ≡M ′,
N ′ ≡ N1 with:

M ′ = νũ. (κ1 : a〈P 〉) | (κ2 : a(X) . Q) |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

N ′ = νũ, k. (k : Q{P/X}) | m1 |
∏
i∈I
κi : ρi |

∏
j∈J

[µj; kj]

and m1 = [κ1 : a〈P 〉 | κ2 : a(X) . Q; k]. Similarly, if M � N2 then
M ≡M ′′, N ′′ ≡ N2 with:

M ′′ = νũ. (κ′1 : a′〈P ′〉) | (κ′2 : a′(X) . Q′) |
∏
i∈I′

κi : ρi |
∏
j∈J

[µj; kj]

N ′′ = νũ, k′. k′ : Q′{P ′/X} | m2 |
∏
i∈I′

κi : ρi |
∏
j∈J

[µj; kj]

and m2 = [κ′1 : a′〈P ′〉 | κ′2 : a′(X).Q′; k′]. Since the two transitions are
concurrent (by hypothesis) we have that {κ1, κ2, k} ∩ {κ′1, κ′2, k′} = ∅.
Thus, we have:

M ≡ νũ. (κ1 : a〈P 〉) | (κ2 : a(X) . Q) | (κ′1 : a′〈P ′〉) | (κ′2 : a′(X) . Q′) |∏
i∈I′′

κi : ρi |
∏
j∈J

mj

N1 ≡ νũ, k. (κ′1 : a′〈P ′〉) | (κ′2 : a′(X) . Q′) |
∏
i∈I′′

κi : ρi | (
∏
j∈J

mj) | m1

with m1 = [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] and

N2 ≡ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) . Q) |
∏
i∈I′′

κi : ρi | (
∏
j∈J

mj) | m2

We have that N2
m1�−−−→ νũ, k′, k.

∏
i∈I′′ κi : ρi | (

∏
j∈J mj) | m2 | m1 and

N1
m2�−−−→ νũ, k′, k.

∏
i∈I′′ κi : ρi | (

∏
j∈J mj) | m2 | m1, as desired.
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• M
m1 −−−→ N1 and M

m2�−−−→ N2. Since M
m1 −−−→ N1 by Lemma 37 M ≡M ′

with:

M ′ = νũ, k. k : R | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |
∏
i∈I′

κi : ρi |
∏
j∈J ′

mj

N1 ≡ νũ. κ1 : a〈P 〉 | κ2 : a(X) . Q |
∏
i∈I
κi : ρi |

∏
j∈J

mj

and since M
m2�−−−→ N2 then by Lemma 36 M ≡M ′′ with:

M ′′ = νũ. κ′1 : a′〈P ′〉 | κ′2 : a′(X) . Q′ |
∏
i∈I
κi : ρi |

∏
j∈J ′

mj

N2 ≡ νũ, k′. k′ : Q′{P ′/X} | m′2 |
∏
i∈I
κi : ρi |

∏
j∈J ′

[µj; kj]

and m′2 = [κ′1 : a〈P ′〉 | κ′2 : a(X) . Q′; k′]. By hypothesis the two
transitions are concurrent so k is neither equal nor a suffix of κ′1 or κ′2.
Thus, we have that

M ≡ νũ, k′. k : R | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] | (κ′1 : a′〈P ′〉) |
(κ′2 : a′(X) . Q′) |

∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj

N1 ≡ νũ. κ′1 : a′〈P ′〉 | κ′2 : a′(X) . Q′ | κ1 : a〈P 〉 | κ2 : a(X) . Q |∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj

N2 ≡ νũ, k′, k.m′2 | k′ : Q′{P
′
/X} | [κ1 : a〈P 〉 | κ2 : a(X) . Q; k] |

k : R |
∏
i∈I′′

κi : ρi |
∏
j∈J ′′

mj

We have that:

N2
m1 −−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) . Q) | m′2 | k′ : Q′{P

′
/X} |∏

i∈I′′
κi : ρi |

∏
j∈J ′′

mj

N1
m2�−−−→ νũ, k′. (κ1 : a〈P 〉) | (κ2 : a(X) . Q) | m′2 | k′ : Q′{P

′
/X} |∏

i∈I′′
κi : ρi |

∏
j∈J ′′

mj

as desired.
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• M
m1�−−−→ N1 and M

m2 −−−→ N2, similar to the case above.

• M
m1 −−−→ N1 and M

m2 −−−→ N2, similar to the first case.

�

Lemma 10 (Rearranging lemma). Let σ be a trace. There exist forward
traces σ′ and σ′′ such that σ � σ′•;σ

′′.

Proof. The proof is by lexicographic induction on the length of σ and on
the distance between the beginning of σ and the earliest pair of transitions in
σ of the form t; t′• (where t and t′ are forward). If there is no such pair we are
done. If there is one, we have two possibilities: either t and t′ are concurrent,
or they are in conflict. In the first case, we can swap them by using Lemma
9, resulting in a later earliest contradicting pair, and by induction the result
follows since swapping transitions keeps the total length constant. In the
second case we have that there is a conflict on a tag κ. We have two cases:
either the memory involved in the two transitions is the same or not. In
the first case we have t = t′, and we can apply the Loop lemma removing
t; t•. Hence the total length of σ decreases and again by induction the result
follows. In the second case thanks to the property of consistent configurations
the only possible conflict is between the thread tag of a memory and a tag
in the configuration part of the other memory. Assume a conflict between
the thread tag of memory m of transition t and a tag in the configuration
part of memory m′ of transition t′•. In this case t has created a memory
of the form [δ1 : a〈P 〉 | γ1 : a(X) . Q; k1] and a process k1 : R. Thus from
conditions 1 and 4 in the definition of consistent configuration this case never
happens. Assume now the opposite case: a conflict between the thread tag
of memory m′ and a tag in the configuration part of memory m. In this case
transition t′• deletes a memory of the form [δ2 : a〈P 〉 | γ2 : a(X) . Q; k2], but
this requires having a process k2 : R. Again from conditions 1 and 4 this
case never happens. �

Lemma 11 (Shortening lemma). Let σ1, σ2 be coinitial and cofinal traces,
with σ2 forward. Then, there exists a forward trace σ′1 of length at most that
of σ1 such that σ′1 � σ1.
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Proof. We prove this lemma by induction on the length of σ1. If σ1 is a
forward trace we are already done.

Otherwise by Lemma 10 we can write σ1 as σ•;σ
′ (with σ and σ′ forward).

Let t•; t
′ be the only two successive transitions in σ1 with opposite direction,

with m1 belonging to t•. Since m1 is removed by t• then m1 has to be put
back by another forward transition otherwise this difference will stay visible
since σ2 is a forward trace. Let t1 be the earliest such transition in σ1. Since
it is able to put back m1 it has to be the exact opposite of t•, so t1 = t. Now
we can swap t1 with all the transitions between t1 and t•, in order to obtain
a trace in which t1 and t• are adjacent. To do so we use the Square Lemma
(Lemma 9), since all the transitions in between are concurrent. Assume in
fact that there is a transition involving memory m2 which is not concurrent
to t1, with λ(m1) = {δ1, γ1, k1}, λ(m2) = {δ2, γ2, k2}. Thanks to consistency
conditions the only possible conflicts are (1) between k1 and δ2 or between k1

and γ2 or (2) between k2 and δ1 or k2 and γ1. The first case can never happen
since k1 is fresh (generated by the forward rule) and thus cannot coincide nor
been a prefix of γ2 or δ2. Similarly the second case can never happen since
k2 is fresh and thus cannot occur in m1. When t• and t are adjacent we can
remove both of them using �. The resulting trace is shorter, thus the thesis
follows by inductive hypothesis. �

Theorem 1 (Causal consistency). Let σ1 and σ2 be coinitial traces, then
σ1 � σ2 if and only if σ1 and σ2 are cofinal.

Proof. By construction of �, if σ1 � σ2 then σ1 and σ2 must be coinitial
and cofinal, so this direction of the theorem is verified. Now we have to prove
that σ1 and σ2 being coinitial and cofinal implies that σ1 � σ2. By Lemma
10 we know that the two traces can be written as composition of a backward
trace and a forward one. The proof is by lexicographic induction on the sum
of the lengths of σ1 and σ2 and on the distance between the end of σ1 and
the earliest pair of transitions t1 in σ1 and t2 in σ2 which are not equal. If all
the transitions are equal then we are done. Otherwise we have to consider
three cases depending on the direction of the two transitions.

t1 forward and t2 backward: we have σ1 = σ•; t1;σ′ and σ2 = σ•; t2;σ′′.
Moreover we know that t1;σ′ is a forward trace, so we can apply the
Lemma 11 to the traces t1;σ′ and t2;σ′′ (since σ1 and σ2 are coinitial
and cofinal by hypothesis, also t1;σ′ and t2;σ′′ are coinitial and cofinal)
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and we obtain that t2;σ′′ has a shorter equivalent forward trace and
so also σ2 has a shorter equivalent forward trace. We can conclude by
induction.

t1 and t2 forward: by assumption the two transitions are different. If they
are not concurrent then they should conflict on a thread process κ : P
that they both consume and store in different memories. Since the two
traces are cofinal there should be t′2 in σ2 creating the same memory as
t1. However no other process κ : P is ever created in σ2 thus this is not
possible. So we can assume that t1 and t2 are concurrent. Again let
t′2 be the transition in σ2 creating the same memory of t1. We have to
prove that t′2 is concurrent to all the previous transitions. This holds
since no previous transition can remove one of the processes needed
for triggering t′2 and since forward transitions can never conflict on
k. Thus we can repetitively apply the Square Lemma to derive a trace
equivalent to σ2 where t2 and t′2 are consecutive. We can apply a similar
transformation to σ1. Now we can apply the Square Lemma to t1 and
t2 to have two traces of the same length as before but where the first
pair of different transitions is closer to the end. The thesis follows by
inductive hypothesis.

t1 and t2 backward: t1 and t2 cannot remove the same memory. Let m1

be the memory removed by t1. Since the two traces are cofinal, either
there is another transition in σ1 putting back the memory or there is
a transition t′1 in σ2 removing the same memory. In the first case, t1
is concurrent to all the backward transitions following it, but the ones
that consume processes generated by it. All the transitions of this kind
have to be undone by corresponding forward transitions (since they are
not possible in σ2). Consider the last such transition: we can use the
Square Lemma to make it the last backward transition. The forward
transition undoing it should be concurrent to all the previous forward
transitions (the reason is the same as in the previous case). Thus we can
use the Square Lemma to make it the first forward transition. Finally
we can apply the simplification rule t•; t � εtarget(t) to remove the two
transitions, thus shortening the trace. The thesis follows by inductive
hypothesis.

�
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Appendix B.2. Proofs of Section 3.2

Appendix B.2.1. Labelled transition system semantics for choπ

In [21], Boreale and Sangiorgi do not define their causal π-calculus via
a reduction semantics but with a labelled transition system. To show that
our notion of causal process indeed corresponds to that of Boreale and San-
giorgi, we present here a labelled transition system semantics for choπ directly
adapted from [21] to our higher-order context. We then prove that the la-
belled transition system semantics and the reduction semantics for choπ are
in agreement.

The labelled transition system semantics of choπ is given in Figure B.10,
where α ranges over channel names a and their complements of the form a.
The rules in Figure B.10 are a direct adaptation of the rules in [21] to the
asynchronous higher-order π, with the use of concretions and abstractions,
following Milner and Sangiorgi [15, 17]. A concretion takes the form νã. 〈P 〉A,
where ã ⊆ fn(P ). An abstraction takes the form (X)A. We use C,D and
their decorated variants to range over concretions, and F,G and ther dec-
orated variants to range over abstractions. We call agent an abstraction, a
concretion or a causal process, and by abuse of notation, we also use A,B
and their decorated variants to range over agents. The application operator
• is defined by the following rule (where by convention ã ∩ fn(A) = ∅):

(X)A • νã. 〈P 〉B = νã. A{P/X} | B

In addition, we define in Figure B.11 operations νa.A, A | B, B | A, and
K :: A for arbitrary agents A and causal processes B. Finally, we define
inductively the operation of substitution of a key k by a set of keys K in a
causal process as follows:

(K ′ ∪ {k}){K/k} = K ′ ∪K if k 6∈ K ′

K ′{K/k} = K ′ if k 6∈ K ′

P{K/k} = P

(K ′ :: A){K/k} = K ′{K/k} :: A{K/k}
(νa.A){K/k} = νa. (A{K/k})
(A1 | A2){K/k} = (A1{K/k}) | (A2{K/k})

The agreement between the two semantics is given by the following result.

Proposition 2. A
τ−→≡ A′ if and only if A→ A′.
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(Out) a〈P 〉
a−−→
∅;k
〈P 〉0 (In) a(X) . P

a−−→
∅;k
{k} :: (X)P

(Cau)
A

α−−→
K;k

A′

K ′ :: A
α−−−−−→

K∪K′;k
K ′ :: A′ (Res)

A
α−−→
K;k

A′ fn(α) 6= a

νa.A
α−−→
K;k

νa.A′

(Parl)
A1

α−−→
K;k

A′
1

A1 | A2
α−−→
K;k

A′
1 | A2

(Parr)
A1

α−−→
K;k

A′
1

A2 | A1
α−−→
K;k

A2 | A′
1

(T-cau)
A

τ−→ A′

K :: A
τ−→ K :: A′ (T-res)

A
τ−→ A′

νa.A
τ−→ νa.A′

(T-parl)
A1

τ−→ A′
1

A1 | A2
τ−→ A′

1 | A2

(T-parr)
A1

τ−→ A′
1

A2 | A1
τ−→ A2 | A′

1

(Coml)
A1

a−−−→
K1;k

C A2
a−−−→

K2;k
F k 6∈ fk(A1, A2)

A1 | A2
τ−→ (F • C){K1/k}

(Comr)
A1

a−−−→
K1;k

C A2
a−−−→

K2;k
F k 6∈ fk(A1, A2)

A2 | A1
τ−→ (F • C){K1/k}

Figure B.10: Transition system rules for choπ

νa. ((X)A) = (X)νa.A νa. (νc̃. 〈P 〉A) = νa, c̃. 〈P 〉A if a ∈ fn(P )

νa. (νc̃. 〈P 〉A) = νc̃. 〈P 〉νa.A if a 6∈ fn(P )

((X)A) | B = (X)(A | B) B | ((X)A) = (X)(B | A)

(νc. 〈P 〉A) | B = νc. 〈P 〉(A | B) B | (νc. 〈P 〉A) = νc. 〈P 〉(B | A)

K :: ((X)A) = (X)K :: A K :: (νc. 〈P 〉A) = νc. 〈P 〉K :: A

Figure B.11: Operations on agents
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The proof of this proposition is long but completely standard. We give
details below.

