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According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in
old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development
of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years,
increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate
sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple
mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting
apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species’ formation by
sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by
sulforaphane-derived reactive oxygen species.

1. Introduction

According to recent estimates, cancer continues to remain the
second leading cause of death and is becoming the leading
one in old age [1]. It is projected that by 2030 the number
of new cancer cases will increase by 70% worldwide due to
demographic changes alone [2]. Lack of effective diagnostic
tools for early detection of several tumors, limited treatment
options available to patients with advanced stages of cancer,
and onset of multiple drug resistance favor poor prognosis
and high mortality rate. The moderate improvement of sur-
vival, severe toxicity profile, and high costs that characterize
many current anticancer therapies indicate that a threshold
in terms of clinical benefit and tolerance in patients has been
reached and advocate the identification and development
of innovative preventive as well as therapeutic strategies to
contrast cancer-associated morbidity and mortality.

Epidemiological, preclinical, and clinical studies have
generally concluded that a diet rich in phytochemicals can
reduce the risk of cancer [2]. Due to their antioxidant,
anti-inflammatory, and antiproliferative activities as well as

modulatory effects on subcellular signaling pathways, fruits
and vegetables, which contain a diverse range of phyto-
chemicals, are suggested to protect against cancer incidence
and mortality [3–5]. Plants constitute a primary and large
source of various chemical compounds including alkaloids,
flavonoids, phenolics, tocopherols, organic acids, triterpenes,
and isothiocyanates. Belonging to the Cruciferae family,
broccoli, cauliflower, cabbage, kale, Brussels sprouts, and
radish have been linked to the high content of secondary
metabolites andmultipharmacological functions [6]. Clinical
and preclinical studies have actually reported that crucif-
erous vegetables exert anticarcinogenic, anti-inflammatory,
and antioxidant activities largely attributed to their con-
tent of many bioactive components including flavonoids
such as quercetin, minerals such as selenium, and vitamins
such as vitamin C [7–9]. However, glucosinolates are the
most studied bioactive compounds in crucifers associated
with cancer protection. They are characterized by a basic
structure containing a 𝛽-D-thioglucose group, a sulfonated
oxime group, and a side chain derived from methionine,
phenylalanine, tryptophan, or branched-chain amino acids.
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Of note, glucosinolates are not bioactive until they have
been transformed to a chemically related isothiocyanate
(ITC) by a hydrolytic reaction catalyzed by the endogenous
enzymemyrosinase.Thehydrolytic reaction takes placewhen
myrosinase is released by disruption of the plant cell during
harvesting, processing, or chewing of cruciferous vegetables
or if the plant myrosinase has been denatured by cooking
and by bacterial myrosinase in the human colon. One of
the most promising and characterized anticancer ITCs is
sulforaphane (SFR), generally found as glucoraphanin in high
concentrations in broccoli.

SFR is passively absorbed by cells, where it is rapidly
conjugated with glutathione (GSH) by glutathione S-trans-
ferases (GSTs). Then, it is metabolized sequentially by 𝛾-glu-
tamyl-transpeptidase, cysteinyl-glycinease, and N-acetyl-
transferase, and the derived conjugates are transported into
the systemic circulation. The major urinary excretion prod-
ucts are mercapturic acid and cysteine conjugate forms [10].

In blood, SFR can achieve 𝜇molar concentrations and
accumulate in tissues [11]. Rat treatment with a single oral
dose of 50 𝜇mol of SFR leads to a peak plasma concentration
of about 20𝜇M[12].However, after dietary consumption, SFR
levels in humans are lower and closer to 3𝜇M [13].

SFR administered orally protects against animal car-
cinogenesis and induces antiproliferative effects in human
tumor cells in xenograft models. Mechanisms of cancer
chemoprevention by SFR are diversified and include the
alterations of carcinogen metabolism through the induction
of Nrf2-regulated genes of Phase-II detoxification enzymes
(glutathione S-transferase, quinone reductase, glucurono-
syltransferase, etc.) and the inhibition of Phase-I enzymes
that activate toxic chemical compounds, thus lowering the
levels of the carcinogens interacting with DNA [14]. Of
note, the inducer activity was also reported in humans. A
placebo-controlled dose escalation study demonstrated that
dietary SFR-containing broccoli sprout extracts upregulate
mRNA levels for Nrf2-dependent enzymes (heme oxyge-
nase 1, NAD(P)H:quinone oxidoreductase-1, and glutathione
transferases) in nasal lavage [15].

