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We consider a solution of the effective four-dimensional Einstein equations, obtained from the general 
relativistic Schwarzschild metric through the principle of Minimal Geometric Deformation (MGD). Since 
the brane tension can, in general, introduce new singularities on a relativistic Eötvös brane model 
in the MGD framework, we require the absence of observed singularities, in order to constrain the 
brane tension. We then study the corresponding Bose–Einstein condensate (BEC) gravitational system 
and determine the critical stability region of BEC MGD stellar configurations. Finally, the critical stellar 
densities are shown to be related with critical points of the information entropy.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Several aspects of black hole physics have been recently stud-
ied, by considering black holes as Bose–Einstein condensates (BEC) 
of a large number N of weakly interacting, long-wavelength, gravi-
tons close to a critical point [1–3]. This paradigm has the merit 
to directly interconnect black hole physics to the study of crit-
ical phenomena, where quantum effects are relevant at critical 
points, even for a macroscopic number N of particles [4]. Although 
black holes are non-perturbative gravitational objects, the effective 
quantum field theory of gravitons that describes them can still be 
weakly coupled, due to large collective effects [3,5,6]. Black hole 
features that cannot be recovered in a standard semiclassical ap-
proach of gravity may then be encoded by the quantum state of 
the critical BEC [7,8], with the semiclassical regime obtained as 
a particular limit for N → ∞. Moreover, describing black holes 
by a condensate of long-wavelength gravitons generates a self-
sustained system, whose size equals the standard Schwarzschild 
radius and the gravitons are maximally packed [1–3,7]. A quan-
tum field-theoretical analysis also clarified the relation between 
the emerging geometry of spacetime and the quantum theory [9].

Brane-world models are effective five-dimensional (5D) phe-
nomenological realisations of the Hořava–Witten domain wall so-
lutions [10], when moduli effects, engendered from the remain-
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ing extra dimensions, may be disregarded [11,12]. The brane self-
gravity is identified by the brane tension σ , and the effective 
four-dimensional (4D) geometry, due to a compact stellar dis-
tribution, can be achieved by a Minimal Geometric Deformation 
(MGD) of the standard Schwarzschild solution in General Relativity 
(GR) [13–17]. The MGD method ensures that this brane-world ef-
fective gravitational solution reduces to the standard Schwarzschild 
solution, in the limit of infinite brane tension σ−1 → 0. Therefore 
the MGD is a framework that provides corrections to GR, controlled 
by a parameter ζ , that is a function of the stellar distribution ef-
fective radius and the brane tension.

Finally, we recall that a harmonic black hole model was recently 
introduced [18], which can be viewed as an explicit realisation of 
a BEC of gravitons, with a regular interior. The energy density in 
this model is obtained from a three-dimensional harmonic poten-
tial, “cut” around the horizon size in order to accommodate for 
the continuum spectrum of scattering modes, and the Hawking 
radiation. Afterwards, this model was ameliorated by instead con-
sidering the Pöschl–Teller potential [19], which naturally contains 
a continuum spectrum above the bound states, contrary to the har-
monic oscillator.

We shall here employ this last model to study a MGD BEC 
black hole and analyse its critical stable density, from the point 
of view of the information entropy [20,21], and statistical mechan-
ics [22]. The information entropy has been applied to a variety of 
settings, and the stability of self-gravitating compact objects was 
already reported in Refs. [20,23]. In particular, Newtonian poly-
tropes, neutron stars, and boson stars were studied in Ref. [23]. 
The information entropy is well-known to measure the underlying 
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shape complexity of spatially localised configurations [20,21]. The 
less information involved in the modes that comprise a physical 
system, the smaller entropic information is required to represent 
the same physical system. The energy density is the main ingre-
dient to compute the information entropy. In this framework, the 
critical stable density of a BEC MGD black hole will be here stud-
ied, by relating the stellar distribution conditional entropy and its 
central critical density. In other words, the conditional entropy will 
be used to study the gravitational stability.

This work is organised as follows: we review the MGD proce-
dure in Section 2, and the BEC description of a MGD black hole is 
employed to establish a bound for the brane tension of a Eötvös 
brane-world model in Section 3; Section 4 is devoted to establish 
the interplay between the critical point in the stellar stability and 
the critical point of the conditional entropy in a BEC MGD self-
gravitating system scenario; finally, we comment on our findings 
in Section 5.

