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Hierarchical Bayesian Models for the Estimation of
Correlated Effects in Multilevel Data: A Simulation

Study to Assess Model Performance

GIULIA ROLI AND PAOLA MONARI

Department of Statistical Sciences, University of Bologna, Bologna, Italy

In this article, we aim at assessing hierarchical Bayesian modeling for the analysis
of multiple exposures and highly correlated effects in a multilevel setting. We exploit
an artificial data set to apply our method and show the gains in the final estimates of
the crucial parameters. As a motivating example to simulate data, we consider a real
prospective cohort study designed to investigate the association of dietary exposures
with the occurrence of colon-rectum cancer in a multilevel framework, where, e.g.,
individuals have been enrolled from different countries or cities. We rely on the presence
of some additional information suitable to mediate the final effects of the exposures and
to be arranged in a level-2 regression to model similarities among the parameters of
interest (e.g., data on the nutrient compositions for each dietary item).

Keywords Hierarchical Bayesian modeling; Correlated effects; Multilevel data.

Mathematics Subject Classification 62J12; 62H20; 62C12; 62P10.

1. Introduction and Background

The estimation of multiple effects often faces problems of some sort of complications that
need to be somehow controlled during the analysis. Typical examples lie in case-control
studies aiming at investigating the exposures which can cause the occurrence of a disease.
In such cases, the use of the models conventionally employed becomes improper, yielding
unstable and biased estimates.

In this article, we consider two kinds of such complications. The first one concerns the
structure of the data and occurs whenever units are nested into higher level units involving
their own variability and a dependence among the related observations. The nested or
multilevel structure of data is a common phenomenon, especially in behavioral and social
research, where the evaluation of the relationship between individuals and society is a focal
interest of the research. In other cases, the hierarchy of data can be viewed as a nuisance.
For instance, in the multi-stage sampling, which is frequently employed in the traditional
surveys to reduce the costs of data collection, the nested structure of the data is directly
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Bayesian Models for Correlated Effects and Multilevel Data 2645

generated by the sampling design and thus requires some adjustments during the inferential
process. Whatever the dependence arises from, it is “neither accidental nor ignorable”
(Goldstein, 1995) and the risks of drawing wrong conclusions are high if the clustering of
the data is disregarded.

The joint analysis of multiple exposures gives rise to the second complication. Indeed,
many studies involve a set of potential effects to be compared, especially in epidemiologic
field, yielding problems of multiple inference. When a conventional analysis is carried out,
these are revealed by failures in the convergence of the estimation process or by implausible
large and unstable estimates, especially when the samples are small and sparse (Witte et al.,
1994). The main reason is that these effects are often correlated. Therefore, we need to
take into account for a covariance structure among them to reduce the random errors in the
estimates.

Both these complications have been tackled separately in various applications and
simulations by using hierarchical modeling (Diex-Roux, 2000, 2004; Witte et al., 1994;
Greenland, 1992). When the structure of the data is nested, hierarchical modeling allows
to handle simultaneously multiple levels of information and dependencies (Raudenbush
and Bryk, 2002; Leyland and Goldstein, 2001; Snijders and Bosker, 1999; Hox, 1995). In
this setting, we also refer to multilevel regression models. These can appropriately address
different research aims: (i) improved estimation of the individual effects under investigation
(i.e., all the available information at both levels are efficiently used in order to exploit both
the group features and the relations existing in the overall sample); (ii) evaluation of the
cross-level effects (e.g., how variables measured at one level affect relations occurring at
another); and (iii) decomposition of the variance-covariance components at each level.

As far as the multiple exposure issue is concerned, numerous authors have shown
that empirical and semi-Bayes estimates from hierarchical models can improve standard
regression estimation, allowing for correlated associations and showing to be less sensitive
to sampling error and model misspecification (Morris, 1983; Greenland, 1992, 1993, 1997).
Indeed, relying on the presence of some additional information suitable to mediate the final
effects of the exposures, these can be arranged in a second-stage regression to model
similarities among the parameters of interest (Witte et al., 1994; Rothman et al., 2008).