A second important antitumor mechanism is the ability
of SFR to block cell proliferation and induce apoptosis of
cancer cells, thus reducing tumor growth. A plethora of
different and partly dependent molecular mechanisms medi-
ates its cytostatic and cytotoxic activities including mitogen-
activated protein kinase (MAPK) responses, nuclear factor-
𝜅B (NF-𝜅B) activity, conformational and functional changes
of tubulin, microtubule disruption, tubulin precipitation, and
degradation of both 𝛼-tubulins and 𝛽-tubulins, enhancement
of proteasomal activity, andmodulation of Bax : Bcl-2 ratio [5,
16–21]. As an example, an increase in intracellular free Ca2+
was detected in glioblastoma cells following treatment with
SFR, suggesting the activation of Ca2+-dependent pathways
for apoptosis, such as upregulation of calpain, a Ca2+-
dependent cysteine protease, and increased Bax : Bcl-2 ratio
[22]. Other studies reported that SFN-induced apoptosis was
associated with p53 gene activation [23].

Themodulation of epigeneticmarks is a thirdmechanism
that has been suggested to be involved in the anticancer

activity of SFR. SFR is actually able to enhance global histone
acetylation through the inhibition of histone deacetylase
activity [24]. Accordingly, an increase at the bax and the p21
promoter regions has been detected in animal models [25]. It
is worth mentioning that this effect has been observed also in
healthy human subjects, where a single dose of 68 g of broc-
coli sprouts reduced histone deacetylase activity in peripheral
blood mononuclear cells 3 and 6 h after consumption [25].

Herein, we highlight that SFR cytotoxicity derives from
complex, concurring, and multiple mechanisms, among
which the generation of reactive oxygen species has been
identified as playing a central role in promoting apoptosis and
autophagy of target cells. Furthermore, we critically review
the scientific knowledge about the site and the mechanism
of reactive oxygen species (ROS) formation by SFR, the
toxicological relevance of SFR-formed ROS, and the death
pathways triggered by SFR-derived ROS.

2. ROS Signaling in Cancer

Oxidative stress plays a role in many clinical conditions such
as cancer, diabetes, atherosclerosis, chronic inflammation,
viral infection, and ischemia-reperfusion injury [26]. In
particular, cancer is generally associated with a prooxida-
tive shift in the redox state. Since cancer patients often
present reduced glucose clearance capacity, high glycolytic
activity, and lactate production, it has been suggested that
the observed prooxidative shift is mediated by an enhanced
availability of mitochondrial energy substrate [27]. ROS
can favor mutagenesis, tumor promotion, and progression.
Indeed, they are able to induce DNA and protein damage,
damage to tumor suppressor genes, and increased expression
of protooncogenes [28]. Damage to DNA by ROS has been
widely accepted as a major cause of cancer [29]. In patients
with pathologies associated with a risk of cancer such as
Fanconi’s anemia, chronic hepatitis, or cystic fibrosis, an
increased rate of oxidative DNA damage or deficient DNA
repair system has been observed [30–33]. The ROS-induced
mutations include a range of specifically oxidized purines
and pyrimidines, alkali labile sites, single-strand breaks,
and instability formed directly or by repair processes [34].
Although all the four DNA bases can be modified by ROS,
mutations mainly involve modification of GC base pairs,
while AT base pair mutations are rarely observed [35]. In
humans, G → T transversions are the most frequent muta-
tions observed in the p53 suppressor gene of tumor cells [36].
High levels of mutated bases observed in neoplastic tissues
may be due to the production of large amount of H

2
O
2
[37].

Accordingly, oxidative DNA damage has been suggested
to be involved in the development of many different cancers.
Increased steady-state levels of 8-oxo-dG adducts have been
observed in inflamed breast cancer tissues, where malignant
progression can occur [38], and in hepatocellular carcinoma
[39]. Hepatocarcinoma is often associated with hepatitis B or
hepatitis C virus infection or ingestion of food contaminated
by aflatoxins [40, 41]. Hepatitis B or hepatitis C virus-induced
oxidative stress is causally associated with the genesis of
hepatocarcinoma [31, 42] and G → T transversion is a
common type of mutation caused by aflatoxins [43]. Also the
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high incidence of prostatic carcinoma inmen aged> 50 years,
the paucity of chemicals causally linked to the onset and
development of this specific tumor, and the increased ROS
production by mitochondria detected in aged tissues [44] led
to hypothesizing an association between prostate cancer and
endogenously formed genotoxins that accumulate in later life
like ROS [45].