2. Minimal geometric deformation

The MGD approach is designed to produce brane-world correc-
tions to standard GR solutions, hence it is a suitable method to 
obtain inhomogeneous, spherically symmetric, stellar distributions 
that are physically admissible in the brane-world [17,24]. For ex-
ample, the bound σ � 5 × 106 MeV4 for the brane tension was 
obtained from the MGD in Ref. [30]. The MGD was originally ap-
plied in order to deform the standard Schwarzschild solution [13,
16,17] and describe the 4D geometry of a brane stellar distribution. 
Moreover, the MGD paved the way for interesting developments 
concerning 5D black string solutions of 5D Einstein equations [26]
in Eötvös variable brane tension models [27,28].

The method relies on the effective Einstein equations on the 
brane [29],

Rμν − 1

2
Rgμν + � gμν − T̃μν = 0 , (1)

where the effective energy–momentum tensor is given by

T̃μν = Tμν + Eμν + 1

σ
Sμν , (2)

which contains the usual stress tensor Tμν of brane matter 
(with four-velocity uμ), and the (non-local) Weyl and high en-
ergy Kaluza–Klein corrections Eμν and Sμν . The Weyl tensor can 
be further decomposed as

Eμν = 6

σ

[
U

(
1

3
hμν + uμ uν

)
+Pμν +Q(μ uν)

]
, (3)

where hμν = gμν − uμuν denotes the induced spatial metric, Pμν

is the anisotropic stress, U stands for the Weyl bulk scalar, and Qμ

denotes the energy flux field.
One then considers the general spherically symmetric metric,

ds2 = A(r)dt2 − dr2

B(r)
− r2 d�2 , (4)

in the effective equations (1). Any deformation of this static metric, 
with respect to a GR solution, must be caused by 5D bulk effects, 
in a brane-world scenario. Particularly, the radial component out-
side a compact stellar distribution, of average radius r = R , turns 
out to be given by [16,17]

B+(r) = 1 − 2 M

r
+ ζ e−I , (5)

where
I(r) =
r∫

R

(
A A′′

A′ 2
+ A′ 2

A2
− 1 + 2A′

r A
+ 1

r2

)(
2

r
+ A′

2A

)−1

dr̄ , (6)

where primes denote derivatives with respect to r. The parame-
ter ζ describes the deformation induced onto the vacuum by bulk 
effects, evaluated at the surface of the stellar distribution. There-
fore, ζ contains all relevant information of a Weyl fluid on the 
brane [30]. The matching conditions with the inner star metric 
then determine the outer metric for r > R [13,26]. In particular, 
if one considers the standard Schwarzschild metric, the deformed 
outer metric components read [16]

A+(r) = 1 − 2 M

r
, (7a)

B+(r) =
(

1 − 2 M

r

)[
1 + ζ

�

r

(
1 − 3 M

2 r

)−1
]

, (7b)

where � is a length given by1

� ≡ R

(
1 − 2M

R

)−1 (
1 − 3M

2R

)
. (8)

This metric has two event horizons where B+ = 0: one is the usual 
Schwarzschild horizon, rs = 2 M , and the second horizon is at r2 =
3M

2 − ζ �. The expression of ζ was previously derived [13,16],

ζ(σ , R) ≈ −0.275

R2 σ
, (9)

and the GR limit ζ ∼ σ−1 → 0 implies that r2 < rs . One can there-
fore conclude that the gravitational field around the compact star 
is weaker than in GR.

3. BEC and MGD: a brane tension bound

In order to study BEC black holes with the MGD methods, let 
us start from the Klein–Gordon equation for a scalar field � [19]{[

i h̄ ∂t − V (	x)]2 + h̄2 ∇2 − [
μ + S(	x)]2

}
�(t, 	x) = 0 , (10)

where μ denotes the rest mass and one included the time-
independent vector and scalar potentials V (	x) and S(	x). Writing 
�(t, 	x) = e−i 
 t/h̄ �(	x) and assuming S = V yield[
− h̄2

2 (
 + μ)
∇2 + V − 1

2
(
 − μ)

]
�(	x) = 0 , (11)

which is just a Schrödinger equation with m = 
 + μ, and E =
1
2 (
 − μ). It represents the relativistic dispersion relation 
 2 =
h̄2k2 +μ2, and we shall in particular consider the spherically sym-
metric Pöschl–Teller potential [19]

V = − 3μ

cosh(μ r/h̄)
, (12)

for which one can find explicit solutions for � = �(r) and com-
pute the corresponding energy density. In fact, this graviton BEC 
can be macroscopically modelled by an anisotropic fluid, with lo-
cal energy–momentum tensor of the form

