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Abstract. Using the technique introduced in [1], we explain the relations between the

description of KP–multisolitons in the Sato Grassmannian and in finite–gap theory in

the special cases GrTP(1,M) and GrTP(M − 1,M) where the multisolitons may be

associated to Krichever data on rational degenerations of regular hyperelliptic M–curves

of genus M − 1 .

Sunto. Usando la tecnica introdotta in [1], spieghiamo le relazioni fra la descrizione

dei multi-solitoni KP nell’ambito della Grassmanniana di Sato e della teoria finite–gap

nei casi particolari GrTP(1,M) e GrTP(M − 1,M), dove i multisolitoni possono essere

associati a dati di Krichever su degenerazioni razionali di M–curve iperellittiche di genere

M − 1.
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1. Introduction

The KP-II equation

(1) (−4ut + 6uux + uxxx)x + 3uyy = 0,

was originally proposed by Kadomtsev and Petshiavili [14] to study the stability of soliton

solutions to the Korteweg de Vries equation under a weak transverse perturbation. It

was soon realized that such equation is associated to a completely integrable system with
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remarkably rich mathematical structure (see for instance the monographs [4, 6, 13, 21, 24]

) and it is nowadays considered the prototype model of the integrable nonlinear dispersive

wave equations in 2 + 1–dimensions.

The KP soliton solutions are a class of solutions to (1) which may be associated to points

in the infinite–dimensional Sato Grassmannian. In a series of recent papers, Chakravarty–

Kodama [3] and Kodama–Williams [15, 16] have classified the asymptotics of a particular

class of KP soliton solutions associated to finite–dimensional reductions of the Sato Grass-

mannian - the so–called regular bounded (M−N,N)-line solitons, - using the combinato-

rial classification of the totally non–negative part of the real Grassmannian, GrTNN(N,M)

(see [23] for necessary definitions). In particular in [16] it has been determined the connec-

tion between the tropical limit of the KP-soliton graphs and the theory of cluster algebras

of Fomin and Zelevinsky [8, 9].

The class of KP solutions considered in [3, 15, 16] are, in principle, also associated

to Krichever data on rational degenerations of M–curves. Indeed, on one side, by a the-

orem of Dubrovin and Natanzon[7], real regular finite–gap solutions are parameterized

by Krichever data on regular M–curves and on the other side, by finite–gap theory [6],

it is known that regular bounded (M − N,N)-line solitons may be obtained from regu-

lar real quasi–periodic KP solutions when some cycles of the underlying algebraic curves

degenerate to double points.

In [1], we have succeeded in connecting such two areas of mathematics - the theory

of totally positive Grassmannians and the rational degenerations of the M-curves - using

the finite–gap theory for solitons of the KP equation. More precisely, for any fixed set of

phases k1 < · · · < kM and for any fixed ξ >> 1, to any point of the real totally positive

Grassmannian GrTP(N,M) we associate a rational curve Γ = Γ(ξ), which is the rational

degeneration of a regular M–curve of minimal genus g = N(M − N), and the Krichever

divisor D = D(ξ) of the underlying soliton solution. Moreover, the curves Γ(ξ) are of the

same topological type if ξ >> 1.

In [1], we have remarked that in the cases GrTP(1,M) - and, by duality, also GrTP(M−

1,M) - the construction may be modified in such a way to associate the rational degener-

ation of a hyperelliptic M-curve of minimal genus g = M − 1 to the given soliton solution.
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In this paper we present such modified construction for any M and we explain its rela-

tion with the duality of GrTP(1,M) and GrTP(M −1,M), using the space–time inversion

transformation of soliton solutions.

2. (M −N,N)-line solitons via Darboux transformation, in the Sato

Grassmannian and in finite–gap theory

From now on, let N < M . In this section, we identify the real bounded regular

(M −N,N)-line soliton solutions in the general class of KP–soliton solutions using three

techniques: Darboux transformations, Sato’s dressing transformations and finite gap–

theory.

First of all, we recall some useful definitions and we refer to Postnikov [23] and references

therein for more details. An N ×M real matrix A ∈MatTNN
N,M if all the maximal (N ×N)

minors of A are non–negative and at least one of them is non trivial. Then the totally non–

negative Grassmannian is GrTNN(N,M) = GL+
N\MatTNN

N,M , where GL+
N are the N×N real

matrices with positive determinant. The totally positive Grassmannian is GrTP(N,M) =

S ∩ GrTNN(N,M), where S is the top cell in the Gelfand–Serganova decomposition of

Gr(N,M), i.e. [A] ∈ GrTP(N,M) if and only if all maximal (N × N) minors of A are

positive.