The proproliferative effects of ROS are related to redox-
responsive cell signaling cascades, and sometimes increased
proliferation and expression of growth-related genes are
observed even in normal cells if exposed to H

2
O
2
or O2

−∙.
Although the role of ROS in cell growth regulation is cell-type
specific and dependent upon the form of the oxidant as well
as the concentration of the particular ROS, the modification
of gene expression by ROS has been found to affect cell prolif-
eration and apoptosis through the activation of transcription
factors including MAPK, AP-1, and NF-𝜅B pathways. Like-
wise, ROS can function as second messengers and activate
NF-𝜅B by tumor necrosis factor and cytokines [26].

Finally, oxidative stress is involved in malignant trans-
formation. Epithelial-mesenchymal transition, characterized
by loss of cell-cell junctions, polarity and epithelial markers,
and acquisition of mesenchymal features and motility, has
been suggested to be involved in cancer progression and
metastasis [46]. Recently, it has been found that matrix
metalloproteinases cause epithelial-mesenchymal transition
associated with malignant transformation via a pathway
dependent upon production of ROS [47].

3. Putative Role of ROS in the Cytotoxic and
Anticancer Activity of SFR

The term hormesis is used to describe the apparently para-
doxical phenomenon in which a specific compound induces
biologically opposite effects depending on its concentration:
in particular, there is a stimulatory or beneficial effect at low
doses and an inhibitory or toxic effect at higher ones. Today
there is general consensus on the fact that SFR (and some
other ITCs) can be considered as a hormetic moiety; that is,
at low doses it exerts chemopreventive, indirect antioxidant,
and cytoprotective effects, while at higher doses it exhibits
cytotoxic and antitumor properties [48, 49]. This scenario
paves the way to a double exploitation of SFR in cancer, as a
chemopreventive agent to reduce the onset of tumors through
diets enriched in functional foods, as well as a direct antineo-
plastic agent at higher dosage regimens more reliably attain-
able through pharmaceutical delivery of purified SFR [16].

Most of the studies have been aimed at elucidating the
chemopreventive activity of SFR, which, as above reported,
has been attributed to its indirect antioxidant capacity involv-
ing the activation of Phase-II detoxification enzymes and the
inhibition of Phase-I enzymes [16]: in this light, SFR acts
strengthening the cellular defenses against oxidative damage
and promoting the removal of carcinogens.

However, increasing attention has been devoted to the
cytotoxic and anticancer activity since the discovery of SFR
antitumor effects in pancreatic carcinoma cells and other
tumor cell lines [11, 16, 50–52]. Notably, all the studies
dealing with SFR toxicity report that these effects occur at

concentrations above 5–10𝜇M, that is, levels which can be
barely maintained through cruciferous diet intake [23].

SFR cytotoxicity seems to derive from complex, concur-
ring, and multiple mechanisms [5, 16, 17, 22, 23, 53, 54].
Among these mechanisms, the generation of ROS is impor-
tant in promoting apoptosis and autophagy of target cells [55,
56]. Indeed Singh et al. [57] reported that high concentrations
of SFR caused extensive death in prostate cancer cells, an
effect which could be prevented by catalase overexpression.
ROS generation in SFR-treated cells was accompanied by
disruption of mitochondrial membrane potential, cytosolic
release of cytochrome C, cleavage of poly-ADP-ribose poly-
merase, and apoptosis [57] (Figure 1). ROS generation is per
se a potentially toxic phenomenon, but it is important noting
that cells treated with high doses of SFR undergo a situation
of increased ROS sensitivity since a peculiar capacity of the
isothiocyanate consists in depleting the GSH cellular pool
[58, 59] (Figure 1), an effect which is particularly severe with
high, supranutritional SFR concentrations. Indeed, depletion
of GSH deprives cells of a first line, soluble antioxidant
defense [53, 60, 61], giving rise to a “vicious oxidative cycle”
(ROS production in cells which at the same time are being
depleted in GSH) which is indirectly demonstrated by the
fact that N-acetylcysteine (NAC) supplementation enhanced
cell survival opposing to GSH depletion [57, 58] rather than
acting itself as a mere, direct antioxidant.