Note that, thanks to the agreement with the reduction semantics, A ↓α
if and only if A

α−−→
K;k

A′ for some k,A′.

Appendix B.2.2. Proof of Proposition 2

We prove in this section the equivalence between the labelled transition
system semantics and the reduction semantics for choπ. We start with a few
additional notions used in the proofs.

We extend the structural congruence relation ≡ to agents using the ad-
ditional rules below (considering that rule E.α extends to agents as well):

(E-Cnc)
P ≡ Q A ≡ B

νã. 〈P 〉A ≡ νã. 〈Q〉B
(E-Abs)

A ≡ B

(X)A ≡ (X)B

An easy induction on the derivation of A ≡ B gives us the following
lemmas.

Lemma 41. For all agents A,B and process P , if A ≡ B then A{P/X} ≡
B{P/X}.

Lemma 42. For all agents A,B, A ≡ B implies A{K/k} ≡ B{K/k}.

Using Lemma 42, an easy induction on the structure of a causal process
gives us the following lemma:

Lemma 43. For all causal processes A, k 6∈ K, (K :: A){K∪K′/k} ≡ K ::
A{K′/k}.

Lemma 44. If F ≡ F ′ and C ≡ C ′, then F • C ≡ F ′ • C ′.

Proof. We must have C = νã. 〈P 〉A2, F = (X)A1, C ′ = νã. 〈P ′〉A′2, F ′ =
(X)A′1, with P ≡ P ′, A1 ≡ A′1 and A2 ≡ A′2. Now

F • C = A1{P/X} | A2 definition of •
≡ A1{P

′
/X} | A2 congruence of ≡

≡ A′1{P
′
/X} | A′2 Lemma 41 and congruence of ≡

= F ′ • C ′ definition of •

. �
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Lemma 45. For all agents F,C, K :: (F • C) ≡ (K :: F ) • (K :: C)

Proof. Let F = (X)A and C = νc̃. 〈P 〉B. We compute:

K :: (F • C) = K :: νc̃. A{P/X} | B ≡ νc̃.K :: A{P/X} | K :: B

(K :: F ) • (K :: C) = ((X)K :: A) • (νc̃.K :: B) = νc̃.K :: A{P/X} | K :: B

�

An easy induction on the derivation of A
α−−→
K;k

A′ gives us the following

lemma:

Lemma 46. For any causal process A, and any keys k, k′, if A
α−−→
K;k

A′, then

A
α−−→

K;k′
A′.

We can then prove the main lemmas towards the agreement proposition:

Lemma 47. For all A,A′, B, α,K, k, if A
α−−→
K;k

A′ and B ≡ A, then there

exists B′ ≡ A′ such that B
α−−→
K;k

B′.

Proof. The proof is lengthy but completely standard. It proceeds by in-
duction on the derivation of B ≡ A. We just detail the non-classical cases
arising from the rules in Figure 4.

• (E-par): in this case, A = K ′ :: A1 | A2 and B = K ′ :: A1 | K :: A2.
A

α−−→
K;k

A′ can only have been derived via (Cau), with A1 | A2
α−−−→

K′′;k
A′′

and K = K ′ ∪K ′′, A′ = K ′ :: A′′ . In turn, A1 | A2
α−−−→

K′′;k
A′′ can only

have been derived via (E-parl) or (E-parr). We check only the case
(E-parl) as the other is similar. We thus have A1

α−−−→
K′′;k

A′1 with A′′ =

A′1 | A2. Using rule (Cau), we now have K ′ :: A1
α−−−−−→

K′∪K′′;k
K ′ :: A′1.

Using rule (Parl), we obtain

B = K ′ :: A1 | K ′ :: A2
α−−→
K;k

K ′ :: A′1 | K ′ :: A2

By (E-par), we have K ′ :: A′1 | K ′ :: A2 ≡ K ′ :: A′1 | A2 = A′, and
thus we have found B′ = K ′ :: A′1 | K ′ :: A2, such that B

α−−→
K;k

B′ and

B′ ≡ A′, as required.
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• (E-Cau): in this case, A = K1 :: K2 :: A1 and B = K1 ∪ K2 :: A1.
A

α−−→
K;k

A′ can only have been derived via (Cau), with K2 :: A1
α−−→

K′1;k
A′1

and K = K1∪K ′1, A′ = K1 :: A′1. In turn, the latter transition can only
have been obtained via (Cau), with A1

α−−→
K′2;k

A′′1 and K ′1 = K2 ∪ K ′2,

A′1 = K2 :: A′′1. Using (Cau) we get K1∪K2 :: A1
α−−−−−−−−→

K1∪K2∪K′2;k
K1∪K2 ::

A′′1 and thus B = K1 ∪K2 :: A1
α−−→
K;k

K1 ∪K2 :: A′′1. By rule (E-cau),

we have K1 ∪K2 :: A′′1 ≡ K1 :: K2 :: A′′1 = A′, and thus we have found
B′ = K1 ∪K2 :: A′′1 such that B

α−−→
K;k

B′ and B′ ≡ A′, as required.

• (E-res): in this case, A = K ′ :: νa.A1 and B = νa.K ′ :: A1. A
α−−→
K;k

A′

can only have been derived via (Cau), with νa.A1
α−−−→

K′′;k
A′′, K =

K ′∪K ′′, and A′ = K ′ :: A′′. In turn, the latter transition can only have
been derived via (Res), with A1

α−−−→
K′′;k

A′1, a 6= fn(α), and A′′ = νa.A′1.

Using (Cau) we get K ′ :: A1
α−−−−−→

K′∪K′′;k
K ′ :: A′1, and using (Res) we get

B = νa.K ′ :: A1
α−−→
K;k

νa.K ′ :: A′1. By (E-res) we get νa.K ′ :: A′1 ≡
K ′ :: νa.A′1 = A′, and thus we have found B′ = νa.K ′ :: A′1 such that
B

α−−→
K;k

B′ and B′ ≡ A′, as required.

• (E-nil): in this case, A = ∅ :: B. A
α−−→
K;k

A′ can only have been derived

via (Cau), with B
α−−→
K;k

B′ and A′ = ∅ :: B′. Now by (E-nil) we have

A′ ≡ B′, as required.

�

Lemma 48. For all A,A′, B, if A
τ−→ A′ and A ≡ B, then there exists

B′ ≡ A′ such that B
τ−→ B′.

Proof. The proof proceeds by induction on the derivation of A ≡ B. Again,
we give details only for the non-classical cases arising from the rules in Fig-
ure 4.

• (E.par): in this case, A = K :: A1 | A2 and B = K :: A1 | K :: A2.
A

τ−→ A′ can only have been derived via (T-cau), with A1 | A2
τ−→ A′′
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and A′ = K :: A′′. In turn, the latter transition could only have been
derived via (T-parl), (T-parr), (Coml), or (Comr). We check the
different cases:

– (T-parl): in this case, we have A1
τ−→ A′1, A′′ = A′1 | A2, and

A′ = K :: A′1 | A2. Applying (T-cau) and (T-parl), we get
B

τ−→ K :: A′1 | K :: A2. Now, by (E-cau) K :: A′1 | K :: A2 ≡
K :: A′1 | A2 = A′, hence we have found B′ = K :: A′1 | K :: A2 as
required.

– (T-parr): this case is similar to the (T-parl) one.

– (Coml): in this case, A1
a−−→

K1;k
C, A2

a−−→
K2;k

F , A′′ = F{K1/k} •C,

k 6∈ fk(A1, A2). Using (Cau) twice and (Coml) we get B
τ−→ B′,

with B′ = (K :: F •K :: C){K∪K1/k}. Now using Lemma 42 and
Lemma 45, we get B′ ≡ (K :: F • C){K∪K1/k} and by Lemma 43
(note that k 6∈ K for k must not be in fk(K :: A1, K :: A2) for
applying (Coml), a condition which can always be met thanks to
Lemma 46) B′ ≡ K :: (F • C){K1/k} = A′, as required.

– (Comr): this case is similar to the (Coml) one.

• (E-Cau): in this case, A = K1 :: K2 :: A1 and B = K1 ∪ K2 :: A1.
A

τ−→ A′ can only have been derived via (T-cau) twice, leading to
A1

τ−→ A′1 and A′ = K1 :: K2 :: A′1. Now, applying (T-cau) we get
B

τ−→ K1 ∪K2 :: A′1 and by (E-cau) we get B ≡ K1 :: K2 :: A′1 = A′,
as required.

• (E-res): the reasoning proceeds like above, exploiting (Res) and (E-
res).

• (E-nil): immediate.

�

Lemma 49. For all causal processes A, the following properties hold:

1. If A
a−−→
K;k

νc̃. 〈P 〉B then A ≡ νc̃. (K :: a〈P 〉) | B.

2. If A
a−−→
K;k

F then A ≡ νc̃. (K :: a(X) . Q) | B for some c̃, Q,B, and

F ≡ (X)νc̃. (K ∪ {k} :: Q) | B.
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3. If A
τ−→ A′ then A ≡ νc̃. (K1 :: a〈P 〉) | (K2 : a(X) . Q) | B for some

c̃, K1, K2, a, P,Q,B, and A′ ≡ νc̃. (K1 ∪K2 :: Q{P/X}) | B.

Proof. We prove property 1 by induction on the derivation of A
a−−→
K;k

C,

where C = νc̃. 〈P 〉B for some c̃, P, B.

• (Out): in this case A = a〈P 〉, K = ∅ and C = 〈P 〉0, thus A ≡ ∅ :
a〈P 〉 | 0, as required.

• (Cau): in this case A = K1 :: A1, K = K1 ∪ K2, C = K1 :: C1,

and A1
a−−→

K2;k
C1. Assume C1 = νc̃. 〈P 〉B, then C = νc̃. 〈P 〉K1 :: B.

By induction assumption, we have A1 ≡ νc̃. (K2 :: a〈P 〉) | B. Thus
A = K1 :: A1 ≡ νc̃. (K1 ∪K2 :: a〈P 〉) | (K1 :: B), as required.

• (Parl): in this case, A = A1 | A2, A1
a−−→
K;k

C1, and C = C1 | A2.

Assume C1 = νc̃. 〈P 〉B, then C = νc̃. 〈P 〉(B | A2). By induction
assumption, we have A1 ≡ νc̃.K :: a〈P 〉 | B. Thus, A = A1 | A2 ≡
νc̃. (K :: a〈P 〉) | (B | A2), as required.

• (Parr): this case is similar to the (Parl) one.

• (Res): in this case, A = νe. A1, e 6= a, A1
a−−→
K;k

C1, and C = νe. C1.

Assume C1 = νc̃. 〈P 〉B, then C = νe. νc̃. 〈P 〉B. By induction assump-
tion A1 ≡ νc̃.K :: a〈P 〉 | B. Thus A = νe. A1 ≡ νe, c̃.K :: a〈P 〉 | B.
We now have two cases to consider, according to whether e ∈ fn(P ) or
not. If e ∈ fn(P ), we have C = νe, c̃. 〈P 〉B, and we are done. If not,
we have C = νc̃. 〈P 〉νe.B and A ≡ νc̃.K :: a〈P 〉 | νe.B, as required.

We prove property 2 by induction on the derivation of A
a−−→
K;k

F .

• (In): in this case, A = a(X) . Q, K = ∅, and F = {k} :: (X)Q. Thus
we have A ≡ ∅ :: a(X) . Q and F ≡ ∅ ∪ {k} :: (X)Q, as required.

• (Cau): in this case, A = K1 :: A1, A1
a−−→

K2;k
F1, k = K1∪K2, F = K1 ::

F1. By induction assumption, we have A1 ≡ νc̃. (K2 :: a(X) . Q) | B
for some c̃, Q,B, and F1 ≡ (X)νc̃. (K2 ∪ {k} :: Q) | B. Thus, A ≡
νc̃. (K1 ∪K2 :: a(X) .Q) | (K1 :: B), and F ≡ (X)νc̃. (K1 ∪K2 ∪{k} ::
Q) | (K1 :: B) as required.
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• (Parl): in this case, A = A1 | A2, A1
a−−→
K;k

F1, F = F1 | A2. By

induction assumption, we have A1 ≡ νc̃. (K :: a(X) . Q) | B for some
c̃, Q,B, and F1 ≡ (X)νc̃. (K ∪ {k} :: Q) | B. Thus, A ≡ νc̃. (K ::
a(X) . Q) | (B | A2), and F ≡ (X)νc̃. (K ∪ {k} :: Q) | (B | A2) as
required.

• (Parr): this case is handled as the (Parl) one.

• (Res): in this case A = νe. A1, e 6= a, A1
a−−→
K;k

F1, F = νe. F1. By

induction assumption, we have A1 ≡ νc̃. (K :: a(X) . Q) | B for some
c̃, Q,B, and F1 ≡ (X)νc̃. (K ∪ {k} :: Q) | B. Thus, A ≡ νe, c̃. (K ::
a(X) . Q) | B for some c̃, Q,B, and F ≡ (X)νe, c̃. (K ∪ {k} :: Q) | B,
as required.

We prove property 3 by induction on the derivation of A
τ−→ A′.

• (T-Cau): in this case, A = K :: A1, A1
τ−→ A′1 and A′ = K :: A′1.