The simplest way to construct KP solitons is via the Wronskian method [20]: suppose

that f (1)(x, y, t), . . . , f (N)(x, y, t) satisfy the heat hierarchy

∂yf
(r) = ∂2

xf
(r), ∂tf

(r) = ∂3
xf

(r), r = 1, . . . , N,

and let

τ(x, y, t) = Wrx(f (1), . . . , f (N)) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

f (1) f (2) · · · f (N)

∂xf
(1) ∂xf

(2) · · · ∂xf
(N)

...
...

...
...

∂N−1
x f (1) ∂N−1

x f (2) · · · ∂N−1
x f (N)

∣∣∣∣∣∣∣∣∣∣∣∣
.

Then u(x, y, t) = 2∂2
x log(τ(x, y, t)), is a solution to KP-II.
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Let k1 < k2 < · · · < kM . The (M −N,N) - line soliton solutions u(x, y, t) are obtained

choosing

(2) f (r)(x, y, t) =
M∑
j=1

ArjEj(x, y, t), r = 1, . . . , N,

where A = (Arj) is a real N ×M matrix and Ej(x, y, t) = eθ(kj ;x,y,t) with θ(λ;x, y, t) =

λx+ λ2y + λ3t. In such a case

(3) τ(x, y, t) =
∑

1≤i1<···<iN≤M

∆(i1, . . . , iN)E[i1,...,iN ](x, y, t)

where ∆(i1, . . . , iN) are the Plücker coordinates of the corresponding point in the real

Grassmannian, [A] ∈ Gr(N,M), and E[i1,...,iN ](x, y, t) = Wrx(Ei1 , . . . , EiN ). Then, follow-

ing [15], the (M−N,N) - line soliton u(x, y, t) = 2∂2
x log(τ) is regular and bounded for all

(x, y, t) ∈ R3 if and only if [A] ∈ GrTNN(N,M), i.e. all N ×N minors ∆(i1, . . . , iN) ≥ 0.

The KP solitons are also realized as special solutions in the Sato theory of the KP

hierarchy [24, 21] using the dressing transformation. Indeed let the vacuum hierarchy be ∂xΨ
(0) = λΨ(0),

∂tnΨ(0) = ∂nxΨ(0) = λnΨ(0), n ≥ 1,

and suppose that the dressing operator W = 1− w1∂
−1
x − w2∂

−2
x − · · · satisfies the Sato

equations ∂tnW = (W∂nxW
−1)+W − W∂nx , n ≥ 1, where the symbol (·)+ denotes the

differential part of the given operator. Then the KP hierarchy is generated by the inverse

gauge (dressing) transformation L = W∂xW
−1 LΨ̃(0) = λΨ̃(0),

∂tnΨ̃(0) = BnΨ̃(0), n ≥ 1; Bn = (W∂nxW
−1)+,

with Ψ̃(0) = WΨ(0) and x = t1, y = t2, t = t3. In such a case the Lax operator takes the

form L = ∂x + u2∂
−1
x + u3∂

−2
x + · · · , and u2 = ∂xw1 satisfies the KP equation.

Following [3], u(x, y, t) is the (M −N,N) - line soliton associated to the τ–function (3)

if and only if the dressing operator takes the form W = 1−w1∂
−1
x −w2∂

−2
x −· · ·−wN∂−Nx ,

and Df (r) = 0, r = 1, . . . , N , where

(4) D ≡ W∂Nx = ∂Nx − w1(x, y, t)∂N−1
x − . . .− wN(x, y, t).
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Regular finite–gap solutions are the complex periodic or quasi–periodic meromorphic

solutions to the KP equation (1). Krichever [17, 18] has classified this class of solutions:

for any non-singular genus g complex algebraic curve Γ with a marked point P0 and a local

parameter λ such that λ−1(P0) = 0, there exists a family of regular complex finite–gap

solutions u(x, y, t, ) to (1) parametrized by non special divisors D = (P1, . . . , Pg). More

precisely, the Baker–Akhiezer function Ψ̃(P ;x, y, t) meromorphic on Γ\{P0} with poles

on D and an essential singularity at P0 with the following asymptotics

Ψ̃(λ;x, y, t) =
(
1 +

χ1(x, y, t)

λ
+O(λ−2)