Although developed separately and for different purposes, hierarchical modeling for
correlated effects and for nested data have important communalities, which can be strength-
ened when a Bayesian perspective is adopted. The use of Bayesian methods to analyze real
data is a relevant topic discussed by several authors (Greenland, 2006, 2007; MacLehose
et al., 2007; Graham, 2008). They all support the employment of prior assumptions as they
are more reasonable than those implicitly made by frequentist models and able to address
the problems of sparse data, multiple comparisons, subgroup analysis and study bias. In this
framework, the assignment of prior judgements becomes of primary importance and differ-
ent strategies can be adopted. A fully-Bayesian (FB) approach forces all the parameters in
the model to be random and corresponding probability distributions to be assigned. When
these prior distributions are in the form of prior data, we refer to empirical priors, arising
from frequentist shrinkage-estimation or empirical-Bayes (EB) methods (Maritz and Lwin,
1989). Instead of assigning a full prior distribution, another strategy consists in fixing in
advance a specific value for one or more parameters using background information. This
method, called semi-Bayes (SB) approach, is commonly employed to avoid the drawback
of absurd estimates of some (hyper-) parameters (Greenland, 1992, 2000). Finally, in a
Bayes empirical-Bayes (BEB) setting both FB and EB criteria are jointly adopted by ex-
ploiting the available empirical data for some (hyper-) parameters and some kinds of proper
distributions for the others (Deeley and Lindley, 1981).
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2646 Roli and Monari

In this article, we aim at extending the hierarchical approach for the analysis of multiple
exposures and highly correlated effects to a multilevel setting. We attempt to improve the
ordinary estimates of such effects by using some descriptive information to develop a
second-stage regression model mediating the effects of the exposure variables, separately
by group membership but into a single analysis. We adopt a BEB perspective and exploit the
previous knowledge on the other (hyper-) parameters to specify prior distributions, which
are suitable regarding the problem at hand. The method we propose has been already applied
to an empirical study in a previous work (Roli and Monari, 2011). Here, we simulate data by
resembling a real prospective cohort study designed to investigate the association of dietary
exposures with the occurrence of colon-rectum cancer in multilevel data (e.g., individuals
enrolled from different countries or cities). We rely on the presence of some additional
information suitable to mediate the final effects of the exposures and to be arranged in
a level-2 regression to model similarities among the parameters of interest (e.g., data on
the nutrient compositions for each dietary item). Using these artificial data, we assess our
method to show and measure the gains in the final estimates of the crucial parameters with
respect to the conventional analysis results and to different prior specifications.

2. Modeling Framework

We consider J groups, commonly defined by geographical areas. For each group j, we
have the total number of individuals, Nj (with j = 1, . . . , J ), and the presence/absence
of a disease, denoted by the individual indicator yij (yij = 1 for cases, yij = 0 for control
units). We wish to model the number of disease cases in terms of K explanatory variables,
or exposures, denoted by Xk for each exposure k, further controlling for the effects of P
potential confounders (such as age, sex and smoking status of individuals), denoted by Wp

for each confounder p. These can either be continuous, binary or categorical variables.
We assume that the data are generated through the following underlying model. Indi-

vidual i in group j, with exposures in (xij1, . . . , xijK ) and confounders in (wij1, . . . , wijP ),
experiences the binary outcome yij with probability pij , where:

logit(pij ) = αj +
K∑

k=1

βjkxijk +
P∑

p=1

γpwijp. (1)

The paramter αj represents the group-specific logit-baseline risk, which, according to a
conventional hierarchical approach, could be structured in terms of group-level covariates,
or exchangeable or spatially correlated random effects.

The effects of confounders are reasonably assumed to be the same in all the groups
and, thus, simply denoted by γp.