By induction assumption A1 ≡ νc̃.K1 :: a〈P 〉 | K2 :: a(X) . Q | B,
A′1 ≡ νc̃.K1 ∪K2 :: Q{P/X} | B for some c̃, K1, K2, a, P,Q,B. Thus

A ≡ νc̃. (K ∪K1 :: a〈P 〉) | (K ∪K2 :: a(X) . Q) | (K :: B)

and
A′ ≡ νc̃. (K ∪K1 ∪K2 :: Q{P/X}) | (K :: B)

as required.

• (T-res), (T-parl), (T-parr): the proof is similar to the one of the
(T-Cau) case.

• (Coml): in this case, we have A = A1 | A2, A1
a−−→

K1;k
C, A2

a−−→
K2;k

F , and

A′ = F{K1/k} •C. Using property 1, we have A1 ≡ νc̃.K1 :: a〈P 〉 | B1

for some c̃, P, B1, and C = νc̃. 〈P 〉 | B1 Using property 2, we have
A2 ≡ νẽ.K2 :: a(X).Q | B2 for some ẽ, Q,B2, and F ≡ νẽ. (K2∪{k} ::
Q) | B2 Thus,

A ≡ νc̃, ẽ. (K1 :: a〈P 〉) | (K2 :: a(X) . Q) | (B1 | B2)

and

A′ ≡ νc̃, ẽ. (((K2 ∪ {k} :: Q) | B2){P/X} | B1){K1/k}
≡ νc̃, ẽ. (K2 ∪K1 :: Q{P/X}) | (B1 | B2)
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as required (noting that X is not free in B2 and that k 6∈ fk(B1, B2)
for k 6∈ fk(A1, A2)).

• (Comr): this case is proved like the (Coml) one.

�

We can finally prove the agreement proposition itself:

Proposition 2. A
τ−→≡ A′ if and only if A→ A′.

Proof. The only if part is a direct consequence of Lemma 49(3). For the
if part, we reason by induction on the derivation of A→ A′:

• (C-red): in this case, A = K1 :: a〈P 〉 | K2 :: a(X) . Q, and A′ =
K1 ∪ K2 : Q{P/X}. We can apply (Out) followed by (Cau) to get

K1 :: a〈P 〉 a−−→
K1;k

〈P 〉K1 :: 0. We can apply (In) followed by (Cau)

to get K2 :: a(X) . Q
a−−→

K2;k
(X)K2 ∪ {k} : Q. Choosing k such that

k 6∈ K1 ∪K2, and applying (Coml) we get:

A
τ−→ (K2 ∪ {k} : Q){P/X}{K1/k} = K2 ∪K1 :: Q{P/X}

• closure by ≡: in this case, we have A ≡ B, B → B′ and B′ ≡ A′. By
induction assumption, we have B

τ−→≡ B′. Now by Lemma 48, we have
A

τ−→ A′′ with A′′ ≡ B′ and thus A′′ ≡ A′, as required.

• closure by evaluation context: in this case we reason by induction on
the form of evaluation context E:

– E = •: this is the case (C-red) above.

– E = νa.E′: in this case A = νa.B and A′ = νa.B′ for some B, B′

such that B → B′. By induction assumption, B
τ−→ B′′ ≡ B′. The

thesis follows by applying rule T-res since ≡ is a congruence.

– E = E′ | BP and symmetric: in this case A = B | BP and
A′ = B′ | BP for some B, B′ such that B → B′. By induction
assumption, B

τ−→ B′′ ≡ B′. The thesis follows by applying rule
T-parl since ≡ is a congruence.

�
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Appendix C. Proofs of Section 4

Appendix C.1. Proofs of Section 4.3

Before proving Lemma 13 below, which concerns configurations, we prove
a corresponding result on processes.

Lemma 50. For all names k and rhoπ processes P , Q, if P ≡ Q then
nf(LP Mk) ≡Ex nf(LQMk).

Proof. By induction on the derivation of P ≡ Q. The only interesting case
is the base one, corresponding to the application of an axiom. We have a
case analysis on the applied axiom. We consider just the most interesting
cases.

P | Q ≡ Q | P . If either P or Q is congruent to 0, the thesis banally follows.
Otherwise

nf(LP | QMk) = νl, h. nf(LP Ml) | nf(LQMh) | nf(KillP l h k)

≡Ex νl, h. nf(LP Ml) | nf(LQMh) | nf(KillP h l k)

= nf(LQ | P Mk)

as desired, where we used axiom Ax.C.

P | (Q | R) ≡ (P | Q) | R. If at least one among P , Q and R is equivalent to
0 the thesis banally follows. Otherwise

nf(LP | (Q | R)Mk) =

= νh, l, h′, l′. nf(LP Mh) | nf(LQMh′) | nf(LRMl′) | nf(KillP h l k) |
nf(KillP h′ l′ l)

=α νh, l, h′, l′. nf(LP Mh′) | nf(LQMl′) | nf(LRMl) | nf(KillP h′ h k) |
nf(KillP l′ l h)

≡Ex νh, l, h′, l′. nf(LP Mh′) | nf(LQMl′) | nf(LRMl) | nf(KillP h′ l′ h) |
nf(KillP l h k)

= nf(L(P | Q) | RMk)

as desired, where we used axiom Ax.A. �

Lemma 13. Let M , N be closed consistent configurations. Then M ≡ N
implies nf(LMM) ≡Ex nf(LNM).
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Proof. By induction on the derivation of M ≡ N . The only interesting
case is the base one, corresponding to the application of an axiom. If the
axiom is applied to a process only, the thesis follows from Lemma 50 and
from the observation that processes are always applied to keys. We show
below the most interesting of the other cases:

(νu.M) | N ≡ νu. (M | N). By definition:

nf(L(νu.M) | NM) = nf(L(νu.M)M) | nf(LNM)
= nf(νu. LMM) | nf(LNM)
= νu. nf(LMM) | nf(LNM)
≡ nf(νu. (LMM | LNM))
= nf(νu. LM | NM)
= nf(Lνu. (M | N)M)

κ : νa. P ≡ νa. κ : P . We distinguish two cases, depending on the form of κ.
If κ = 〈hi, h̃〉 · k then by definition:

nf(L〈hi, h̃〉 · k : νa. P M) = nf(Lνa. P Mhi) | nf(Kill〈hi,h̃〉·k)

= νa. nf(LP Mhi) | nf(Kill〈hi,h̃〉·k)

≡ (νa. nf(LP Mhi) | nf(Kill〈hi,h̃〉·k)

= νa. nf(L〈hi, h̃〉 · k : P M)
= nf(Lνa. 〈hi, h̃〉 · k : P M)

The other case is simpler.
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k :
∏n
i=1 τi ≡ νh̃.

∏n
i=1(〈hi, h̃〉 · k : τi). By definition:

nf(Lk :
n∏
i=1

τiM) = nf(L
n∏
i=1

τiMk) =

νh1, l1. nf(Lτ1Mh1) | nf(L
n∏
i=2

τiMl1) | nf(KillP h1 l1 k) =

νh1, h2, l1, l2. nf(Lτ1Mh1) | nf(Lτ2Mh2) | nf(L
n∏
i=2

τiMl1) |

nf(KillP h1 l1 k) | nf(KillP h2 l2 l1) =

νh̃, l̃.
n−1∏
i=1

nf(LτiMhi) | nf(LτnMln−1) | nf(KillP h1 l1 k) |

n−1∏
i=2

nf(KillP hi li li−1)

Now by α−converting the key of the last τn from ln−1 into hn we obtain
a term of the form

νh̃, l̃.
n∏
i=1

nf(LτiMhi) | nf(KillP h1 l1 k) |
n−2∏
i=2

nf(KillP hi li li−1) |

nf(KillP hn−1 hn li−2) =

nf(Lνh̃.
n∏
i=1

〈hi, h̃〉 · k : τiM)

Note that in this case we assumed that the | is right associative, in order
to unroll the parallel composition from

∏n
i=1LτiM to Lτ1M |

∏n
i=2LτiM. �

Before proving Lemma 14 below, we show a few auxiliary results.
First, we characterize the effect of reduction to normal form on a term of

the form C[P ]. To this end we define normal form on contexts, which also
computes the substitution applied to the hole •. To work with contexts with
one hole only, we require that for all the higher-order applications (X)P C1[•]
either P is linear or P is already in normal form. In the first case the bullet
is not replicated, and single-hole contexts are enough. In the second case, no
inductive call is required.

Definition 19 (Context normal form). The context normal form func-
tion nfc(C[•]) is defined as nfc(C[•], ∅), where the second parameter is used
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for computing the substitution applied to the bullet. The result is also a pair
(C′[•], σ). The function nfc(C[•], σ) is defined as follows:

nfc(P | C1[•], σ) = nf(P ) | C′[•], σ′ if nfc(C1[•], σ) = C′[•], σ′

nfc(νa.C1[•], σ) = νa.C′[•], σ′ if nfc(C1[•], σ) = C′[•], σ′

nfc((X)C1[•] P, σ) = C′[•], σ′ if nfc(C1{P/X}[•], σ · {P/X}) = C′[•], σ′

nfc((X)P C1[•], σ) = C′[•], σ′ if nfc(P{C1[•]/X}, σ) = C′, σ′ and P is linear

nfc((X)P C1[•], σ) = P{C1[•]/X}, σ · {C1[•]/X} if P is in normal form

nfc((h)C1[•] l, σ) = C′[•], σ′ if nfc(C1{l/h}[•], σ · {l/h}) = C′[•], σ′

nfc(a〈C1[•]〉, σ) = a〈C1[•]〉, σ
nfc(a(X) . C1[•], σ) = a(X) . C1[•], σ
nfc(•, σ) = •, σ

This definition enables the lemma below.

Lemma 51. If nfc(C[•], ∅) = C1, σ then nfc(C[•], σ′) = C1, σ
′ · σ

The notions of normal form for processes and for contexts are compatible.

Lemma 52. nf(C[P ]) = C′[nf(Pσ)] with nfc(C[•]) = C′[•], σ if for each
higher-order application (X)Q C1[•] Q is either linear or in normal form.

Proof. By structural induction on C[•]. We show a few cases as examples:

• C[•] = Q | C1[•]) we have that nf(Q | C1[P ]) = nf(Q) | nf(C1[P ]).
By inductive hypothesis we have that nf(C1[P ]) = C′1[nf(Pσ)] with
nfc(C1[P ], ∅) = C′1, σ, and we can conclude by noting that nfc(Q |
C1[•], ∅) = nf(Q) | nfc(C1[•], ∅).

• C[•] = (X)C1[•] Q) we have to show that nf((X)C1[P ] Q) = C′[nf(Pσ)]
with nfc((X)C1[•] Q, ∅) = C′, σ. By definition, nfc((X)C1[•] Q, ∅) =
nfc(C1[•]{Q/X}, {Q/X}). We have that nf(C1[P ]{Q/X}) = nf(C1{Q/
X}[P{Q/X}]) = C′′[nf(P{Q/X}σ′)] where nfc(C1{Q/X} [•], ∅) = C′′, σ′
and by using Lemma 51 nfc(C1{Q/X}[•], {Q/X}) = C′′, {Q/X} ·σ′. We
have that C′′, σ′{Q/X} = C′, σ. So nf((X)C1[P ] Q) = C′[nf(Pσ)] with
nfc((X)C1[•] Q, ∅) = C′, σ, as desired.
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• C[•] = nf((X)Q C1[•]) with Q linear) we have that nf((X)Q C1[P ]) =
nf(Q{C1[P ]/X}), but since Q is linear we can write Q{C1[P ]/X} = C2[P ],
hence nf((X)Q C1[P ]) = nf(Q{C1[P ]/X}) = nf(C2[P ]). By induc-
tive hypothesis we have that nf(C2[P ]) = C′2[Pσ] with nfc(C2[•], ∅) =
C′2, σ, as desired.

• C[•] = nf((X)Q C1[•]) with Q in normal form) we have that nf((X)Q
C1[P ]) = nf(Q{C1[P ]/X}) = Q{C1[P ]/X} and nfc((X)Q C1[P ], ∅) =
C′1[•], σ with nfc(Q{C1[•]/X}, ∅) = Q{C1[•]/X}, ∅ and C′1[•] = Q{C1[•]/

X}, and we can conclude by stating that C′1[P∅] = Q{C1[P ]/X}, as
desired. Note that if Q is in normal form then nf(Q{P/X}) = Q{P/
X}, since the substitution will take place in non active contexts. �

Substitutions preserve structural congruence ≡Ex.

Lemma 53. For any substitution σ = {l/h} or σ = {LP M/X}, if M ≡Ex N
then Mσ ≡Ex Nσ.

Proof. The proof is trivial for name substitutions. For higher-order ones
the proof is by induction on the derivation of M ≡Ex N , with a case analysis
on the last applied axiom of ≡Ex. All the cases are easy. �

Lemma 14. If P and Q are well formed and P ≡Ex Q then nf(P ) ≡Ex
nf(Q).

Proof. Let us consider P and Q generated by the encoding of Figure 7
where instead of having Trig processes, we substitute them with their normal
form. Thus we can apply Lemma 52. Let us consider one application of an
axiom. We have that P = C[L] and Q = C[R] with L ≡Ex R an axiom. By
Lemma 52 we have that nf(C[L]) = C′[nf(Lσ)] with nfc(C[•], ∅) = C′[•], σ,
and the same with nf(C[R]) = C′[nf(Rσ)]. By Lemma 53 we have that if
L ≡Ex R then Lσ ≡Ex Rσ. Also, nf(Lσ) ≡Ex nf(Rσ) since ≡Ex is closed
under normal form. Finally, C′[nf(Lσ)] ≡Ex C′[nf(Rσ)], as desired. �

Lemma 15. If nf(P ) ≡Ex nf(P ′) then for each Q ∈ addG(P ) there exists
Q′ ∈ addG(P ′) such that nf(Q) ≡Ex nf(Q′).