)
eλx+λ2y+λ3t+··· (λ→∞),

is a solution to

∂Ψ̃

∂y
= B2Ψ̃,

∂Ψ̃

∂t
= B3Ψ̃,

where B2 ≡ (L2)+ = ∂2
x + u2, B3 = (L3)+ = ∂3

x + 3
4
(u2∂x + ∂xu2) + u3 satisfy the

compatibility conditions [−∂y + B2,−∂t + B3] = 0. If the divisor D is non–special, then

Ψ̃ is uniquely identified by its normalization for P → P0 [5]. Finally, ∂xu3 = 3
4
∂yu2, and

the KP regular finite–gap solution is

u2(x, y, t) = 2∂xχ1(x, y, t) = 2∂2
x log(Θ(Ux+ V y + Zt+ z0)) + c,

where c ∈ C, Θ(z), z ∈ Cg, is the Riemann theta–function associated to Γ, z0 ∈ Cg is

a constant vector which depends on the divisor D, and U , V , Z ∈ Cg are the periods

of certain normalized meromorphic differentials on Γ (see for instance [5] for necessary

definitions and explicit formulas).

By a theorem of Dubrovin and Natanzon [7], a regular finite–gap KP–solution u(x, y, t)

is real (quasi)–periodic if and only if it corresponds to Krichever data on a regular M–

curve Γ. More precisely Γ must possess an anti–holomorphic involution which fixes the

maximum number of ovals, Ω0, . . . ,Ωg such that P0 ∈ Ω0 and Pj ∈ Ωj, j = 1, ..., g.

We recall that the ovals are topologically circles and, by a theorem of Harnack [12], the

maximal number of components (ovals) of a real algebraic curve in the projective plane is

equal to (n− 1)(n− 2)/2 + 1, where n denotes the order of the curve. The investigation

of the relative positions of the branches of real algebraic curves of degree n (and similarly

for algebraic surfaces) is the first part of the Hilbert’s 16th problem (see [11] for a review).
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According to finite–gap theory [4, 6], soliton solutions are obtained from finite–gap

regular solutions in the limit in which some of the cycles of Γ become singular. In par-

ticular, the real smooth bounded (M −N,N)-line solitons may be obtained from regular

real quasi–periodic solutions in the rational limit of M–curves where some cycles shrink to

double points. We remark that the same soliton solution may be associated in principle

to topologically inequivalent rational curves (for an example see the last section).

3. Total positivity and rational M–curves

A N ×M matrix A is totally positive (respectively strictly totally positive) if all of its

minors of any order are non–negative (respectively positive).

Totally positive matrices were first introduced in 1930 by Schöneberg in [25] in con-

nection with the problem of estimating the number of real zeroes of a polynomial, and

in 1935 they also arose in statistical problems in the paper by Gantmacher and M. Krein

[10]. Later positive matrices arose in connection with problems from different areas of

pure and applied mathematics, including small vibrations of mechanical systems, approx-

imation theory, combinatorics, graph theory (for more details see [19, 22]). Important

recent applications of total positivity are associated with the cluster algebras of Fomin

and Zelevinsky [8, 9].

In a recent paper [1] we have started to investigate the relations between the realization

of (M −N,N)–line regular bounded solitons in the Sato Grassmannian and in finite–gap

theory. More precisely, to any soliton solution ([A],K), with K = {k1 < · · · < kM} and

[A] ∈ GrTP(N,M), we associate a triple (Γ, P0,D) in agreement with the theorem of

Dubrovin and Natanzon [7] and such that Γ is the rational degeneration of an M–curve

of genus g = N(M − N). The arithmetic genus of Γ, g, is minimal for generic soliton

data ([A],K) since it is equal to the dimension of the corresponding Grassmann cell. The

general construction proposed in [1] is the following (see Figure 3):

(1) We glue N + 1 copies of CP 1, Γ = Γ0 t Γ1 t . . . t ΓN , at a convenient set of real

ordered marked points creating double points and N(M − N) + 1 ovals Ω0, Ωr,j,

r = 1, . . . , N , j = 1, . . . ,M −N ;
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(2) We construct a vacuum wave–function Ψ(P,~t) meromorphic for P ∈ Γ\{P0},

where P0 ∈ Ω0 ∩ Γ0, with the following properties:

(a) Ψ restricted to Γ0 is the Sato vacuum wavefunction

(5) Ψ(0)(λ;x, y, t) = eθ(λ;x,y,t);

(b) Ψ possesses N(M − N) simple poles such that no pole is in Γ0 and M − N

poles are in each Γr, r = 1, . . . , N ;

(c) Ψ possesses exactly one pole in each finite oval Ωr,j, r = 1, . . . , N , j =

1, . . . ,M −N .