As far as the exposures effects βjk are concerned, they represent the key objective of
the investigation and we assume they vary across groups. In order to tackle the problem
of interactions among the multiple exposures and the correlation among corresponding
effects, we assume that some kinds of Q group-specific prior or level-2 data are available
(denoted by zjkq for each group j exposure k and level-2 covariate q). These are arranged
to form the exposures’ coefficients through a level-2 regression model:

βjk = π0k +
Q∑

q=1

πqzjkq + δjk, (2)
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Bayesian Models for Correlated Effects and Multilevel Data 2647

where πq are the effects of such prior information on the exposures (and on the disease),
which are assumed to be common to all the exposures; π0k is the intercept reflecting
our knowledge about any residual effects of the exposure k due to prior information not
included in the second-stage model; δjk are the residuals, which are assumed to hold the
simple hypothesis of independence and normal distribution with null means and constant
variances, denoted by σ 2

β .

2.1. Prior Distributions

Previous works on hierarchical modeling for correlated effects have shown that the fre-
quentist estimation methods (such as, maximum-likelihood, penalized quasi-likelihood, or
marginal quasi-likelihood) often yields null values for the level-2 variance σ 2

β leading to an
extreme shrinkage estimation of the target parameters βjk toward the empirical prior means
(EB estimators). This seems more likely to reflect a marginal likelihood for σ 2

β with peak
at zero, rather than true under dispersion (Greenland, 1992). Moreover, a credible result
would achieve a more reasonable non zero value for σ 2

β , as it represents the uncertainty
about the residuals δjk and therefore also about the estimation of βjk after incorporat-
ing the level-2 information. In particular, if σ 2

β tends to ∞, the hierarchical model and
the conventional logistic regression come to the same results according to the estimates
of βjk . On the contrary, if σ 2

β = 0, then the residuals δjk result to be null, meaning that
we implicitly assume the absence of any effects of exposures beyond those of level-2
covariates.

In 1992, Greenland suggested the SB approach as a good and easy strategy to tackle
the problem of null estimation of the level-2 variance parameters by setting specific suitable
values for σ 2

β . In particular, SB estimates appear to be better than EB estimates when the
sample sizes and the ratio of subjects to parameters are small. Moreover, they are proved
to be robust to misspecification (Greenland, 1993).

To borrow estimation power, here we propose to adopt a Bayesian perspective (more
precisely, a BEB approach) as a more appropriate framework. Indeed, it requires all the
parameters to be random by offering the opportunity of assigning reasonable priors by
letting the data contribute to the final estimation. Thus, in our example the specification of
the prior distributions for (hyper-) parameters γp, αj , πq , π0k , as well as for σ 2

β , is needed.
We model the intercepts αj as N (α0; σ 2

α ), representing exchangeable random baseline risks
of disease for each group. The choice of other prior distributions, together with those
for α0 and σ 2

α , can be problematic. As a first attempt, we assign flat and conjugate prior
distributions. Then, we specify weakly informative priors to assess model performances.
In particular, we focus our attention on the crucial parameter σ 2

β by reasonably supposing
that its value will be small, on the grounds that most important level-2 covariates have been
included in the analysis. We believe a 2-fold variation between the Odds Ratios (OR) for
the upper and lower 5% of units is reasonable, that is β95% − β5% = log2. Hence, our prior
guess at the precision term σ−2

β is ≈ 3.292/(log2)2 ≈ 22.53. To reflect our uncertainty in
this prior guess, we believe that 4-fold variation between the upper and the lower 5% of
units is very unlikely (say, less than a 1% chance). Thus, lower 1% quantile of our prior
distribution for the precision σ−2

β can be supposed to be ≈ 3.292/(log4)2 ≈ 5.63. These
two assumptions are sufficient to fully specify a proper and informative hyperprior for the
precision term that is σ−2

β ∼ Gamma(4.9; 0.22).
The Bayesian hierarchical model we propose will be assessed, under various circum-

stances, with a simulation study described in the next section and fitted by Markov chain
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2648 Roli and Monari

Monte Carlo simulation. Samples from full-conditional distributions are generated using
the WinBUGS software (Spiegelhalter et al., 2003).