T μν = (
p‖ − p⊥

)
vμvν + (ε + p⊥) uμuν + p⊥ gμν , (13)

where uμ uμ = −1 = −vμ vμ , and uμ vμ = 0, ε is the energy den-
sity, p⊥ and p‖ are the pressures perpendicular and parallel to the 

1 The deformation around the star surface is negative, in order to prevent a neg-
ative pressure for a solid crust [24].
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space-like vector vμ . For the static, spherically symmetric metric 
in Eq. (4), one has

uμ =
(
−A−1/2,0,0,0

)ᵀ
, vμ =

(
0, B1/2,0,0

)ᵀ
. (14)

One can then introduce the (quasilocal) Misner–Sharp mass func-
tion,

M(r) = 4π

r∫
0

r̄2ε(r̄) dr̄ , (15)

which represents the total energy within a stellar distribution of 
radius r, and find the radial component of the metric [19]

B(ρ) = 1 + 1

ρ
tanh3(νρ)

[
3 tanh2(νρ) − 5

]
, (16)

where ρ = r/M = 2 r/rs and ν = M μ/h̄, with rs the gravitational 
radius of the total Misner–Sharp mass M like in the previous Sec-
tion.

The fluid description by means of Eq. (13) makes it now possi-
ble to apply the MGD approach to the above metric. In particular, 
the graviton BEC model of Ref. [19] considers the equation of state 
ε + p‖ = 0. Upon assuming for the temporal component of the 
metric the usual Schwarzschild form (7a), the effective energy–
momentum tensor T̃μν in Eq. (2) yields the effective energy den-
sity and pressure [24]

ε̃ = − (9 − 14cr2 + c2r4)

7π(1 + cr2)4
δ + c (c2r4 + 2cr2 + 9)

7π(1 + cr2)3
, (17)

p̃ = −4(2c2r4 − 9cr2 + 1)

7π(1 + cr2)4
δ + 2c(c2r4 + 7cr2 + 2)

7π(1 + cr2)3
, (18)

where c  0.275/R2. In the next Section, Eqs. (17) and (18) will 
also be used to compute the effective energy density as the tem-
poral component of the effective energy–momentum tensor (2), 
namely

ε̃(r) = T̃ 00(r) . (19)

In the above expressions, the brane-world corrections are given by 
the terms proportional to

δ(σ ) = f ∗
R

σ R2

7(1 + cR2)2(1 + 9cR2)

16 R2(7 + 2cR2)
+O(σ−2) , (20)

with

f ∗
R = 4

49π

[
80 arctan(y1/2)

(1 + y)2(3y + 1)y1/2

+ 3y4 + 41y3 + 25y2 − 589y − 240

3(1 + y)4(1 + 3y)

]
, (21)

for y = c R2 [24]. Finally, in the limiting case R = rs , which we 
assume describes the BEC black hole, the deformed radial metric 
component to leading order in σ−1 is given by

Bν(ρ)

B(ρ)
= 1 − 2 c0

σ
[
ρ − 3

4 tanh3(νρ)
] [

5 − 3 tanh2(νρ)
] , (22)

where c0  0.275. Fig. 1 shows plots of Bν(ρ) for various values 
of ν . It is clear that, for increasing values of ν , this black hole 
model rapidly approaches the Schwarzschild black hole. This figure 
can be compared to Fig. 1 in Ref. [19] for similar parameters.

For any ν , the metric component Bν(ρ) has a single local min-
imum at ρ∗ = a∗/ν , where a∗ ≈ 1.031. Writing Bν(ρ∗) = 1 − ν/ν∗ , 
with ν∗ ≈ 0.694, the condition for the existence of an event hori-
zon is ν > ν∗ . The case ν = ν∗ is extremal [19].
Fig. 1. Plot of Bν (ρ) in Eq. (22), for ν = 0 (gray dashed line); ν = 0.3 (thick gray 
line); ν = 0.5 (thick black line); ν = ν∗ (black dot-dashed line); ν = 1 (black dashed 
line); ν = 1.4 (dotted line).