(3) We apply the dressing transformation (4) and we show that the normalized KP-

wavefunction Ψ̃(P,~t) =
DΨ(P,~t)

DΨ(P,~0)
is the Baker–Akhiezer function on Γ. Moreover,

Ψ̃ has the following properties:

(a) it possesses N(M − N) poles with the following rules: N poles on Γ0 and

M −N − 1 poles on each copy of Γr;

(b) it possesses exactly one pole in each finite oval Ωr,j, r = 1, . . . , N , j =

1, . . . ,M −N .

In the following we denote Ψ(r) (respectively Ψ̃(r)) the restriction of Ψ (respectively of

Ψ̃) to Γr, r = 0, . . . , N . On Γr, the vacuum wave–function necessarily takes the form

(6) Ψ(r)(λ;x, y, t) =
M−N+1∑
j=1

B
(r)
j

∏
s 6=j(λ− λ

(r)
s )∏M−N

k=1 (λ− b(r)
k )

V
(r)
j (x, y, t),

where, for any fixed r = 1, . . . , N , λ
(r)
j ∈ Γr, j = 1, . . . ,M −N + 1, are real and ordered

and

V
(r)
j (x, y, t) =


Ψ(0)(kN+l−1;x, y, t), l = 1, . . . ,M −N + 1, r = 1

Ψ(0)(kN−r+1;x, y, t), l = 1, r = 2, . . . , N,

Ψ(r−1)(α
(r−1)
l ;x, y, t), l = 2, . . . ,M −N + 1, r = 2, . . . , N,

with α
(r−1)
l ∈ Γr−1, l = 2, . . . ,M −N + 1, real and ordered. For any fixed r ∈ {1, . . . , N},

the coefficients B
(r)
j , j = 1, . . . ,M −N + 1, are determined imposing that

(7) lim
P→Qr

Ψ(r)(P,~t) = f (r)(x, y, t)
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where Qr ∈ Γr is such that λ−1(Qr) = 0, and the {f (r)(x, y, t) , r = 1, . . . , N} form a

basis of heat hierarchy solutions for the given soliton data ([A],K).

For any fixed r ∈ {1, . . . , N}, the poles b
(r)
k are computed imposing the gluing conditions

at the double points for all x, y, t:

(8)

Ψ(r)(λ
(r)
j ;x, y, t) =


Ψ(0)(kN+j−1;x, y, t), r = 1, j = 1, . . . ,M −N + 1,

Ψ(0)(kN−r+1;x, y, t), r = 2, . . . , N, j = 1,

Ψ(r−1)(α
(r−1)
j ;x, y, t), r = 2, . . . , N, j = 2, . . . ,M −N + 1.

The principal technical problem in the construction is to control the compatibility of the

linear systems of equations associated to conditions (7) and (8) and to control the sign of

the B
(r)
j so to get the divisor b

(r)
k in the prescribed position (M − N poles in each copy

of Γr, r = 1, . . . , N , and exactly one pole in each finite oval). Then the action of the

Darboux transformation (4) is just to move the poles inside the finite ovals.

The strategy we adopt in [1] is the following:

(1) We impose that the representative matrix associated to the behaviour of the vac-

uum wave–function Ψ at Qrs be upper triangular;

(2) We do the construction recursively starting from the last row of the matrix;

(3) We introduce a scaling parameter ξ to rule the position of the double points and to

control the dominant phases kl in Ψ at the double points and at Qr, r = 1, . . . , N ,

at leading order in ξ, when ξ >> 1;

(4) We check that (7) and (8) give compatible linear systems when ξ → ∞ and

compute the matrix A associated to the leading asymptotics;

(5) We check that at leading order in ξ, the coefficients B
(r)
j and the poles b

(r)
k satisfy

the desired requirements;

(6) We check that (7) and (8) give compatible linear systems and their solutions have

the desired properties for any fixed ξ >> 1.