3. Simulation Study

We generate an artificial dataset basing on a real prospective cohort study designed to
investigate the association of dietary exposures with the occurrence of colon-rectum cancer
with individuals enrolled from different centers (Riboli and Kaaks, 1997). We suppose
for a sample of healthy subjects information on dietary intakes is assessed by specific
instruments and collected at the enrollment, together with anthropometric measurements
and lifestyle habits. Then, after a scheduled period of observation (e.g., 10 years) a follow-
up for disease incidence is carried out, focusing on the identification of a certain number of
study subjects who developed colon-rectum cancer. Further suppose that, for each center
of enrollment, additional information on the dietary exposures are available in the form of
nutrient compositions (e.g., the amounts of protein, fat, fiber, beta-carotene, etc., in one
gram of pasta or rice or milk). This descriptive information on food constituents is usually
collected in tables which vary across countries and, more generally, across centers.

Referring to our motivating example, we consider J=30 centers of Nj=400 individuals,
j = 1, . . . , J , which are typical numbers of small-area epidemiological studies on disease
risks for a subset of the population. We suppose to have K8 dietary exposures, P=2 potential
confounders, one binary (such as smoking status) and one continuous (such as age or
pollution exposure), and Q=4 nutrients. We fix parameters and generate data according
to available information on the study at hand (Roli and Monari, 2011; Witte et al., 1994)
and to previous works on data simulation of grouped data (Jackson et al., 2006; Moineddin
et al., 2007; Witte and Greenland, 1996).

Under this perspective, we fix the intraclass correlation (ICC) to be equal to 0.2,
which, together with sample sizes, ensures accuracy of the estimates (Goldstein, 1995).
Accordingly, the logit-baseline risks αj of disease for the J groups are generated from
a normal distribution, with mean logit(0.2) and standard deviation 0.9, giving a 95%
sampling interval for the baseline risk of (0.04, 0.59). We take γ1=log(1.5)=0.41 as the
effect of the binary confounder and γ2=log(1.07)=0.07 as that of the continuous one, which
both correspond to reasonable values of odds ratio associated with a lifestyle factor such
as smoking and with factors such as age or pollution exposure, respectively. We fix the
nutrients effects included in Eq. (2) to be log(1.06), log(1.05), log(0.9), and log(1.015),
basing on a selection of previous results. Level-2 intercepts are specified under two possible
scenarios:

Scenario 1. we rely on the presence of data for all the crucial nutrients whose amounts
are included in the analysis. Under this assumption, model 2 can be simplified with a
small common level-2 intercept, π01 = . . . = π0k = . . . = π0 assumed to be equal to
0.001.

Scenario 2. some relevant levels of nutrients are supposed to be not available and, thus,
we assume k-specific level-2 intercepts: negative (if we expect the residual effects
for item k to be preventive), positive (if we expect to be causative), or small/null
(if we expect little or no residual effects). In particular, we fix π01 = π02 = −0.05,
π03 = π04 = +0.05 and π0k = 0, otherwise (Witte et al., 1994).

The residuals δjk are generated from a normal distribution with a null mean and a common
standard deviation equal to 0.01.
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Bayesian Models for Correlated Effects and Multilevel Data 2649

Table 1
Values of the parameters to generate exposure data

Parameters Values

M(k) 63, 224, 5, 32, 2, 13, 7, 11
S(k) 8, 5, 1.5, 5, 0.15, 4, 1.5, 1.5
a(k) −5.13, −4.16, −2.08, −4.16, 2.77, −3.58, −1.83, −1.39
b(k) 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6

As far as data generation is concerned, individuals exposed to the binary confounder
in the groups are randomly chosen from a binomial distribution by fixing the propor-
tion of cases to be equal to 0.2. The continuous confounder variable is generated from
a Normal distribution with mean 58.4 and standard deviation 6.3. For each exposure
k, we generate values within group j from Normal distributions with group-specific pa-
rameters N (mj (k), s