Proof. By definition of addG we have that P ≡ E[0] and P ′ ≡ E′[0], with
Q ≡ E[R]. Let us choose Q′ ≡ E′[R]. By using Lemma 52 we have that
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nf(E[R]) = E1[nf(Rσ)] and nf(E′[R]) = E2[nf(Rσ′)]. Since all the processes
added by the function addG are closed we have that Rσ = Rσ′ = R and
nf(E[R]) = E1[nf(R)] and nf(E′[nf(R)]) = E2[nf(R)]. By hypothesis we
have that nf(E[0]) ≡Ex nf(E′[0]). We also have E1[nf(0σ)] = E1[0] ≡Ex
E2[0] = E2[nf(0σ′)], and we can conclude by saying that also E1[nf(R)] ≡Ex
E2[nf(R)], that is nf(Q) ≡Ex nf(Q′), as desired. �

Lemma 16. If P ′ is well formed and P ′ ≡ C[l〈R〉] with l ∈ K for some
n-ary context C then P ′ ≡ C′[l〈R〉 | S] with S = Rew l or S = l(Z) . Z l for
some n-ary context C′.

Proof. By definition of well formedness there exists a rhoπ process P such
that Lνk. k : P M ⇒ P ′. The proof is by induction on the number of steps in
⇒. The base case is when Lνk. k : P M = P ′. The proof is easy by inspection
on the rules defining the encoding, since all messages on key channels are
created together with the corresponding Rew l.

In the inductive case we have that P ⇒ P ′′ → P ′ with P ′ ≡ C[l〈R〉].
For simplicity we consider just one instance of a message l〈R〉 at the time.
Note that messages cannot appear, but existing messages may be duplicated
because of communications or applications. We proceed by case analysis
on P ′′ → P ′. If the reduction does not involve the message l〈R〉 nor the
corresponding S the thesis follows easily. If the message l〈R〉 is inside a
communicated message or the argument of an application, then the corre-
sponding S is inside the same message or the same argument and they are
deleted, moved, or replicated together. If the message is read, it disappears
and nothing has to be proved. If the message is inside a trigger or in the
body of an abstraction on a process then a substitution may be applied to
it, but this has no effect on the corresponding S, and the thesis holds by
inductive hypothesis. If the reduction is an abstraction of the name l, then
the same renaming is done on the corresponding Rew l, and the thesis holds
by inductive hypothesis. If the reduction is the application of Rew l we move
from the first case of the thesis to the second one. If instead the reduction
is the communication of l(Z) . Z l, this removes the corresponding message
and nothing has to be proved (if it removes another message this means that
there were two parallel messages on the same channel l, and we may simply
exchange them in the correspondence). �

Lemma 17. If P ′ is well formed and P ′ ≡ C[a〈LP M, l〉] with a ∈ N for
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some n-ary context C then P ′ ≡ C′[a〈LP M, l〉 | S] with S = (KillM a l) or
S = (a(X, \l) . l〈(h)Msg a X h〉 | Rew l) for some n-ary context C′.

Proof. By inspection of the encoding of Figure 7 we note that a message
of the form a〈LP M, l〉 is only generated in the Msg process, together with
the corresponding KillM. Also, interaction with a KillM is the only way to
remove such a message. The case analysis is similar to the one in Lemma 16.
�

Lemma 18. Let P be a well formed HOπ+ process and Q ∈ addG(P ). If
nf(Q) ↪→ Q′ then there exists P ′ such that P ↪→∗ P ′ with Q′ ∈ addG(P ′).

Proof. The reduction nf(Q) ↪→ Q′ is due to a communication since pro-
cesses in normal form have no enabled applications.

We distinguish two cases: either the reduction ↪→ is due to the process
nf(P ) only or it involves garbage added by addG.

Let us consider the first case. By definition we have Q = E[R] with
P ≡ E[0] where R is the garbage added by the function addG. The form of
Q is preserved by the nf(·) function, where all the applications are executed.
Hence, nf(Q) ≡ E′[R′] with nf(P ) = E′[0]. Since the reduction does not
involve R we have that E′[R] ↪→ E′′[R] = Q′, but also E′[0] ↪→ E′′[0] = P ′.
Moreover we have that P ⇁∗ E′[0] ↪→ E′′[0] and we are done.

In the second case, the only garbage processes that may interact with
the context are either a (Rew l) process or a (KillM a l) process (the other
garbage processes are inactive). If the administrative step is due to the
applied form of (Rew l) then by Lemma 16 the context E contains a message
on the channel l, that is nf(Q) = E[l(Z) . Z l | R1] ≡ E1[l〈S〉 | l(Z) . Z l |
R1] ↪→ E1[(S l) | R1] = Q′. But since P is well formed and since the process
l(Z) . Z l has been added by the addG function, by Lemma 16 we have that
also P = E1[l〈S〉] ≡ E2[l〈S〉 | l(Z) . Z l] ↪→ E2[(S l)] = P ′. We can conclude
by noting that Q′ ∈ nf(addG(P ′)). The other case is similar using Lemma 17
instead of Lemma 16. �

Appendix C.2. Proofs of Section 4.4

Lemma 23. For each closed rhoπ process P , LP Mk ↪→∗ νũ. k〈LQM〉 | Rew k | S
with k 6∈ ũ, S =

∏
Ri, Ri = Rew ki or Ri = νt. (a(X, h)|t.R) and P ≡ νũ. Q.

Proof. By induction on the structure of P . We show only the most inter-
esting cases:
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P = a(X) . P ′ : be Y = (X c)c〈LP ′M〉, we have that

LP Mk = ((l)(Trig Y a l))k ⇁ Trig Y a k ⇁

νt. (t | a(X, h)|t . R | (KillT Y t k a)) ⇁

νt. (t | a(X, h)|t . R | t . k〈(h)Trig Y a h〉 | Rew k) ↪→
νt. a(X, h)|t . R | k〈(h)Trig Y a h〉 | Rew k ≡
(νt. a(X, h)|t . R) | k〈(h)Trig Y a h〉 | Rew k = k〈(h)Trig Y a h〉 | S

as desired.

P = νa. P ′ : we have that Lνa. P ′Mk = ((h)νa. LP ′Mh)k ⇁ νa. LP ′Mk. Now by
inductive hypothesis we know that LP ′Mk ↪→∗ νũ. k〈LQM〉 | S with P ′ ≡
νũ. Q and since restriction is an execution context we have νa. LP ′Mk ↪→∗
νa. νũ. k〈LQM〉 | S with νa. P ′ ≡ νa. νũ. Q, as desired.

P = P1 | P2 : we have that

LP Mk = ((l)(Par LP1M LP2M l)k ⇁ Par LP1M LP2M k ⇁
νh, l. LP1Mh | LP2Ml | KillP l h k ⇁
νh, l. LP1Mh | LP2Ml | (h(W )|l(Z) . k〈(h)Par W Z h〉 | Rew k).

By inductive hypothesis we have that LP1Mh ↪→∗ νũ. h〈LP ′1M〉 | S1 with
P1 ≡ νũ. P ′1 and LP2Ml ↪→∗ νṽ. l〈LP ′2M〉 | S2 with P2 ≡ νṽ. P ′2. Hence we
have

νh, l. LP1Mh | LP2Ml | h(W )|l(Z) . (k〈(h)Par W Z h〉 | Rew k) ↪→∗

νh, l, ũ, ṽ. h〈LP ′1M〉 | S1 | l〈LP ′2M〉 | S2 | h(W )|l(Z) . k〈(h)Par W Z h〉 |
Rew k ↪→

νh, l, ũ, ṽ. S1 | S2 | k〈(h)Par P ′1 P
′
2 h〉 | Rew k ≡

νh, l, ũ, ṽ. k〈(h)Par LP ′1M LP ′2M h〉 | S

with S = Rew k | S1 | S2, and by garbage collecting names h, l we have
P ≡ νũ, ṽ. (P ′1 | P ′2) as desired. �

Lemma 24. For any rhoπ process R, if LRMl⇒ P then the following condi-
tions hold:

1. P 6≡ C[l1〈P1〉 | l1〈P2〉], with l1 ∈ K.
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2. P 6≡ C[(KillP l1 l2 l3) | (KillP l4 l5 l6)], with l1, l2, l3, l4, l5, l6 ∈ K and
{l1, l2} ∩ {l4, l5} 6= ∅ or l3 = l6.

3. P 6≡ C[(KillP l1 l2 l) | (Mem P a Q h l3 k)], with l, l1, l2, l3, h, k ∈ K
and l1 = l3 or l2 = l3.

Proof. By inspecting the encoding of Figure 7.
For condition 1 the proof is by structural induction on R, using as induc-

tive hypothesis that messages are created only on the key channel passed to
the process or on fresh key channels. In basic cases (0 process, message or
trigger), one message is created on the received channel, plus one if the Rew l
is executed, but this consumes a message on the same channel thus preserv-
ing the invariant. For restriction, the thesis follows by inductive hypothesis.
For Par, two distinct fresh names are passed to the parallel processes, thus
by inductive hypothesis their messages will not be on the same channel as
the one created by the KillP. For Trig, a fresh name is passed to the contin-
uation, thus by inductive hypothesis its messages will not conflict with the
one created by the KillT or by the one created by the Trig in the Mem. Note
that these last two messages may not conflict since for them to be created
the token t is needed, and either KillT or the Trig may read it, but not
both of them.

For condition 2, note that KillP is generated only by a Par process. The
first two arguments are fresh, thus they cannot be used by different KillP.
For the last argument, we can reason as above to show that at most one
KillP for each name may be created.

For condition 3 we can see that the channel used by the Mem is fresh, and
the same for the ones used by KillP, thus they may not coincide. �

Before proving Lemma 25 below we show a few auxiliary results.

Lemma 54 (Input key invariant). For each rhoπ process R and key l we
have:

1. LRMl 6⇒ E[l(X) . P ], unless the trigger has been generated by an appli-
cation of Rew l.

2. LRMl 6⇒ E[l(X)|l′(W ) . P ].

3. LRMl 6⇒ E[l′(X) . P | l′(X) . Q] for each l′ ∈ K and l′ 6= l, unless one
of the triggers has been generated by an application of a Rew l′.
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Proof. All the cases are proved by induction on n, showing that no such
derivation with less than n steps exists. All the base cases are trivial, since
the starting term has no trigger in an active position. Let us consider the
different inductive cases.

(1) We reason by contradiction. Suppose that LRMl ⇒ E[l(X) . P ] in
n steps. By looking at the encoding in Figure 7 we note that a trigger on
a key channel can only occur inside a Mem term. However the subject k is
generated fresh in the clause defining the Trig process, thus it cannot be l.
This contradiction concludes the proof.

(2) Suppose towards a contradiction that LRMl ⇒ E[l(X)|l′(Z) . P ] in n
steps. By looking at the encoding we note that a trigger reading two messages
can only be generated by a KillP process. However, the two names are
generated fresh in the clause defining the Par process, against the hypothesis
that one of them can be l.

(3) We use the same proof strategy as in (1) and (2). Triggers on keys
l′ ∈ K with l 6= l may be generated only by Mem processes, but since the used
key is fresh two triggers may not have the same key. �

Messages on channels l ∈ K carry translations of processes with no
toplevel restrictions.

Lemma 55. For each rhoπ process R, LRMl ⇒ C[l〈Q〉] implies Q = LQ′M
where Q′ has no toplevel restriction.

Proof. We proceed by induction on the number of reductions in ⇒. The
proof of the base case is by structural induction on R. We show a few cases
as examples.

R = a〈P 〉 : by definition

La〈P 〉Mh = (l)((a X l)Msg a X l)h =

(l)((a X l)(a〈X, \l〉 | (KillM a l)) a LP M l)h =

(l)(((a X l)(a〈X, \l〉 | (((a l)a(X, \l) . l〈(h)Msg a X h〉 |
(Rew l)) a l))a LP M l)h

as desired since (h)Msg a X h = La〈X〉M.

R = νa. P : by definition Lνa. P Mh = (l)(νa. LP M)h and we can conclude by
inductive hypothesis on P .
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R = P1 | P2 : by definition

LP1 | P2Mh = (l)(Par LP1M LP2M l)h =

(l)(((X Y l)νh, k.X h | Y k | (KillP h k l)) LP1M LP2M l)h =

(l)(((X Y l)νh, k.X h | Y k |
(((h k l)h(W )|k(Z) . l〈(l)(Par W Z l)〉) h k l)) LP1M LP2M l)h

and we can conclude since (l)(Par W Z l) = LW | ZM.

For the inductive case, either the message we are considering disappears, and
then there is nothing to prove, or the message remains in the context and
we can conclude by applying the inductive hypothesis. Note, in fact, that
higher order variables are always replaced by translations of rhoπ processes,
and that variables are never at top level inside the messages with subject l
above. �

Lemma 25. If nf(P1) ≡Ex nf(P2) and nf(P1) → P ′1 then nf(P2) ⇒ nf(P ′2)
with nf(P ′′1 ) ≡Ex nf(P ′2) and P ′′1 ∈ addG(P ′1). Furthermore, if → is forward
then ⇒ is ⇒f , if → is backward then ⇒ is ⇒b, if → is administrative then
⇒ is ↪→∗.

Proof. By case analysis on the used axiom P ≡Ex Q and on the structure of
nf(P1). Since we are dealing with processes in normal form,→ is a communi-
cation. Hence we can express nf(P1) as an active context E[a〈R〉 | a(X) . S]
(the cases where the trigger has different forms are similar). We will just
consider a few interesting cases, the remaining ones are similar. The second
part follows by noticing that in the proofs below the same trigger is used to
mimic the reduction (possibly together with some auxiliary reductions).

P | Q ≡Ex Q | P . There are four places where the axiom could be applied: in
the context, inside the message content, inside the trigger continuation,
or to the context hole. We will consider the second case as an example.
We have that nf(P1) can be written as E[a〈C[P | Q]〉 | a(X) . S]
and nf(P2) as E[a〈C[Q | P ]〉 | a(X) . S]. We have that nf(P1) →
E[S{C[P |Q]/X}] and nf(P2)→ E[S{C[Q|P ]/X}], with E[S{C[P |Q]/X}] ≡Ex
E[S{C[Q|P ]/X}], and we can conclude by applying Lemma 14.