We prove that, for any soliton data ([A],K), with [A] ∈ GrTP(N,M), the construction

goes through with the following choice of the marked points:

(9) λ
(r)
1 = 0, λ

(r)
j = −ξ2(j−1), α

(r)
j = ξ2j−5, j = 2, . . . ,M −N + 1, r = 1, . . . , N.
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To check that (7) and (8) produce compatible systems of conditions, it is necessary to

study the properties of the upper–triangular matrices A and A(ξ)

A(ξ) = A+O(ξ−1)

which rule the asymptotics of Ψ(P ;x, y, t) when P ∈ Γr ∩ Ω0, r = 1, . . . , N . The matrix

A governs the leading order asymptotics in the parameter as ξ → ∞, where just the

dominant phases count at the marked points. We prove that A is in banded form, that is

(10) A =



1 A1
2 A1

3 . . . A1
M−N+1 0 . . . 0 0

0 1 A2
3 . . . A2

M−N+1 A2
M−N+2 . . . 0 0

...
. . . . . . . . . . . . . . . . . .

...

0 . . . 0 1 . . . . . . . . . AN−1
M−1 0

0 . . . 0 0 1 . . . . . . ANM−1 ANM


,

where Arj > 0 if and only if r ≤ j ≤ M −N + r, r = 1, . . . , N . Since [A] ∈ GrTP(N,M),

then A is also totally positive in classical sense with all non–trivial minors strictly positive

(a minor is trivial if it is the determinant of a submatrix containing either a row or a

column of zeroes).

Let us denote A[r] (respectively A(ξ)[r]) the r–th row of A (respectively of A(ξ)). Then,

by the recursive construction,

(11) A(ξ)[r] = A[r] +
N−r∑
j=1

ε
(r)
j (ξ)A[r+j],

where ε
(r)
j (ξ) ∈ R.

We use the following notation: ∆[i1,...,il] denotes the determinant of the submatrix of A

formed by the last l rows and the columns 1 ≤ i1, . . . , il ≤M .

The key lemma necessary to prove the compatibility of (7) and (8) in the limit ξ →∞

is the following one.

Lemma 3.1. (Principal Algebraic Lemma [1]) Assume that A is in banded form as in

(10) and that, after removing the first row and the first column from A, we obtain a

matrix in GrTP(N −1,M −1). Then [A] ∈ GrTP(N,M) if and only if there exist B̂n > 0,
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n = 1, . . . ,M −N + 1, such that

A[1] ≡ [1, A1
2, . . . , A

1
M−N+1, 0, . . . , 0] =

M−N+1∑
n=1

B̂nE [n],

where E [1] = [1, 0, 0, . . . , 0], and, for n = 2, . . . ,M −N + 1,

E [n] = [0,∆[2,n+1,...,n+N−2],∆[3,n+1,...,n+N−2], . . . ,∆[n,n+1,...,n+N−2], 0, . . . , 0].

Moreover, in such case B̂1 = A1
1 = 1, and

B̂n =
∆[n,...,n+N−1]

∆[n,...,n+N−2]∆[n+1,...,n+N−1]

, n = 2, . . . ,M −N + 1.

Thanks to the Principal Algebraic Lemma, we may associate two collections to A :

matrices Ê(r) and scalars B̂
(r+1)
l > 0, r = 0, . . . , N − 1, l = 1, . . . ,M − N + 1, which

govern the gluing rules at the double points and the asymptotics at each Qr at leading

order in ξ, when ξ →∞ (see sections 3.2 and 3.3 in ([1]):

(1) Each Ê(r) is an (M −N + 1)×M matrix with non-negative entries

(2) For r = 0 the matrix Ê(0) is defined by: (Ê(0)[l])j = δN+l−1
j .

(3) For r = 1 and j = 1, . . . ,M −N + 1, B̂
(1)
j = ANN+j−1

(4) For each r ∈ {1, . . . , N} we have: A[N−r+1] =
M−N+1∑
j=1

B̂
(r)
j Ê(r−1)[j],

(5) For each r ∈ [1, N ] we have: Ê(r)[2,...,M−N+1] = B(r)Ê(r−1), where B(r) is lower

triangular (M − N) × (M − N + 1) matrix whose entries are subtraction free

rational functions in B̂
(r)
j (for the explicit formulas see [1]).

The relations above are invariant in GrTP(N,M) since the elements of each matrix Ê(r)

and the coefficients B̂
(r)
j are subtraction free rational expressions in a totally positive base

in the sense of Fomin and Zelevinsky (see [1]). As a consequence, all the above identities

are associated to the given point in the Grassmannian and not to the representative matrix

A.

We then show that (7) and (8) form a compatible system for any ξ >> 1 and we prove

the following Theorems.