2
j (k)) where mj (k) and log(1/s2

j (k)) are simulated as N (M(k), S
2
(k)) and

N (a(k), b
2
(k)), respectively. Parameters M(k), S

2
(k), a(k), b

2
(k) are chosen basing on real data

and fixing the ratios of the between-center standard deviation (the standard deviation of
mj (k)) to the within-center standard deviation (the mean of sj (k)) to be always ≤ 0.75
(Table 1). This quantity describes the amount of information at the ecological or cen-
ter level concerning the true individual-level variability of exposures (Jackson et al.,
2006).

The amounts of each nutrient q in the composition of the dietary items are separately
generated across center units from normal distributions defined by k-specific parameters,
N (mk(p), s

2
k(p)), following the same rationale described above for dietary exposures. The

means mk(p) are simulated as K equally spaced quantiles of independent P normal distri-
butions, N (M(p), S

2
(p)); log(1/s2

k(p)) as N (a(p), b
2
(p)); and we fix the ratios of the between-

dietary standard deviation to the within-dietary standard deviation to be always ≥ 60, i.e.,
reasonably assuming (within the same nutrient) much greater variability across dietary
items than across centers (Table 2).

The J × K=240 coefficients βjk are then formed by the artificial quantities involved
in Eq. (2). These result to vary from a minimum of −0.095 (OR=0.910) to a maximum
of 0.180 (OR=1.197). Finally, the disease status Y of individual i in group j is generated
taking the value 1 with probability pij , given by Eq. (1). An overall prevalence of the
disease which is close to 15% is attained.

Table 2
Values of the parameters to generate level-2 covariates

Parameters Values

M(p) 5.4, 1, 3.7, 7.3
S(p) 4, 0.5, 2.5, 6
a(p) 6.44, 13.82, 7.82, 4.61
b(p) 0.7, 0.7, 0.7, 0.7
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2650 Roli and Monari

4. Results

Results on the target parameters, i.e., OR of dietary exposures , are considered. Several
circumstances are assessed under the two different scenarios of data generation described
above, according to the following scheme:

Scenario 1. The parameters are estimated under three model specifications:

(a) a conventional approach where several logistic regression analysis are carried out
(one for each center separately);

(b) a standard multilevel framework with random-slopes and intercepts, where at level
1 the same model as in Eq. (1) is considered and at level 2 we have

αj = α0 + u0j

βjk = β0k + ujk ∀ k (3)

with

⎡
⎢⎢⎢⎢⎣

u0j

...
ujk

...

⎤
⎥⎥⎥⎥⎦

∼ N

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0
...
0
...

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

τ00 . . . τ0k . . .
... . . .

... . . .

τ0k . . . τkk . . .
... . . .

... . . .

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

; and

(c) under our modeling framework, namely a Hierarchical BEB approach, with the
same conditions of data generation, and by considering vague priors.

Scenario 2. Parameter estimation from Hierarchical BEB model:

(a) under flat non-informative priors;
(b) when informative or credible assumptions are fixed on hyperparameter (see

Sec. 2.1); and
(c) under hypothesis of scenario 1 (i.e., misspecification with respect to the level-2

intercepts).

In order to compare the results, two measures are considered. The relative bias is
used to quantify the accuracy of the parameter estimates and the observed coverage of
the nominal 95% credibility interval (CI) to assess the accuracy of the standard error of
the parameter estimates (Maas and Hox, 2005). Given the large number of parameters,
we present summarized results in terms of percentage of the coverage and minimum,
maximum, mean and standard deviation (SD) measures for the absolute value of the relative
bias, separately by scenario (Tables 3 and 4).