Ax.C. We have that nf(P1) = E[nf(KillP l h k)] = E[l(Z)|h(W ). k〈(h)Par
Z W l〉]. If the communication is performed by the context E[•]
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then the thesis banally follows. If the communication involves the
hole, we should have in the context two messages of the form l〈P 〉
and h〈Q〉, hence E[nf(KillP l h k)] ≡ E′[l〈P 〉 | h〈Q〉 | l(Z)|h(W ) .
k〈(h)Par Z W l〉] → E′[k〈(h)Par P Q l〉], and by expanding the def-
inition of Par we have that nf(P1) → E′[k〈(h)(νl1, l2. (P l1) | (Q l2) |
KillP l1 l2 l)〉] ≡Ex E′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 l)〉].
Since nf(P2) → E′[k〈(h)(νl1, l2. (Q l1) | (P l2) | KillP l2 l1 l)〉] the
thesis follows.

Ax.P. We have nf(P1) = E[l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)]. The con-
text can interact with the hole by reading messages on l1 or l2. By
Lemma 54 only processes generated by a Rew, by a KillP, or by a Mem

can read this kind of messages. Let us consider the Rew case. We have
that nf(P1) ≡ E′[l1(Z) . Z l1 | l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)]
→ E′[LP Ml1 | l2〈LQM〉 | nf(KillP l1 l2 l)]. By using Lemma 55 and
the axiom Ex.Unfold we have that LP Ml1 ≡Ex Rew l1 | l1〈LP M〉,
and then E′[LP Ml1 | l2〈LQM〉 | nf(KillP l1 l2 l)] ≡Ex E′[Rew l1 |
l1〈LP M〉 | l2〈LQM〉 | nf(KillP l1 l2 l)]. So E[Rew l1 | l1〈LP M〉 | l2〈LQM〉 |
nf(KillP l1 l2 l)] ≡Ex nf(E[Rew l1 | l〈(h)Par LP M LQM h〉 | Rew l]),
as desired. The case of a KillP corresponds to a reduction inside the
hole, since no other message on the same channel can exist thanks to
condition 1 of Lemma 24, and no other KillP may read the same mes-
sages thanks to condition 2 of Lemma 24. In this case we have that
nf(P1) = E[l1〈LP M〉 | l2〈LQM〉 | (l1(Z)|l2(W ) . (l)Par Z W h | Rew l)]→
E[(l)Par LP M LQM h | Rew l] and the thesis banally follows. The case of
a Mem can never happen thanks to condition 3 of Lemma 24.

Reductions from the right member of the axiom are trivially matched
since the left member reduces to the right one.

Ax.A. We have that nf(P1) = E[νl′. l1(Z)|l2(W ).l′〈(h)Par Z W h | Rew l′〉 |
l′(Z ′)|l3(W ′) . l〈(h)Par Z ′ W ′ h | Rew l〉]. The hole may perform a
communication only if there are two messages on l1, l2 in the context.
In this case, we have that nf(P1) ≡ E′[νl′. l1〈P 〉 | l2〈Q〉 | (l1(Z)|l2(W ).
l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)] → E′[l′〈(h)Par P Q h〉 |
Rew l′ | nf(KillP l′ l3 l)] ≡Ex E[νl′. l1〈P 〉 | l2〈Q〉 | (l1(Z)|l2(W ) .
l′〈(h)Par Z W h〉 | Rew l′) | nf(KillP l′ l3 l)] using axiom Ax.P, as
desired.

Ax.Unfold. Since P ≡ νũ. Q we have that nf(LP Ml) ≡ nf(Lνũ. QMl) =
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νũ. nf(LQMl), hence nf(P1) = E[νũ. nf(LQMl)]. If E[νũ. nf(LQMl)] →
R then also nf(P2) = E[νũ. l〈LQM〉 | l(Z) . Z l] → E[νũ. LQMl] ⇁∗
E[νũ. nf(LQMl)] → R, as desired. Similarly, if nf(P2) = E[νũ. l〈LQM〉 |
l(Z) .Z l]→ R′ from Lemma 23 we have nf(P1) = E[νũ. nf(LQMl)] ↪→∗
E[νũ. nf(νũ′. l〈LQ′M〉 | Rew l | S)] where S is garbage. Thanks to
Lemma 55 ũ′ is empty and Q′ = Q, thus E[νũ. nf(νũ′. l〈LQ′M〉 | Rew l |
S)] = E[νũ. l〈LQM〉 | l(Z) . Z l | S]→ R′ with R′ ∈ addG(R) as desired.
Note that this is the only case where garbage is generated.

Ax.Adm. By noting that the left member of the axiom can only perform a
communication, reducing to the right member of the axiom. �

Before proving Lemma 28 below we show some auxiliary results. In par-
ticular, we have to study where in a configuration a key may occur. We call
l-process, denoted by Pl, a process of a specific form.

Definition 20. Let Y = (X c)c〈LQM〉. An l-process is an HOπ+process of
one of the forms below, or obtained from them via one or more applications.

LP Ml l〈LP M〉 | Rew l
Msg a LQM l TrigY a l

Par LP M LQM l KillPh k l

νc. (Y LP M c) | (c(Z) . Z l) | (MemY a LP M l1 l l2) νu. LP Ml
νc. c〈LP M〉 | (c(Z) . Z l) | (MemY a LP M l1 l l2) 0

MemY a LP Mh k l MemY a LP M l k h

Essentially, each key l occurs at most twice (apart from occurrences in
Rew), once in an l-process and possibly once in a killer process or a memory
process.

We call primitive context a context originated during the translation of
a process.

Definition 21. A context C is called a primitive context if it is generated
by:

C ::= • | (l′)Msg a C l′ | (l′)Trig (X c)c〈C〉 a l′ | (l′)νa. (C l′) |
(l′)Par C LQM l′ | (l′)Par LP M C l′
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Lemma 56. For any rhoπ process P and any l ∈ n(LP M) ∩ K, we have
LP M = C[(l)Pl] for some primitive context C and some l-process Pl.

Proof. By structural induction on P . �

All the messages on channels a ∈ N carry a pair whose first element is
the translation of a process.

Lemma 57. For any rhoπ process P , if LP Mk ⇒ E[a〈Q, h〉] with a ∈ N then
Q = LRM.

Proof. By induction on the number of steps in⇒. The base case is proved
by inspection. The inductive case is easy. �

We can now prove the invariant on the use of keys.

Lemma 58. For any configuration νk. k : P if Lk : P M ⇒ R then for any
key l occurring in R one of the following statements holds:

1. R ≡ E[νl. R′], with R′ ∈ addG(Pl | S) where Pl is an l-process and S
is obtained from one of the following terms via 0 or more applications:
(KillP l l′ h), (KillP l′ l h), (Mem Y a LP M l1 l l2), 0.

2. R ≡ C[νh.C′[(l)Pl]h] where Pl is an l-process and C′ is generated from
a primitive context via 0 or more applications.

3. R ≡ C[νl. ((h)Ph)l] where Ph is an h-process.

4. R ≡ C[νl, c. (Y LQM c) | (c(Z) . Z l) | (Mem Y a LQM h l k)] where
Y = ((X c)c〈LP M〉).

Proof. By induction on the number of steps in Lk : P M⇒ R. For the base
case (n = 0) we have that Lνk. k : P M = νk. LP Mk. By Lemma 56 we have
that for any l ∈ n(LP M) ∩K we have LP M = C′[(l)Pl], that is for any l we can
write νk. LP Mk ≡ νk.C′[(l)Pl]k, and condition (2) holds.

In the inductive case we distinguish two possibilities: either name l did
not exist at the previous step, or it existed. By inspection of the encoding
one can see that the first case may only happen when recursive definitions
for Par or Trig are unfolded. In both the cases condition (1) is satisfied for
new names, with Pl = LP Ml in the first case and Pl = νc. c〈LP M〉 | (c(Z).Z l) |
(MemY a LP M l1 l l2) in the second case.

For the second possibility we have a case analysis according to which
condition holds before the additional step is done.
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Let us consider the condition (1). Reductions involving only E leave the
process in the same form. For other reductions we proceed by case analysis
on the form of Pl (we consider applied forms together with the form they
derive from). For simplicity we do not write addG if it does not change.
Adding it is however straightforward.

If Pl = LP Ml we proceed by case analysis on the structure of P . If
P = 0 then we have E[νl. Pl | S] ⇁ E[νl. l〈Nil〉 | Rew l | S], which sat-
isfies again condition (1). Similarly, if P = a〈Q〉 then E[νl. La〈Q〉M | S] ⇁
E[νl. Msg a LQM l], which satisfies again condition (1). The other cases are
similar.

If Pl = l〈LP M〉 | Rew l then E[νl. l〈LP M〉 | Rew l | S] can perform several
reductions. If Rew l is applied, then we stay in the same case. If Rew l is
already in its applied form then E[νl. l〈LP M〉 | l(Z).Z l | S] ↪→ E[νl. LP Ml | S],
which again satisfies the conditions. If the message on l is read by S then
there are two cases: either it is read by a memory, or by a KillP. In the first
case we have that:

E[νl. l〈LP M〉 | Rew l | (l(Z) . Msg a LQM l1 | Trig(X c)c〈LRM〉 a l2) | S] ↪→
E[νl. Rew l | (Msg a LQM l1) | (Trig(X c)c〈LRM〉 a l2) | S] ≡
E′[νl.0 | Rew l | S]

which satisfies again condition (1) since νl.0 | Rew l ∈ addG(νl.0). If the
message is read by a KillP then the context contains also a message on
channel h such that:

E[νl. l〈LP M〉 | Rew l | S] ≡
E1[νl. h〈LQM〉 | l〈LP M〉 | (l(Z)|h(W ) . k〈(h)Par Z W h〉 | Rew k) | S] ↪→
E1[(νl.0 | S) | k〈(h)Par LQM LP M h〉 | Rew k] ≡ E2[νl.0 | S]

which satisfies again condition (1).
If Pl = Msg a LQM l or Pl = Trig Y a l we have a few cases. If Pl reduces

alone then it is simply applied, and its applied form is still an l-process. Note
that neither S nor the context can interact with such a Pl before application.

Let us consider applied forms of Pl = Msg a LQM l. With one application
we get Pl = a〈LQM, l〉 | KillM a l. In this case E[νl. Pl | S] can perform
several reductions. If KillM is not in its applied form and it is applied, then
the thesis banally follows. If KillM is in its applied form, then it can interact
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with the message. In this case, we have that

E[νl. a〈LQM, l〉 | a(X, \l) . l〈(h)Msg a LQM h〉 | Rew l | S] ↪→
E[νl. l〈(h)Msg a LQM h〉 | (Rew l) | S]

and condition (1) still holds. If the message is read by the context, then it
is read either by a KillM (in its applied form) or by a Trig (in its applied
form). The first case has been treated just above. In the second case (we
only need to consider the trigger, and the token t needed for its activation)
we have that

E[νl. a〈LQM, l〉 | (KillM a l) | S] ≡
E1[νl. a〈LQM, l〉 | t | (a(X, h)|t . νk, c. (((X c)c〈LP M〉) X c) | (c(Z) . Z k) |
(Mem Y a X h k l)) | (KillM a l)| | S] ↪→
E1[νl, k, c. (((X c)c〈LP M〉) LQM c) | c(Z) . Z k | (Mem Y a LP M l k l1) | S] ≡
E2[νl. (Mem Y a LP M l k l1) | S]

and condition (1) still holds.
Let us consider applied forms of Pl = Trig Y a l, i.e., Pl = νt. t |

(a(X, h)|t . R) | (KillT Y t l a) where R = νk, c. (Y X c) | (c(Z) . (Z k)) |
(Mem Y a X h k l) and Y = (X c)c〈LQM〉. In this case E[νl. Pl | S] can
perform several reductions. If the KillT is applied then the thesis banally
follows. If the KillT is in its applied form then it can interact with t:

E[νl, t. t | (a(X, h)|t .f R) | (t . l〈(h)Trig Y a h)〉 | Rew l) | S] ↪→
E[νl, t. (a(X, h)|t .f R) | l〈(h)Trig Y a h〉 | Rew l | S] ≡
E1[νl. l〈(h)Trig Y a h〉 | Rew l | S]

as desired since l〈(h)Trig Y a h〉 | Rew l ∈ addG(La(X).QM). The only other
possibility is that the trigger reads a message from the context. Thanks to
Lemma 57 the message should be of the form a〈LP M, l1〉 for some P and some
l1. Therefore,

E[νl, t. t | (a(X, h)|t .f R) | KillT Y t l a | S] ≡
E1[νl, t. t | a〈LP M, l1〉 | (a(X, h)|t .f R) | KillT Y t l a | S]�

E1[νl, k, t, c. (((X c)c〈LQM〉) LP M c) | c(Z) . Z k | (Mem Y a LP M l1 k l) | S] ≡
E2[νk. (((X c)c〈LQM〉) LP M c) | c(Z) . Z k | νl. (Mem Y a LP M l1 k l) | S] ≡
E3[νl. (Mem Y a LP M l1 k l) | S]
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where condition (1) holds for name l. Note that condition (1) holds also for
the new name k.

If Pl = Par LP M LQM l then we have that E[νl. (Par LP M LQM l) | S] ↪→
E[νl, h, k. LP Mh | LQMk | (KillP h k l)], and we have that condition (1) is still
satisfied by name l and also by the new names h and k.