3.1. Variable tension model

A more realistic model can be implemented by considering an 
Eötvös variable tension brane [31,25]. Essentially, the Eötvös law 
states that the (fluid) membrane tension depends on the tempera-
ture as

σ = ξ (Tcrit − T ) , (23)

where ξ is a positive constant and Tcrit a critical temperature 
that determines the ceasing of the membrane existence. The ten-
sion variation is now expressed in terms of the (cosmic) time, 
instead of the temperature. Indeed, the Universe cools down as 
it expands. The cosmic microwave background indicates T ∼ a−1, 
where a = a(t) denotes the FLRW Universe expansion factor [31,27,
28], in agreement with the standard cosmological model. Eq. (23)
then yields

σ(t) = σ0

(
1 − amin

a(t)

)
, (24)

where σ0 is a constant related to the 4D coupling constants [31], 
and amin is the minimum scale factor, below which the brane does 
cease to exist.

Along each definite phase, in the Universe evolution, brane ten-
sion changes are just perceptible across cosmic time scales. Re-
garding a de Sitter (dS) brane, the variable brane tension reads 
σ(t) ∼ 1 − e−χt , for χ > 0 [32], being admissible from a phe-
nomenological point of view [12,29], predicting a variable Newton 
coupling constant G ∼ σ(t). In Fig. 2 and 3, we display a refine-
ment of Fig. 1, along the time scale, which takes into account an 
Eötvös brane variable tension, according to the law (24).

Since we do not observe extra singularities up to the standard 
Schwarzschild-like one, the brane tension is constrained by the 
bound:

σ � 3.18 × 106 MeV4 . (25)

This limit is much stronger than the cosmological nucleosynthesis 
constraint, and also better than the one provided by the limits of 
the MGD parameter ζ [30].

4. Stability analysis of the MGD BEC

Having computed a bound on the brane tension for the MGD 
BEC, we can now employ the conditional entropy in order to obtain 
stability bounds of critical points of the MGD BEC stellar distribu-
tion density. The entropic information, realised by the conditional 
entropy, was utilised to scrutinise the stability of physical sys-
tems [21], and proved to be based on statistical mechanics grounds 
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Fig. 2. Plot of Bν (ρ) for ν = 0.3, in the era dominated by non-relativistic matter, as 
a function of the Eötvös brane tension σ(t) and the radial coordinate ρ = r/M . The 
cosmological time is normalised according to Eq. (24).

Fig. 3. Plot of Bν (ρ) for ν = 0.5, in the era dominated by the cosmological constant, 
as a function of the Eötvös brane tension σ(t) and the radial coordinate ρ = r/M . 
The cosmological time is normalised according to Eq. (24).

in Ref. [22]. Indeed, physical systems have classical field configura-
tions defined as a critical points of the classical action. In a semi-
classical approximation, these configurations can then be thought 
as critical points of the effective action. Critical points of condi-
tional entropy correlated with the most stable configurations, in 
the context of information entropy [33,34]. Physical systems states, 
with larger information entropy, either need a larger amount of 
energy to be produced, or are more scarcely observed – or de-
tected – than their configurationally stable analog states, or even 
both [22,35]. The conditional entropy is based upon the informa-
tion entropy and has critical points of stability that can comprise 
configurations that provide the best compression of informational 
nature in the system.

In order to compute the conditional entropy for the MGD BEC 
stellar distribution, let us start by calculating the spatial Fourier 
transform of the energy density ε̃ = ε̃(r) in Eq. (19),

ε(ω) = (2π)−1/2 lim
n→∞

n∫
−n

ε̃(r) eiωr dr , (26)

where r is again the radial coordinate. Employing the effective 
energy density appears quite natural, since this quantity effec-
tively describes the spatially localised BEC in the brane-world, 
also including the physics and boundary conditions that deter-
mine the stellar distribution. These Fourier components mimic 
the collective coordinates [22]. The structure factor, defined by 
sn = 1

n

∑n
k=1 〈 ε(ωk)

∗ ε(ωk) 〉, normalises the correlation of collec-
tive coordinates, and defines the discrete modal fraction

f (ωn) = 1

n sn
〈 ε∗(ωn) ε(ωn) 〉 . (27)

The structure factor probes fluctuations in the energy density [22], 
as the energy density operator fluctuates among system configura-
tions. In the limit n → ∞, the discrete modal fraction [20] can be 
expressed as the ratio between the correlation of collective coordi-
nates and the structure factor [22],

f (ω) ≡ lim
n→∞ f (ωn) = 〈 |ε(ω)|2〉

lim
n→∞

n∫
−n

dω 〈 |ε(ω)|2〉
. (28)

Now, by denoting with fmax(ω) the maximum modal fraction, de-
fine ˚f (ω) = f (ω)/ fmax(ω) [20]. The conditional entropy computed 
in the lattice approach then reads [20,21]

Sc[ f ] = − lim
n→∞

n∫
−n

dωσ(ω) , (29)

where σ(ω) = ˚f (ω) ln ˚f (ω) denotes the conditional entropy den-
sity [23]. Note that, since ˚f (ω) is not a periodic function, the limits 
of integration in Eq. (29) are ω = ωmin = π/R (the lower limit) and 
ω → ∞ (the upper limit), as in Ref. [23].