An important issue arising from the above studies is
where and how ROS are formed. As to the site and the
mechanism of ROS formation by SFR, it was noted that
mitochondrial respiratory complex inhibitors prevented SFR-
caused ROS generation, an event which was paralleled by
increased cell survival [56, 57]. Similarly, cells with respira-
tion deficient phenotype were significantly less sensitive as
compared to respiratory proficient, wild-type cells, and they
did not produce ROS upon SFR treatment [56, 57]. SFR-
caused ROS have been detected and visualized in cultured
cells by means of specific dyes such as dihydrorhodamine or
dihydrodichlorofluorescein which fluoresce upon oxidation
by ROS: importantly the conditions described above (i.e.,
the use of respiratory complexes inhibitors, cells bearing
respiratory deficient phenotype) prevented the oxidation of
these dyes caused by SFR. Thus, mitochondria are likely
to represent the site where SFR promotes ROS generation
(Figure 1). This finding is in keeping with the observation
that loss of mitochondrial transmembrane potential, release
of cytochrome C, and mitochondrial damage are in effect
induced by SFR and other ITCs. The molecular interaction
of SFR with mitochondria has also been studied: it appeared
that SFR is capable of inhibiting, probably via electrophilic
interactions with specific SH residues, mitochondrial res-
piratory chain Complex I, Complex II, and Complex III
[56]. However, although confirming Complex I, Complex
II, and Complex III inhibition, a more recent study by
our group indicated that the major and likely most crucial
inhibition affects Complex III [54]. Indeed, using pharmaco-
logical inhibitors of respiratory complexes, we showed that
rotenone, but also myxothiazol, prevented ROS formation
in SFR intoxicated Jurkat leukemia cells. Rotenone is likely
to hamper ROS formation in SFR-treated cells because, as a
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Figure 1: Schematic representation of the mitochondrial ROS formation elicited by sulforaphane. Sulforaphane (SFR) inhibits mitochondrial
respiratory chain at the level of Complex III in an antimycin-like fashion. ROS initiate a cascade of toxic events culminating in apoptosis,
necrosis, and, although still to be fully demonstrated, autophagy. Arrows indicate the toxicologically relevant events elicited by ROS. CytC:
cytochrome C leakage; mtDNA: mitochondrial DNA; PTP: permeability transition pore opening.

Complex I inhibitor [62], it impedes at the origin the electron
flow to other, possibly pivotal targets located downstream,
such as Complex III. Indeed, myxothiazol, which was as
effective as rotenone in preventing SFR-derived ROS, is a
selective Complex III inhibitor [63, 64], which blocks the
electron flow through this complex and, importantly, the
accumulation of ubisemiquinone (see below). Its efficacy
indirectly demonstrates that SFR (at least up to 30𝜇M, the
highest concentration tested in this study) does not affect
electron flow through the respiratory chain upstream to
Complex III since, if electrons do not reach this site, myxoth-
iazol would not prevent SFR-caused ROS formation. Notably,
chemical inhibition of Complex III by agents acting as
antimycin A (i.e., differently from myxothiazol) is known to
represent a common and toxicologically relevant mechanism
capable of boosting ROS generation within mitochondria
[65–68]. Indeed, this latter mode of inhibiting Complex III,
which is likely shared by SFR, causes an accumulation of
ubisemiquinone which starts serving as an electron donor for
molecular oxygen in a reaction producing superoxide anion
and its dismutation product H

2
O
2
, which undergoes Fenton

reaction and finally attacks sensitive cellular targets.
Thus, SFR does not undergo any direct oxidation/reduc-

tion reaction leading to ROS or radical species by-products
but rather promotes the onset of mitochondrial events culmi-
nating in ROS formation through its antimycin-like Complex
III inhibitory properties.

The next important issues refer to the toxicological
relevance ofmitochondrially formedROS and towhich death
pathways are triggered by SFR-derived ROS.