If Pl = KillP h k l and it reduces alone then it is applied, and condition
(1) still holds. Pl may interact with the context only if it is in its applied form
and there are two messages, one on h and one on k. Thanks to Lemma 55
they should contain translations of processes, thus:

E[νl. h(W )|k(Z) . l〈(h)Par W Z h〉] ≡
E1[νl. h(W )|k(Z) . l〈(h)Par W Z h〉 | h〈LP M〉 | k〈LQM〉] ↪→
E[νl. l〈(h)Par LP M LQM h〉 | Rew l]

and condition (1) still holds.
If Pl = νu. LP Ml then we can move the restriction into the context and

reduce to the case Pl = LP Ml.
If Pl = νc. (Y LP M c) | (c(Z) . Z l) | (Mem Y a LP M l1 l l2)] then

E[νl. (Pl | S)] can perform several reductions. If the Mem process is applied
then condition (1) is still satisfied. Since c and l are restricted, the only other
possible reduction is the application of Y = (X c)c〈LQM〉. Thus:

E[νl, c. (Y LP M c) | (c(Z) . Z l) | (Mem Y a LP M l1 l l2)] ⇁

E[νl, c. c〈LQM{LP M/X}〉 | (c(Z) . Z l) | (Mem Y a LP M l1 l l2)]

and condition (1) still holds. The case where the memory is in its applied
form is analogous.

If Pl = νc. c〈LP M〉 | (c(Z) .Z l) | (Mem Y a LP M l1 l l2) and the Mem process
is applied then condition (1) holds. Since c and l are restricted, the only
possible communication is the internal one along c:

E[νl, c. c〈LP M〉 | (c(Z) . Z l) | (Mem Y a LP M l1 l l2)] ↪→
E[νl, c. LP Ml | (Mem Y a LP M l1 l l2)] ≡
E[νl. (Pl | S)]

where condition (1) still holds. The case where the memory is in its applied
form is analogous.
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If Pl = Mem Y a LP M l k h and the Mem is applied, then the thesis banally
follows. If the Mem process is already in its applied form, then it may only
interact with the context via a message on k. Hence, we have

E[νl. k(Z) .b (Msg a LP M l) | (Trig Y a h)] ≡
E1[νl. k〈R〉 | k(Z) .b (Msg a LP M l) | (Trig Y a h)] 

E1[(νl. (Msg a LP M l)) | Trig Y a h] ≡
E2[νl. (Msg a LP M l))]

and condition (1) still holds.
The case Pl = (Mem Y a LP M h k l) is similar.
Since 0 has no reduction, in the case Pl = 0 there is nothing to prove.
Let us consider conditions (2), (3) and (4). If the context evolves by itself,

then they are still satisfied. For the hole to contribute, the only possibility
is that the context is an active context. For condition (2), we have a case
analysis on the form of C′. If C′ = •, then C[νh. ((l)Pl)h] ⇁ C[νh. Ph], the
name l disappears and the thesis trivially holds. If C′ = (l′)Msg a C′′[•] l′ then
we have C[νh. ((l′)Msg a C′′[(l)Pl] l′)h] ⇁ C[νh. Msg a C′′[(l)Pl] h]. Name l
disappears, thus the thesis holds trivially. Note that condition (2) holds for
name h. The other cases for contexts in non applied form are analogous.

Let us now consider contexts where the toplevel application has been
performed. Again we have a case analysis on the form of the context.
If the context has the form C[νh. Msg a C′[(l)Pl] h], then we have that
C[νh. Msg a C′[(l)Pl] h] ⇁ C[νh. a〈C′[(l)Pl], h〉 | KillM a h] and condition
(2) still holds. The other cases are similar.

If condition (3) holds, we have that C[νl. ((h)Ph)l] ⇁ C[νl. Pl], and con-
dition (1) holds for name l.

If condition (4) holds, we have that:

C[νl, c. (((X c)c〈LP M〉) LQM c) | (c(Z) . Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)] ⇁

C[νl, c. c〈LP M〉{LQM/X}] | (c(Z) . Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)] =

C[νl, c. c〈LP M{Q/X}〉] | (c(Z) . Z l) | (Mem (X c)c〈LP M〉) a LQM h l k)]

by applying Lemma 21. Condition (1) holds for the name l. If the reduction
involves the application of the Mem process, then condition (1) for name l is
still satisfied. �

Lemma 28. For any consistent configuration M , if LMM⇒ P and P ↪→∗ Q
then there exist Q′ and P ′ such that Q ↪→∗ Q′, P ′ ∈ addG(P ) with nf(P ′) ≡Ex
nf(Q′).
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Proof. By induction on the number n of steps in P ↪→∗ Q. In the base
case (n = 0) the thesis banally follows. For the inductive case, consider the
first step P ↪→ Q1 of P ↪→∗ Q. There are two cases to distinguish: whether
↪→ is an application ⇁ or a non labelled communication →. Let us consider
the first case. We have that P ⇁ Q1 and Q1 ↪→∗ Q. By inductive hypothesis
there exist Q′, Q′1 such that Q ↪→∗ Q′, Q′1 ∈ addG(Q1) and nf(Q′1) ≡Ex
nf(Q′). Since the added garbage does not forbid reductions we have that
there exists P ′ ∈ addG(P ) such that P ′ ⇁ Q′1. Thus nf(P ′) = nf(Q′1) ≡Ex
nf(Q′) as desired.

If the step is a non labelled communication → then we have three cases,
corresponding to the three kinds of non labelled trigger processes: a Rew

process, a killer process and the trigger in the translation of the continuation
of a rhoπ trigger.

Let us consider the case of a Rew process. We have that P ≡ E[l〈LP1M〉 |
l(Z) . Z l]→ E[LP1Ml]. By using Lemma 23 we have that LP1Ml ↪→∗ l〈LP2M〉 |
Rew l | S with S a parallel composition of garbage processes. Thanks
to Lemma 55, P1 has no toplevel restrictions (since it was argument of
a message), thus P2 = P1. So, we have that E[LP1Ml] ↪→∗ E[l〈LP1M〉 |
Rew l | S] ∈ addG(P ). Now from E[LP1Ml] ↪→∗ Q we have that by in-
ductive hypothesis Q ↪→∗ Q′ and there is P ′ ∈ addG(E[LP1Ml]) such that
nf(P ′) ≡Ex nf(Q′). Since the garbage does not forbid reductions we have
that there exists P ′′ ∈ addG(E[l〈LP1M〉 | Rew l | S]) such that P ′ ↪→∗ P ′′. From
Lemma 27 nf(P ′) ↪→∗ nf(P ′′). Thanks to Lemma 25 from nf(P ′) ≡Ex nf(Q′)
and P ′ ↪→∗ P ′′ we have that nf(Q′) ↪→∗ nf(Q′′) with P ′′′ ∈ addG(P ′′) and
nf(P ′′′) ≡Ex nf(Q′′). By composing garbage we also have P ′′′ ∈ addG(P ).
The thesis follows.

Let us consider the case of a killer process. We have a few subcases,
corresponding to the killer processes KillM, KillP and KillT. The main idea
here is that the communication is undone by a Rew. Let us consider a KillM

process. We have that P ≡ E[a〈LP1M, l〉 | (a(X, \l) . l〈(h)Msg a X h〉 | Rew l])
and Q1 = E[〈(h)Msg a LP1M h)〉 | Rew l]. Then we have:

Q1 ⇁E[l〈(h)Msg a LP1M h)〉 | l(Z) . Z l] ↪→
E[((h)Msg a LP1M h)l] ⇁∗ E[a〈LP1M, l〉 | (KillM a l)] = Q′

with nf(Q′) = nf(P ). Using the same approach used in the case of Rew,
we can compose this result with the inductive hypothesis to get the thesis.
Let us consider a KillP process. We have that P ≡ E[h〈LP1M〉 | l〈LQM〉 |
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(h(W )|l(Z) . k〈(h)ParW Z h〉 | Rew k)] and Q1 = E[k〈(h)ParLP1M LQM h〉 |
Rew k]. Then we have:

Q1 ⇁E[k〈(h)ParLP1M LQM h〉 | k(Z) . Z k]→
E[((h)Par LP1M LQM h)k] ⇁ E[νh, l. LP1Ml | LQMh | (KillP l h k)]

and by using Lemma 23 and Lemma 55 (to ensure that processes P1 and Q
have no toplevel restrictions) we have:

E[νh, l. LP1Ml | LQMh | (KillP l h k)] ↪→∗

E[νh, l. l〈LP1M〉 | Rew l | S1 | h〈LQM〉 | Rew h | S2 | (KillP l h k)] = Q′

To have a correspondence with P , we have to show that names h and l were
restricted also in P , and with the same scope. By using Lemma 58 we have
that P ≡ E1[νl, h. addG(h〈LP1M〉 | Rew h | l〈LQM〉 | Rew l | S)] (where S
includes (KillP l h k)), and

nf(E1[νl, h. addG(h〈LP1M〉 | Rew h | l〈LQM〉 | Rew l | S)]) ≡
nf(addG(Q′))

as desired.
If the communication is an internal communication in a trigger, we have

that

P ≡ E[νc. c〈LP1M〉 | c(Z) . Z k] ↪→
E[νc. LP1Mk] ≡Ex E[νc. c〈LP1M〉 | c(Z) . Z k]

as desired. �

Appendix C.3. Proofs of Section 4.5

Before proving Lemma 29 we show that barbs are preserved by the en-
coding.

Lemma 59. For each consistent configuration M , if M ↓a then nf(LMM) ↓a

Proof. Easy, by definition of barbs and of the encoding. �

Lemma 29. If M ↓a and LMM ↪→∗ Q then Q ↪→∗↓a.
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nf(P ′) ≡Ex nf(Q′′)

Figure C.12: Correspondence schema of barbs (numbers refer to Lemmas).

Proof. By Lemma 59 we have that if M ↓a then nf(LMM) ↓a. By definition
of normal form we have that LMM ⇁∗ nf(LMM), and by hypothesis we have
that LMM ↪→∗ Q. Using Lemma 27 we have that nf(M) ↪→∗ Q′ and Q ⇁∗ Q′.
Moreover, by Lemma 28 there exist Q′′ and P ′ such that Q′ ↪→∗ Q′′, P ′ ∈
addG(nf(LMM)) and nf(P ′) ≡Ex nf(Q′′). Since addG and ≡Ex do not remove
barbs we have nf(Q′′) ↓a as desired. The proof is graphically depicted in
Figure C.12. �

Before proving Lemma 30 below we prove some auxiliary results.
Applications never remove barbs.

Lemma 60. For any HOπ+ process P , if P ↓a and P ⇁ Q, then also Q ↓a.

Proof. From the definition of ↓a and of ⇁. �

Administrative steps do not add barbs.

Lemma 61. For each consistent configuration M such that νk. k : P ⇒M ,
if LMM ↪→∗ Q and Q ↓a, then nf(LMM) ↓a.

Proof. By hypothesis LMM ↪→∗ Q with Q ↓a, and by definition LMM ⇁∗
nf(LMM). By applying Lemma 27 we get Q ⇁∗ Q′ and nf(LMM) ↪→∗ Q′.
Since Q ↓a, and since applications (⇁) do not remove barbs (by Lemma 60),
we also have that Q′ ↓a. The above reasoning is depicted in Figure C.13.

We have to show that if Q′ has a barb then nf(LMM) has the same barb.
Since νk. k : P ⇒ M then fn(M) ∩ K = ∅ and also fn(Q) ∩ K = ∅ (by
Lemma 22). Thus we have no need to consider barbs in K.
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Figure C.13: Barbs with respect to administrative steps (numbers refer to Lemmas).

We proceed by case analysis on the reduction ↪→. Since Q′ is gener-
ated from nf(LMM) via administrative steps, then applications of the form
(((X c)c〈LP M〉) LQM c) or communications of the form c〈LP M〉 | (c(Z) . Z l) or
with a trigger of the form (k(Z) . (Msg a LP M l1) | (Trig ((X c)c〈LP M〉) a l2))
are never enabled. Thus, only communications involving a killer or a Rew

process may happen. A communication involving a killer does not add barbs
(since fn(Q′) ∩ K = ∅). A communication involving a Rew process does not
add barbs since it produces an application. Similarly, all the applications
involving killer, Rew and Mem processes do not add barbs. Nevertheless, other
applications, such as the application of a Msg process, may create barbs.
However, no such application is enabled in nf(LMM). The only way they may
become enabled is via a kill followed by a Rew. However, the created barb
was already present in nf(LMM) before the kill. This completes the proof. �

We now show that barbs of nf(LMM) come from barbs of M .

Lemma 62. For each consistent configuration M , if nf(LMM) ↓a then M ↓a.

Proof. By structural induction on M . Note that only rhoπ names may be
free, since all the names coming from rhoπ keys are bound (by Lemma 22).
Since sub-terms of consistent configurations are not consistent in general, we
have to consider in the induction both consistent configurations and their
sub-terms. If M = κ : P , we proceed by structural induction on P and
by case analysis on κ. We will consider just the case in which κ = k, the
other case with κ = 〈hi, h̃〉 · k is similar. If P = 0 then we have that
nf(Lk : 0M) = k〈Nil〉 | Rew k, but since k 6∈ N the process nf(Lk : 0M)
does not show any relevant barb. If P = a〈Q〉 then we have that nf(Lk :
a〈Q〉M) = a〈LQM, k〉 | (a(X, \k) . k〈(h)Msg a LQM h〉 | Rew k), which shows a
barb on a. Since also M ↓a, we are done. If P = a(X) . Q,we have that
nf(Lk : a(X) . QM) = νt. t | (a(X, h)|t . R) | (t . S) (for some R and S).
Since t is restricted then the entire process does not show any barb, and we
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are done. If P = Q1 | Q2, the tag κ has to be a key, since we are dealing
with consistent configurations. So, we have that nf(Lk : (Q1 | Q2)M) =
νh, l. nf(LQ1Mh) | nf(LQ2Ml) | (h(W )|l(Z) . S). The process may show a barb
because of either nf(LQ1Mh) or nf(LQ2Ml) (or both). Let us suppose that it is
because of nf(LQ1Mh), that is nf(LQ1Mh) ↓a. By definition of L M we have that
nf(LQ1Mh) = nf(Lh : Q1M) and hence nf(Lh : Q1M) ↓a. Now, by applying the
inductive hypothesis we have that (h : Q1) ↓a and then also k : (Q1 | Q2) ↓a,
as desired. The other cases are similar.