The stability of self-gravitating compact objects by means of the 
configurational entropy was previously investigated in Refs. [20,
23]. Eq. (29) further measures the configurational, or informa-
tional, stability of the system modes. Taking the continuum limit 
of Shannon entropy is subtle and can miss some features that are 
demanded for any definition compatible with the expected proper-
ties of an entropy. As a matter of fact, the greater the information 
entropy, the more information, encrypted in the system modes, is 
compelled to constitute the complexity of a spatially localised sys-
tem [20–22].

To perform a stability analysis of the MGD BEC distribution, 
let us recall that most studies of black hole physics are based 
on the background classical geometry. Therefore, the semi-classical 
approximation which accounts for small fluctuations about the 
classical background does not include the quantum effects on the 
background. In fact, the classical geometry should be an appropri-
ate limit of an effective quantum theory, in which states, with large 
graviton occupation number, can be thought of as the main con-
stituents. When such states are the ground-state, the gravitational 
field can be effectively regarded as a BEC.

The equilibrium configurations can be derived in terms of the 
energy density ε̃ = ε̃(r) in Eq. (19). The same density ε̃ can then 
be employed, in order to compute the conditional entropy Sc as a 
function of the critical central density, ε̃(0) ≡ ε0, of the compact 
stellar distribution. The conditional entropy (29) is, in particular, 
obtained by means of the modal fraction (28), and the critical cen-
tral density ε0 is found from Eq. (19) to be ε0 ≈ 0.40925 δ(σ ) +
0.11254/R2, where δ(σ ) is given by the expression in Eq. (20). 
The explicit expression of the conditional entropy turns out to be 
rather involved, so its numerical estimate is displayed in Fig. 4, 
where Sc is multiplied by the inverse central density to produce a 
quantity that scales with dimensions of inverse mass.

The analysis of the conditional entropy for polytropes and neu-
tron stars also makes use of the fiducial value εc for the critical 
central density. In Ref. [23], the critical points of the conditional 
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Fig. 4. Conditional entropy times the inverse of the BEC MGD black hole critical 
central density ε0, with respect to ε0.

entropy were related to εc and to the Chandrasekhar mass like-
wise. However, to our knowledge, there is no result in the lit-
erature that provides the analogue of the results in Fig. 4. The 
two-fold reason for it is that the conditional entropy was suc-
cessfully analysed for boson stars formed by self-interacting scalar 
fields, and the stability properties of boson stars were explored in 
their ground state [36,23]. Our results are therefore original and 
represent a potential reference for further analysis of the stability 
of boson stars in the graviton BEC scenario.

5. Concluding remarks

Studying a MGD BEC in a Eötvös brane-world scenario provides 
a strict bound for the brane tension σ � 3.18 × 106 MeV4, which 
is stronger than the bound determined by the study of cosmolog-
ical nucleosynthesis. This bound is also more stringent than the 
one already obtained in the MGD formalism in Ref. [30]. Moreover, 
analysing the graviton BEC MGD black hole shows that it is impor-
tant to take into account quantum effects at the stability critical 
point, even for a macroscopic number of particles. The MGD BEC 
has an unlimited number of gapless modes, since it corresponds to 
a large occupation number N at the stability critical point, coincid-
ing with a maximal packing. The minimum value of the conditional 
entropy is seen, from Fig. 4, to vary according to the value of the 
parameter ν = Mμ/h̄, that was defined as a function of the Klein–
Gordon scalar field rest mass μ and the Misner–Sharp mass M . 
In fact, for ν = ν∗ , the critical conditional entropy occurs at the 
BEC MGD black hole critical central density ε0 ≈ 0.62, whereas 
the value ν = 1 yields the minimal conditional entropy to be at 
ε0 ≈ 1.03. Based upon previous results in Ref. [23] for polytropes 
and neutron stars, a bound on the critical BEC MGD black hole 
mass can still be obtained, by establishing values of the star den-
sity, according to Fig. 4. Nevertheless, the critical point is shifted in 
the star density, due to the MGD procedure and the graviton BEC 
as well, to describe the stellar distribution.
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