One of the most sensitive cellular targets of ROS is
nuclear DNA, where ROS cause extensive damage. Evidence
of some genotoxic activity of SFR and other ITCs had already
emerged, but the first study investigating the DNA damaging
activity of SFR was that by Sekine-Suzuki et al. [69] reporting
that SFR induces DNA double strand breaks in the nuclear
DNA of HeLa cervical cancer cells. However, these authors
did not investigate the mechanism of the DNA damaging
effect of SFR and they probably detected secondary DNA
fragmentation due to the ongoing apoptosis caused by the
ITC rather than frank DNA lesions: indeed the exposure
times to SFR were too long (24 h, i.e., a time conceivable with
the onset of apoptosis) as compared to the kinetic of ROS for-
mation in SFR intoxicated cells (1–3 h). In our previously cited
study [54], we specifically addressed the relationship between
ROS formation and DNA damage in SFR-treated human
leukemia and umbilical vein endothelial cells. We found
that SFR causes DNA single strand breaks (i.e., the type of
lesion typically induced by ROS, unlike double strand breaks
which are generated only in the presence of very high ROS
concentrations [70]) with a kinetic (1–3 h) which paralleled
that of ROS formation in SFR-treated cells. Furthermore, it
was found that all the conditions blocking the mitochon-
drial respiratory chain and in particular myxothiazol (see
above), or quenching ROS by means of the iron chelator
o-phenanthroline, prevented DNA damage. These findings
clearly indicate that ROS, produced via the antimycin-like
interaction of SFRwithmitochondrial respiratory chain at the
Complex III level and then diffusing within the nucleus, are
responsible for the observed DNA lesions.
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Recent observations have extended our knowledge on
SFR interactions with DNA homeostasis since, besides its
ROS-mediated DNA damaging capacity, SFR was also shown
to inhibit DNA repair processes [49, 71]. SFR sensitized
HeLa cells to X-irradiation [71], and the radiosensitization
was ascribed to the capacity of SFR of inhibiting the two
major processes of DNA double-strand breaks repair (DNA
double-strand breaks are a highly toxic DNA lesion typi-
cally and efficiently caused by ionizing radiations), namely,
homologous recombination repair and nonhomologous end
joining. Accordingly, other authors found that high SFR
concentrations decrease the expression of a number of DNA
repair genes [49] and inhibit nuclear excision repair via
abstraction of zinc from the xeroderma pigmentosum A
(XPA) protein [72]. The ROS dependence of these effects has
not been addressed, but the picture arising from this further
notion is indicative of amarked pleiotropismof the SFR-DNA
interactions since SFR is simultaneously capable of damaging
DNA [49, 54, 73, 74], inhibiting DNA repair [49, 71], and
finally sensitizing cells to established anticancer agents such
as X-rays [71] or doxorubicin [49] mostly acting through a
DNA damaging action.

DNA damage, depending on its level and persistence,
might promote cell death: indeedDNA lesions are recognized
as efficient proapoptotic stimuli. Hence, ROS-dependent
DNAbreaks are likely to contribute to SFR-induced apoptosis
which, in fact, is the type of cell death caused by SFR. Many
authors have investigated the role of ROS in SFR-induced
apoptosis and they invariably reported that ROS generated
within mitochondria contribute to or are fully responsible
for the apoptotic response [18, 75]. Besides DNA damage,
the proapoptotic events which have been attributed to SFR-
caused ROS are the collapse ofmitochondrialmembrane per-
meability [57, 61, 74], activation of caspase-3 and caspase-9
[57, 61, 76], downregulation of antiapoptotic Bcl-2 expression
[77], Bax and p53 gene activation [23, 77], and G2/M phase
cell cycle arrest [56] and have been observed in a wide variety
of heterogeneous cell lines.

SFR has been shown to induce autophagy in colon and
prostate cancer cells and more recently in pancreatic cells
[78]: in this cell line, SFR induces autophagy via a ROS-
dependent mechanism. SFR, at supranutritional and cyto-
toxic concentrations (20 or 60 𝜇Mfor 24 h), induced a signifi-
cant increase of autophagosome formation as well as of other
reliable markers of autophagy, and all these effects could be
prevented by NAC cotreatment, suggesting that this response
is causally related to ROS production or depletion of GSH,
that is, two prooxidative events. Modulation of autophagy
with specific inhibitors (rapamycin or chloroquine) did not
affect, however, cell survival in SFR-treated cells, suggesting
that, at least in this cell system, autophagy does not concur to
the actual cytotoxic activity of SFR itself. On the contrary, in
other cell systems (colon and prostate cancer cells) induction
of autophagy by SFR seems to exert a cytoprotective effect [79,
80] but, unfortunately, the ROSdependence of the autophagic
process had not been investigated in these studies. Thus,
although the ROS dependence of SFR-induced autophagy has
been demonstrated by Xiao et al. [56] and Naumann et al.
[78], the problem of its sensitizing versus protective relevance

in SFR-induced cytotoxicity is not yet clear and needs further
investigations.