If M = 0, we have that L0M = 0 and the thesis banally follows. If
M = M1 | M2 we have that nf(LM1 | M2M) = nf(LM1M | LM2M) = nf(LM1M) |
nf(LM2M) and we can conclude by applying the inductive hypothesis on
nf(LM1M) and nf(LM2M). If M = νu.M1 we have that nf(Lνu.M1M) =
νu. Lnf(M1)M and we can conclude by applying the inductive hypothesis on
Lnf(M1)M. If M = [κ1 : a〈P 〉 | κ2 : a(X) . Q; k], then nf(LMM) = k(Z) . R
(for some R), that shows no barbs and we can conclude. �

Lemma 30. If LMM ↪→∗↓a then M ↓a.

Proof. By concatenating Lemma 61 and Lemma 62. �

Before proving Proposition 1 below, we prove some auxiliary results.
Each of the lemmas below shows that one of the axioms in ≡Ex is correct

with respect to weak bf barbed bisimulation (actually, the statement for
axiom Ex.P is slightly weaker). We consider together each axiom L ≡Ax R
from ≡Ax and its normal form nf(L) ≡Ex nf(R), since this is obtained via
applications. Below, we denote a multi-holes context as C.

Lemma 63. Axiom Ex.C and its normal form are correct with respect to
weak bf barbed bisimulation.

Proof. We show that the relationR below is a weak bf barbed bisimulation.

R1 ={((KillP l h k), (KillP h l k)) | h, l, k ∈ K}
R2 ={((a(X)|b(Y ) . R), (b(Y )|a(X) . R)) | a, b ∈ N ∧X, Y ∈ V ∧R ∈ P}
R′ =R1 ∪R2

R ={(C[P1, .., Pn],C[Q1, .., Qn]) | n ∈ N ∧ ∀i ∈ {1 . . . n}.(Pi, Qi) ∈ R′}

Let us consider the barbs. Since the context is the same on both the sides,
and the processes in the holes show no barbs, the barbs coincide.
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Let us consider reductions. We consider only challenges from the left,
since the reasoning is analogous for challenges from the right. If the process
C[P1, .., Pn] does a reduction, it is because either the context evolves by itself,
or one of the hole processes reduces by itself, or because of an interaction
between the context and one hole (no interaction between holes is possible).

If the context performs a reduction by itself, that is C[P1, .., Pn]→ C′[P1, ..,
Pm], then also C[Q1, .., Qn] → C′[Q1, .., Qm]. Note that the number of holes
may change because of the reduction.

Let us consider reductions in one hole. If C[P1, .., (KillP l h k), .., Pn] ⇁
C[P1, .., (h(W )|l(Z).R), .., Pn] (for someR) then also C[Q1, .., (KillP h l k), ..,
Qn] ⇁ C[Q1, .., (l(Z)|h(W ) . R), .., Qn] and we are still in the same relation.

Let us consider interactions between the context and one hole. For
C[P1, .., a(X)|b(Y ).R, .., Pn] to reduce, we need in the context two messages of
the form a〈S1〉 and b〈S2〉. If so, we have that C[P1, .., a(X)|b(Y ).R, .., Pn]→
C′[P1, .., R{S1,S2/X,Y }, .., Pm] and on the other side C[Q1, .., b(Y )|a(X) . R, ..,
Qn] → C′[Q1, .., R{S

′
2,S
′
1/Y,X}, .., Qm]. Since identity is included in R (it suf-

fices to consider a 0-ary context), and since (Si, S
′
i) ∈ R (since they are sub-

terms) we have (R{S1,S2/X,Y }, R{S
′
2,S
′
1/Y,X}) ∈ R, and also (C′[P1, .., R{S1,S2/

X,Y }, .., Pm],C′[Q1, .., R{S
′
2,S
′
1/Y,X}, .., Qm]) ∈ R, as desired. �

Before proving the lemma concerning axiom Ex.P we prove as auxiliary
result that the function addG does not introduce barbs.

Lemma 64. For any HOπ+ process P , if addG(P ) ↓a then P ↓a.

Proof. Easy, by looking at the definition of addG (Definition 15). �

Lemma 65. Applications of axiom Ex.P and of its normal form to well
formed HOπ+ processes are correct with respect to weak bf barbed bisimula-
tion.

Proof. Note that the axiom Ex.P alone is not correct, since the left term
has barbs at l1 and l2 which are not matched by the right term. However, in
well formed processes keys are always bound. We show below that applica-
tions of the axiom and of its normal form to well formed processes are always
correct.

Thanks to Lemma 58 restrictions on l1 and l2 may occur only in processes
of some forms. In particular, the only possibility is that for both l1 and l2
case (1) applies. Thus the process to which the axiom is applied is of the
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form E[νl1, l2. R
′] with R′ ∈ addG(R′′) where R′′ is obtained via zero or more

applications from l1〈LP M〉 | l2〈LQM〉 | (KillP l1 l2 l3). On the right side we
can assume l1 and l2 do not occur.

Let S(l1, l2, l3) denote a process of one of the following forms:

S(l1, l2, l3) = (KillP l1 l2 l3)

S(l1, l2, l3) = (l1(Z)|l2(W ) . l3〈(h)Par Z W h〉 | Rew l)
Let Tl be either a process of the form Tl = Rew l or of the form Tl =
(l(Z) . Z l). Let us write addG(P ) for any process Q ∈ addG(P ). Let

R′ = {(νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l))),

(νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Tl))}
R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧

C[P1, . . . , Pn],C[Q1, . . . , Qn] well formed}
We now prove that the relation R is a weak bf barbed bisimulation. The
thesis will follow since in well formed processes all the contexts where the
axiom can be applied have this form.

Let us consider barbs. On both sides barbs shown by the contexts C are
banally matched. The process νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l)) does
not show any barb, since addG does not add any barb thanks to Lemma 64.
On the other side, the process νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Tl) shows
only a barb at l. We have that:

νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l)) ↪→∗

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Rew l)
showing a barb at l as well.

Let us consider reductions. If C[P1, . . . , Pn] reduces it is because the
context reduces by itself or because of the hole processes. The first case is
banally matched by the process C[Q1, .., Qn]. In the second case, the process
νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l)) reduces. We have three cases:
the processes added by addG are not involved, the processes added by addG

reduce alone or they interact with the other processes. In the first case, if the
reduction is the application of the process S(l1, l2, l) then the right process
can match the reduction by staying idle. If it is a communication on the
channels l1 and l2 then we have that:

νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | (l1(W )|l2(Z) . l〈(h)Par LP M LQM h〉 | Rew l))→
νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Rew l))
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This step is matched by the right process by staying idle, since the process
in the i-th hole on the two sides become equal, and we can put them in
the context since the identity belongs to the relation (actually, processes
added by addG may be different, but they have no impact). The case where
processes inside addG reduce alone is banally matched. In the third case,
since the process νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l)) is well formed
then the only processes inside addG( ) able to interact are a (l1(Z) . Z l1)
and/or a (l2(Z) . Z l2). The two cases are similar, so we consider just the
first one. Assume

νl1, l2. addG((l1(Z) . Z l1) | l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l)) ↪→
νl1, l2. addG((LP M l1 | l2〈LQM〉 | S(l1, l2, l))

We have

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | Tl) ↪→∗

νl1, l2. addG(νh, k. LP Mh | LQM k | (KillP h k l))

Using Lemma 23:

νl1, l2. addG(νh, k. LP Mh | LQM k | (KillP h k l)) ↪→∗

νl1, l2. addG(νh, k. LP Mh | k〈LQM〉 | (KillP h k l))

since all the garbage can be moved to addG and since Q does not contain
restrictions thanks to Lemma 55. Now, using α-conversion to swap names
l1 and l2 with h and k and exploiting the fact that addG is closed under α-
conversion we get νh, k. addG(νl1, l2. LP M l1 | l2〈LQM〉 | (KillP l1 l2 l)). Since
h, k are just used by the addG( ) context we can rewrite the process as
νl1, l2. addG(LP M l1 | l2〈LQM〉 | (KillP l1 l2 l)), where the restriction on k, h
has been moved to the context.

Let us consider now the reductions of C[Q1, . . . , Qn]. We have three cases:
the context reduces by itself, the hole reduces by itself or the hole and the
context interact. The first case is trivial. In the second case, if the reduction
is the application of Tl then the step is matched by C[P1, . . . , Pn] by staying
idle, and we are still in the same relation. If Tl is already in its applied form
then we have:

νl1, l2. addG(l〈(h)Par LP M LQM h〉 | l(Z) . Z l)→
νl1, l2. addG(Par LP M LQM l)
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and on the other side we have that:

νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | S(l1, l2, l) ↪→∗ νl1, l2. addG(Par LP M LQM l)

and since the identity is contained in the relation, we are still in the same
relation. In the last case, since we only consider well formed processes, thanks
to Lemma 24 there are no two KillP processes waiting on the same channels.
Thus the context may not interact with the hole, and this case will never
happen. �

Before proving the lemma concerning axiom Ex.A we prove as auxiliary
result that the function addG has no impact on weak bf barbed bisimulation.
We show the result for each form of garbage, and compose the partial results
together in Lemma 68.

Lemma 66. Let Tl be a process of the form Tl = Rew l or Tl = (l(Z) . Z l).
The relation R = {(C[Tl],C[0])} is a weak bf barbed bisimulation.

Proof. Let us start with barbs. Since Tl does not show barbs, the barbs of
C[Tl] and C[0] coincide.

Let us consider the reductions. If C[Tl] reduces then it is either because
the context reduces by itself, or because Tl reduces by itself or because of
an interaction between the context and Tl. In the first case the reduction
is banally matched by the process C[0]. The second case implies that Tl =
Rew l and C[Rew l] ⇁ C[l(Z) . Z l]. C[0] matches this step by staying
idle. The third case implies that Tl = (l(Z) . Z l) and the presence of a
message in the context of the form l〈LP M〉. Hence, we have that C[(l(Z) .
Z l)] ≡ C′[l〈LP M〉 | (l(Z) . Z l)] and C[0] ≡ C′[l〈LP M〉]. By Lemma 16 we
know C′[l〈LP M〉] ≡ C′′[l〈LP M〉 | Tl]. Then on the other side we have that
C′[l〈LP M〉 | (l(Z) . Z l)] ≡ C′′[l〈LP M〉 | (l(Z) . Z l) | Tl]. Thus, the reduction
C′′[l〈LP M〉 | (l(Z).Z l) | Tl]→ C′′[LP Ml | Tl] can be matched on the right side
by C′′[l〈LP M〉 | Tl] ↪→∗ C′′[LP Ml], and we are still in the same relation since
C′′[LP Ml | Tl] ≡ C′′′[Tl] and C′′[LP Ml] ≡ C′′′[0], as desired. �

Lemma 67. Let T (l, a) be a process of the form T (l, a) = (KillM a l)
or T (l, a) = (a(X, \l) . l〈(h)Msg a X h〉 | Rew l). The relation R =
{(C[T (l, a)],C[0])} is a weak bf barbed bisimulation.
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Proof. Let us consider the barbs. Since a process of the form (KillM a l)
or (a(X, \l) . l〈(h)Msg a X h〉 | Rew l) does not show any barbs, then the
barbs of C[T (l, a)] and C[0] coincide.

Let us consider the reductions. If the context evolves by itself, the re-
duction is banally matched. If T (l, a) = (KillM a l) then the only possible
reduction is the application

C[(KillM a l)] ⇁ C[(a(X, \l) . l〈(h)Msg a X h〉 | Rew l)]

which is matched by C[0] by staying idle. If in C[(a(X, \l).l〈(h)Msg a X h〉 |
Rew l)] the hole process and the context interact, it is because there is a
message of the form a〈LP M, l〉 in the context. Hence

C[(a(X, \l) . l〈(h)Msg a X h〉 | Rew l)] ≡
C′[a〈LP M, l〉 | (a(X, \l) . l〈(h)Msg a X h〉 | Rew l)]

This implies that also C[0] ≡ C′[a〈LP M, l〉], and by Lemma 17 we know that
C′[a〈LP M, l〉] ≡ C′′[a〈LP M, l〉 | S] with S = (KillM a l) or S = (a(X, \l) .
l〈(h)Msg a X h〉 | Rew l). Then

C′[a〈LP M, l〉 | (a(X, \l) . l〈(h)Msg a X h〉 | Rew l)] ≡
C′′[a〈LP M, l〉 | (a(X, \l) . l〈(h)Msg a X h〉 | Rew l) | S] ↪→
C′′[l〈(h)Msg a LP M h〉 | Rew l) | S] ≡ C′′′[S]

and on the other side we have that

C′′[a〈LP M, l〉 | S] ↪→∗ C′′[l〈(h)Msg a LP M h〉 | Rew l] ≡ C′′′[0]

and we remain in the same relation, as desired. �

Lemma 68. For any HOπ+ process P ≡ νã. P ′, the relation R = {νã. P ′,
νã. (P ′ | νb̃. Q)} with Q a parallel composition of processes as in Definition 15
is a weak bf barbed bisimulation.

Proof. By induction on the number of parallel components inside Q. The
base case Q = 0 reduces to the identity since we can can garbage collect via
structural congruence names contained in b̃ (and structural congruence is a
weak bf barbed bisimulation by Lemma 32). In the inductive case, we do a
case analysis on the last process Qn of the parallel composition.
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Qn = Rew l: by Lemma 66 we know that C[Qn]
·≈ C[0]. By choosing C[•] =

νã. (P ′ | νb̃. • | ∏i=1..n−1Qi) we have that νã. (P ′ | νb̃. ∏i=1..nQi)
·≈

νã. (P ′ | νb̃. ∏i=1..n−1Qi). By inductive hypothesis we have νã. (P ′ |
νb̃.

∏
i=1..n−1Qi)

·≈ νã. P ′ and by transitivity νã. (P ′ | νb̃. ∏i=1..nQi)
·≈

νã. P ′.