Under Scenario 1, the method we propose works rather well, yielding good coverages of
credibility intervals (98% of cases including the true parameter) and reduced measurements
for bias. As a benchmark, estimates from the center-specific conventional analysis are
shown to be very biased (190.7 on average) and some problems during the estimation
process occur (for 9 centers the algorithm does not converge). In order to quantify the gains
in our estimates, we further consider results from a standard multilevel analysis, where
the shrinkage of the estimates is made only by the same food across centers, but part of
the correlation (e.g., foods that share similar nutrient compositions) remains uncontrolled.
In such case, even if an improvement is achieved against conventional approach, results
remain quite biased.

The estimates from the Hierarchical BEB approach seem
to be robust when some level-2 information are missing
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Bayesian Models for Correlated Effects and Multilevel Data 2651

Table 3
Results - Scenario 1

Parameters: OR(βjk) Conventional∗ Multilevel Hierarchical BEB

Coverage of 95% CI 94.5% 97.9% 98.0%
Relative bias
Mean 190.7 17.641 1.719
SD 1608.2 162.7 6.6
Min 0.008 0.000 0.000
Max 23976.5 2495.5 84.7

∗For 9 centers algorithm did not converge.

(Scenario 2), when the priors are not informative (Scenario 2(a) and 2(b)) and to
model misspecification (Scenario 2(c)). In particular, specifying informative and reason-
able priors seems to mainly improve the accuracy of the standard error of the estimates
(coverage from 92.9–96.3%), while the bias measures hold steady. Similarly, when we
wrongly assume a common level-2 intercept the performance in the parameter estimates
is good, but the accuracy of standard error estimates consistently decreases (only 88.3%
of intervals include the true parameter). Indeed, forcing the level-2 intercepts to be the
same yields a too large shrinkage effect of the estimates of dietary effects. As a result,
corresponding posterior distributions result to be too much concentrated around an
estimate (taken as the mean of the distribution) which is less precise. In such cases, a good
practice could be to adopt a direct likelihood approach to firstly select a suitable model
specification. In Bayesian analysis the Deviance Information Criterion (DIC; Spiegelhalter
et al., 2002) can be used to assess model complexity and goodness-of-fit. In our example,
DIC properly identifies the model with k-specific level-2 intercepts as the best specification
(DIC=4991.450) rather than one with a common intercept (DIC=5054.760).

5. Concluding Remarks

We considered two complications that can affect the estimation of multiple exposures and
that need to be somehow controlled during the analysis: the nested structure of data and
an high correlation across effects. We proposed a Hierarchical Bayes empirical Bayes

Table 4
Results - Scenario 2

Parameters: OR(βjk) Vague priors Informative priors Under Scenario 1

Coverage of 95% CI 92.9% 96.3% 88.3%
Relative bias
Mean 0.218 0.218 0.237
SD 0.318 0.187 0.176
Min 0.0003 0.0001 0.002
Max 1.644 1.067 0.816
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2652 Roli and Monari

approach, which exploit additional information suitable to mediate the final effects of the
exposures, as well as providing a reasonable framework to assign credible priors.

We implemented a simulation study based on a real study carried out to investigate the
association of dietary exposures with the occurrence of colon-rectum cancer. We showed
that the method we propose provides results on the effects of exposures which are more
precise and less biased than those provided by the standard approaches. Moreover, it seems
quite robust in terms of bias of the estimates when a misspecifications in the parameter
structure occurs. Conversely, standard errors of the estimates result to be more sensitive,
even when specifications of vague rather than informative priors are compared.

Other aspects need to be explored as further developments of this work, such as
evaluating model performance when the numbers of exposures and level-2 covariates
increase (or decrease) and when more complex residual covariance matrix and related
misspecification are considered.

The method we propose can be easily applied in several fields, other than in the
epidemiologic application we considered. Some examples lie in occupational studies, where
more levels of information can be merged; or to perform polytomous logistic regressions of
different causes of death on a set of exposures; or in disease mapping and spatial analysis,
where the variations due to random occurrences need to be controlled by exploiting the
spatial proximity and the consequent interaction of the geographical areas; or, finally, in
genetics, where the adjacency of genes can generate some sorts of interactions in their
expression.
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