Taken collectively, the above reports unequivocally sug-
gest that mitochondrial production of ROS is an important
event in high SFR concentrations cytotoxicity. However, there
is not clear consensus on the relative contribution of ROS-
dependent mechanisms to SFR toxic capacity. Indeed, some
reports show that abrogating ROS production or quench-
ing ROS almost completely protects target cells from SFR
killing [56, 57, 77], while another [54] found that similar
conditions granted only a partial protection. One possible
explanation may relate to cell-type specific effects: indeed
different cell lines have been used in these studies. Another
possible explanation is that some studies interpreted the full
prevention of SFR cell killing by NAC as a neat antioxidant
effect; that is, acting as an antioxidant NAC quenches ROS-
derived SFR thus abrogating SFR toxicity. However, it is of
worth that preloading of cells with fairly high doses (2–
10mM) of a –SH-bearing compound such as NAC is likely
to prevent also the fall of GSH stores [58] in cells exposed to
the comparatively low doses (1–30 𝜇M) of SFR used in these
studies: in this light, the full protection of NAC would not be
solely dependent on the presumed quantitative quenching of
SFR-caused ROS, but rather it would reflect the cumulative
effect of GSH preservation plus that of ROS scavenging.
Indeed, another study showed that an established antioxidant
which cannot, unlikeNAC, serve as GSH repletive, namely, o-
phenanthroline, abrogated ROS production and the ensuing
DNA damage but did not completely protect cells from SFR
toxicity [54]. Similar results were obtained with inhibitors of
mitochondrial respiratory chain [54]. Interestingly, all these
conditions prevented SFR-induced ROS but did not prevent
the fall in cellular GSH, an effect which, on the contrary, is
likely to be afforded by NAC. In this light, the catastrophic
depletion of cellular GSH caused by high SFR concentrations
would represent per se another cytotoxically relevant phe-
nomenon. In addition, this same event may act additively
or synergistically with ROS with its own contribution to
generate oxidatively stressing/sensitizing conditions, that is,
the “vicious oxidative cycle” described at the beginning of this
chapter: notably, Han et al. [81] showed that, below certain
threshold levels,mitochondrial GSHdepletion increases ROS
production and diffusion under conditions of Complex III
inhibition.

That ROS are not the onlymediators of SFR toxicity is also
suggested by the finding that SFR inhibits protein synthesis in
human prostate cancer cells via a ROS insensitivemechanism
[82].

A selective toxicity of SFR to cancer cells has been
demonstrated in different experimental models. As an exam-
ple, SFR induces cytotoxic and cytostatic effects in different
prostate cancer cell lines, but not in their normal counterpart
[83]. On the basis of different observations, several studies
strongly suggest a role of ROS in the selective toxicity to
cancer cells of SFR. SFR-induced ROS causes membrane
lipid peroxidation and generation of 4-hydroxynonenal [84]
and apoptotic signals generated by SFR can be abrogated by
inhibiting SFR-induced lipid peroxidation and accumulation
of 4-hydroxynonenal.This evidence supports the pivotal role
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that 4-hydroxynonenal plays in the biological activity of SFR
[84]. 4-Hydroxynonenal is an important second messenger
involved in signaling for cell proliferation and apoptosis and
in regulating gene expression in different cell types [85–
90]. In particular, it evokes dichotomous effects through
the activation of the defense mechanisms against oxidative
stress, such as Nrf2 and heat shock factor 1 [91–93], at low
concentrations and the induction of apoptosis at higher,
supraphysiologic ones [94]. Thus, it is possible that similar
dichotomous effects of SFN are responsible for its differential
effects on normal and cancer cells. The ability of SFR to
generate ROS and oxidative stress in cells leading to the
activation of proapoptotic signaling and simultaneously acti-
vate defense mechanisms, such as Nrf2, that protect against
oxidative stress and its intrinsic toxicity is consistent with the
above reported hypothesis. Generation of 4-hydroxynonenal
upon cell exposure to SRF could therefore represent an event
implicated in its selective effects on cancer cells.

4. Conclusion

Although further studies are needed to clarify the relative
importance of ROS in SFR toxicity, the effects which tie
to ROS generation are definitely important for the ITC’s
cytotoxic activity andmay represent the bases for its rationale
exploitation in cancer therapy as a single agent or in associ-
ation with other antineoplastic agents or drugs to potentiate
their anticancer efficacy.
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