Qn = KillM a l: similar to the case above, using Lemma 67 instead of Lem-
ma 66.

Qn = νt. (a(X, k)|t . Q): trivial, since the process cannot interact.

Qn = νc, t. (KillT ((X)cLP M)) t l a): trivial, since the process reduces to a
process that cannot interact. �

Lemma 69. Axiom Ex.A and its normal form are correct with respect to
weak bf barbed bisimulation.

Proof. Let S(l1, l2, l3) denote either a process of the form S(l1, l2, l3) =
(KillP l1 l2 l3) or of the form S(l1, l2, l3) = (l1(Z)|l2(W ). l3〈(h)Par Z W h〉 |
Rew l). Let Tl denote either a process of the form Tl = Rew l or of the form
Tl = (l(Z).Z l). Let A(LP M, l) denote either a process of the form A(LP M, l) =
l〈LP M〉 or of the form A(LP M, l) = LP Ml. A weak bf barbed bisimulation
containing axiom Ex.A and its normal form is quite large. For simplicity we
consider a relation which is closed only under challenges from the left term.
Extending the relation and the proof by considering the symmetric cases is
a tedious but easy work. The considered relation is R in Figure C.14.

Let us consider the barbs. The processes of the form Tl, S(l1, l2, l3),
A(LP M, l) have no barbs. Also, function addG( ) does not add any barb thanks
to Lemma 64. Moreover, all the messages on channels l ∈ K are on restricted
channels. So the only barbs are those shown by the context C[ ]. These barbs
are trivially matched.

Let us now consider reductions. All the reductions performed by the
context are banally matched. Also, since all the relations are closed under
the applications of auxiliary processes such as Tl or S(l1, l2, l3) we will not
mention them. Let us consider the different relations.

In R1 the only possibility is that the process S(l1, l2, l
′) = (l1(Z)|l2(W ) .

l′〈(h)Par Z W h〉) interacts with two messages on l1 and l2 in the context.
We can assume they are of the form l1〈LP M〉 and l2〈LQM〉, thus the reduction
leads to R2.
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R1 = {(νl′. S(l1, l2, l
′) | S(l′, l3, l)), (νl

′. S(l1, l
′, l) | S(l2, l3, l

′)) | l1, l2, l, l′ ∈ K}
R2 = {(νl′. l′〈(h)Par LP M LQM h〉 | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl′. S(l1, l
′, l) | S(l2, l3, l

′))}
R3 = {(νl′. ((h)Par LP M LQM h)l′ | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl′. S(l1, l
′, l) | S(l2, l3, l

′)))}
R4 = {(νl′. (Par LP M LQM l′) | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl′. S(l1, l
′, l) | S(l2, l3, l

′)))}
R5 = {(νl′, h1, h2. LP Mh1 | LQMh2 | S(h1, h2, l

′) | Tl′ | S(l′, l3, l)),

(νl1, l2. addG(A(LP M, l1) | A(LQM, l2) | νl′. S(l1, l
′, l) | S(l2, l3, l

′))}
R6 = {(Par LP | QM LRM l), (Par LP M LQ | RM l)}
R7 = {(νl1, l2. LP | QMl1 | LRMl2 | S(l1, l2, l)),

(νl1, l2. LP Ml1 | LQ | RMl2 | S(l1, l2, l))}
R8 = {(νl1. LP | QMl1 | S(l1, l2, l)),

(νl1, l3, l4. LP Ml1 | LQMl3 | S(l1, l4, l) | S(l3, l2, l4))}
R′ = ∪Ri

R = {(C[P1, . . . , Pn],C[Q1, . . . , Qn]) | (Pi, Qi) ∈ R′∧
C[P1, . . . , Pn],C[Q1, . . . , Qn] wellformed}

Figure C.14: Relation for Ex.A

From R2 two reductions are possible: the process can interact with the
context by reading a message on l3 of the form l3〈LRM〉, or the message on l′

may interact with Tl′ . In the first case we obtain l〈(h)Par LP | QM LRM h〉 | Tl.
On the right side we obtain Tl | l〈(h)Par LP M LQ | RM h〉. We can move to the
context Tl, which occurs on both the sides, and also the message context, the
application context and the abstraction context going to R6. In the second
case we go directly to R3.

In R3 the only possible reduction is the application of the Par, leading
to R4.

Also in R4 the only possible reduction is an application, leading to R5.
In R5 both LP Mh1 and LQMh2 may reduce by means of an application.

Note that the right process weakly reduces to the left one. In fact, since
contexts are well formed there exist in the term two Rew processes, one on l1
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and one on l2. Hence we have that

νl1, l2. addG(l1〈LP M〉 | l2〈LQM〉 | (Rew l1) |
(Rew l2) | νl′. S(l1, l

′, l) | S(l2, l3, l
′)) ↪→∗

νl1, l2. addG(LP Ml1 | LQMl2 | νl′. S(l1, l
′, l) | S(l2, l3, l

′))

and by α-converting l1, l2 into h1, h2 we obtain νh1, h2. addG(LP Mh1 | LQMh2 |
νl′. S(h1, l

′, l) | S(h2, l3, l
′)). This last process is structural congruent to

νh1, h2. addG(LP Mh1 | LQMh2) | νl′. S(h1, l
′, l) | S(h2, l3, l

′). Since each process
R is weak bf barbed bisimilar to addG(R) (by Lemma 68), we conclude by
transitivity, noting that by removing the addG function we get back to the
relation R1.

From R6 we can only move to R7 by applications.
From R7 there are two possible reductions, either the application of LP |

QMl1 or the application of LRMl2. In the first case we get back to the relation
R1 (by using α-conversion). In the second case we can execute on the right
the application LQ | RMl2, and obtain a process of the form LRMl2 (using
α-conversion) also on the right. We can thus move these processes to the
context, going to the relation R8.

From R8, the left process can only perform the application on LP | QM,
and we get back to the relation R1 (the right process matches this challenge
by a 0 steps computation). �

Lemma 70. Axiom Ex.Unfold and its normal form are correct with respect
to weak bf barbed bisimulation.

Proof. Let Tl denote a process of the form Tl = Rew l or Tl = (l(Z) . Z l).
Let

R′ = {(LP Ml, νũ. l〈LQM〉 | Tl) | P ≡ νũ. Q} ∪ {(LP Ml, νũ. LQMl) | P ≡ νũ. Q}
R = {(C[P1, .., Pn] , C[Q1, .., Qn]) | (Pi, Qi) ∈ R′}

We now show that the relation R is a weak bf barbed bisimulation.
Let us consider barbs. Since LP Ml is an application then the only barbs

shown by a process of the form C[P1, .., Pn] are those shown by the context.
The same barbs are shown also by the process C[Q1, .., Qn]. On the other
hand, a process of the form l〈LQM〉 shows a barb at l. By using Lemma 23
we have that LP Ml ↪→∗ νṽ. l〈LQM〉 | Rew l | S, with S a parallel composition of
garbage processes and l 6∈ ṽ. Thus, LP Ml has a weak barb at l too.
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Let us consider reductions. On both sides, reductions done by the context
are trivially matched. The only possible reduction for a hole process of the
form LP Ml is an application. Then, we have a case analysis on the form of
P . If P = νa. P ′, then C[P1, .., Lνa. P ′Ml, .., Pn] ⇁∗ C[P1, .., νa. LP ′Ml, .., Pn],
and this step is mimicked by the process C[Q1, .., νũ. l〈LQM〉, .., Qn] by staying
idle, since we can extract name a from the set ũ. If P = P ′ | P ′′, we have
that P ′ | P ′′ ≡ νũ. Q implies νũ. Q ≡ νũ1. Q

′ | νũ2. Q
′′. Hence

C[P1, .., LP ′ | P ′′Ml, .., Pn] ⇁

C[P1, .., νl1, l2. LP ′Ml1 | LP ′′Ml2 | (KillP l1 l2 l), .., Pn]

This step can be matched by

C[Q1, .., νũ. l〈LQ′ | Q′′M〉 | Rew l, .., Qn] ⇁

C[Q1, .., νũ. l〈LQ′ | Q′′M〉 | (l(Z) . Z l), .., Qn]→
C[Q1, .., νl1, l2. νũ1. LQ′Ml1 | νũ2. LQ′′Ml2 | (KillP l1 l2 l), .., Qn]

and we are still in the same relation since:

(LP ′M, νũ1. LQ′M) ∈ R′

(LP ′′M, νũ2. LQ′′M) ∈ R′

The other cases are similar.
If the step is performed by the process on the right, we have three cases.

The application of a process Rew l can be matched by the left process by
staying idle. An interaction between (l(Z).Z l) and a message on l is matched
since C[Q1, .., νũ. l〈LQM〉 | l(Z) .Z l, .., Qn]→ C[Q1, .., νũ. LQMl, .., Qn] and we
are still in the same relation. For applications of LQMl we proceed by case
analysis as before and we remain in the same relation, as desired. �

Lemma 71. Axiom Ex.Adm and its normal form are correct with respect
to weak bf barbed bisimulation.

Proof. Let

R′ = {(νc. (c〈P 〉 | c(Z) . Z k), LP Mk)}
R = {(C[P1, .., Pn],C[Q1, .., Qn]) | (Pi, Qi) ∈ R′}

We now show that the relation R is a weak bf barbed bisimulation.
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All the challenges from the right process are easily matched, since the left
process reduces to the right one via an administrative reduction.

The only barbs of the left term are in the context, thus they are easily
matched. Similarly, reductions of the context are easily matched. Reductions
in the hole reduce to the term on the right, thus we are in the same relation
by removing one hole. �

Proposition 1. The relation R = {(P,Q) | P ≡Ex Q} where P,Q are
HOπ+ processes is a weak bf bisimulation.

Proof. By definition P ≡Ex Q iff there are P1, . . . Pn such that P ≡Ex
P1 ≡Ex . . . ≡Ex Pn ≡Ex Q where each equivalence is obtained by applying
just one axiom. The proof is by induction on n. The base case is banally
verified. In the inductive case we proceed by case analysis on the last applied
axiom.

Let us consider axiom Ex.C. By inductive hypothesis we have that P ≡Ex
Pn implies that P

·≈c Pn and that Pn ≡Ex Q using the axiom Ex.C. By

Lemma 63 we know that Pn ≡Ex Q implies Pn
·≈c Q, and by transitivity we

have that also P
·≈c Q.

The other cases are analogous, using Lemma 65 for axiom Ex.P , Lemma 69
for axiom Ex.A, Lemma 70 for axiom Ex.Unfold, Lemma 71 for axiom
Ex.Adm and Lemma 32 for axioms in ≡π. �

Appendix C.4. Proofs of Section 4.6

Lemma 33. If nf(LMM) � P then M � M ′ with P ↪→∗ P ′ and nf(P ′) ≡
nf(Q′) and Q′ ∈ addG(LM ′M).

Proof. By structural induction on M . If M is a simple process such as 0,
a message or a trigger there is nothing to verify since nf(LMM) 6�.

In the inductive case, if M is of the form νa.M1 then by definition
of nf(·) and L·M we have that nf(LMM) = νa. nf(LM1M) and by applying
the inductive hypothesis on nf(LM1M) we have that nf(LM1M) � P implies
M1 � M ′

1 with P ↪→∗ P ′ and nf(P ′) = nf(Q′) with Q′ ∈ addG(LM ′
1M). If

νa. LM1M � νa. P then also LM1M � P and using inductive hypothesis we
obtain νa.M1 � νa.M ′

1 with νa. P ↪→∗ νa. P ′ and since nf(P ′) = nf(Q′)
with Q′ ∈ addG(LM ′

1M) we also have that νa. nf(P ′) = νa. nf(Q′) that is
nf(νa. P ′) = nf(Q′′) with Q′′ ∈ addG(Lνa.M ′

1M), as desired. The case of
parallel context M = M1 | M2 also follows by inductive hypothesis if the
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reduction is done inside either M1 or M2. If both M1 and M2 contribute
to the reduction then we can assume that there is a message in M1 and a
trigger in M2 able to communicate. For the sake of brevity, we consider just
the case in which both message and trigger are tagged by a key. The other
cases are similar. We can write M = M ′

1 | k1 : a〈R〉 | k2 : a(X) . Q | M ′
2.

Hence, we have

LM ′
1 | k1 : a〈R〉 | k2 : a(X) . Q |M ′

2M =

LM ′
1M | La〈R〉Mk1 | La(X) . QMk2 | LM ′

2M

Let Y = (X c)c〈LQM〉, then we have that

nf(LMM) = nf(LM ′
1M) | a〈LRM, k1〉 | nf(KillM a k1) |

νt. t|(a(X, l)|t .f νk, c. (Y X x) | (c(Z) . Z k) | (Mem Y a X l k k2)) |
nf(KillT Y t k2 a) | nf(LM ′

2M)�
nf(LM ′

1M) | nf(KillM a k1) | νk, c, t. (Y LRM c) | (c(Z) . Z k) |
(Mem Y a X l k k2) | nf(KillT Y t k2 a) | nf(LM ′

2M) ↪→↪→
nf(LM ′

1M) | nf(KillM a k1) | νk, c, t. LQM{LRM/X}k | (Mem Y a LRM k1 k k2) |
nf(KillT Y t k2 a) | nf(LM ′

2M)

By using Lemma 21 (Substitution Lemma) the process above is equal to:

nf(LM ′
1M) | nf(KillM a k1) | νk, c, t. LQ{R/X}Mk | (Mem Y a LRM k1 k k2) |

nf(KillT Y t k2 a) | nf(LM ′
2M) = P

We have that M � M ′ with M ′ = M ′
1 | νk. k : Q{R/X} | M ′

2 and we
can easily see that P ⇁∗ nf(LM ′

1M) | nf(KillM a k1) | νk, c, t. LQ{R/X}Mk
| nf(Mem Y a LRM k1 k k2) | nf(KillT Y t k2 a) | nf(LM ′

2M) ≡ nf(Q′′) with
Q′′ ∈ addG(LM ′M), as desired. �
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