Theorem 3.1. (The rational curve Γ and the vacuum wavefunction Ψ [1]) Let A be a

totally positive matrix in banded form as in (10) so that [A] ∈ GrTP (N,M), and let
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ξ >> 1. Let Γ0, · · · ,ΓN be N + 1 copies of CP 1 and P0 ∈ Γ0. Let k1 < k2 < · · · < kM

and P0, such that λ−1(P0) = 0, be M + 1 marked points in Γ0. For r = 1, . . . , N , let

us fix M − N + 2 marked points in Γr: λ
(r)
1 = 0, λ

(r)
j = −ξ2(j−1), α

(r)
j = ξ2j−5,

j = 2, . . . ,M −N + 1, and Qr such that λ−1(Qr) = 0 .

Then there exists a unique totally positive matrix A(ξ) = A + O(ξ−1) and a unique

vacuum wave–function Ψ(P ;x, y, t), meromorphic for P ∈ Γ, where Γ = Γ0tΓ1t· · ·tΓN ,

regular in (x, y, t) ∈ R3 with the following properties:

(1) Ψ(P ; 0, 0, 0) ≡ 1, for all P ∈ Γ;

(2) It satisfies (8) and lim
λ→∞

Ψ(r)(λ;x, y, t) =
M∑

j=N−r+1

Ar
j (ξ)

M∑
l=N−r+1

Ar
l (ξ)

Ej(x, y, t), ∀x, y, t ∈

R, r = 1, . . . , N ;

(3) its divisor of poles is B = {b(r)
n (ξ) , n = 1, . . . ,M − N, r = 1, . . . , N} and it is

independent of x, y, t;

(4) it has an essential singularity at P0 ∈ Ω0 such that Ψ(λ;x, y, t) = eθ(λ;x,y,t).

Moreover, the real part of Γ, ΓR, possesses 1 + (M − N)N ovals and each oval is

topologically equivalent to a circle. Each double point of Γ is a common point to exactly

a pair of ovals.

Let us denote Ω0 the oval containing the infinity point P0 ∈ Γ0 (infinite oval), and let

Ωr,n, r = 1, . . . , N , n = 1, . . . ,M −N , be the (M −N)×N finite ovals. Then Qr ∈ Ω0,

r = 1, . . . , N , and the finite ovals are defined by the following properties:

(1) For n = 1, . . . ,M − N , and for any j = 2, . . . , N : Ω1,n ∩ Γ0 = [kN+n−1, kN+n],

Ω1,n ∩ Γ1 = [λ
(1)
n+1, λ

(1)
n ], and Ω1,n ∩ Γj = ∅, for j = 2, . . . , N ;

(2) For r ∈ {2, . . . , N}: Ωr,1 ∩ Γ0 = [kN−r+1, kN−r+2], Ωr,1 ∩ Γr−1 = [λ
(r−1)
1 , α

(r−1)
2 ],

Ωr,1 ∩ Γr = [λ
(r)
2 , λ

(r)
1 ], and Ωr,1 ∩ Γj = ∅, ∀j ∈ {1, . . . , N}\{r − 1, r};

(3) For r ∈ {2, . . . , N} and n ∈ {2, . . . ,M − N}: Ωr,n ∩ Γr−1 = [α
(r−1)
n , α

(r−1)
n+1 ],

Ωr,n ∩ Γr = [λ
(r)
n+1, λ

(r)
n ], and Ωr,n ∩ Γj = ∅, ∀j ∈ {1, . . . , N}\{r − 1, r}.

Ψ(λ;x, y, t) is real for P ∈ ΓR and, in each finite oval Ωr,n, it possesses exactly one sim-

ple pole b
(r)
n (ξ), whose position is independent of x, y, t, and such that b

(r)
n (ξ) ∈]λ

(r)
n+1, λ

(r)
n [⊂

Γr ∩ Ωr,n.
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Finally, the coefficients and the poles of Ψ as in (6) satisfy B
(r)
j =

B̂
(r)
j

M−N+1∑
l=1

B̂
(r)
l

+O(ξ−1),

b
(r)
k = −

k∑
l=1

B̂
(r)
l

k+1∑
l=1

B̂
(r)
l

ξ2(l−1)(1+O(ξ−1)), for r = 1, . . . , N , j = 1, . . . ,M−N+1, k = 1, . . . ,M−

N .

We remark that the topological type of Γ is the same for all values of the parameter

ξ >> 1. Then the Darboux transformation (4) moves each divisor point b
(r)
j inside its oval

in such a way that, at the double points of Γ, the divisor points of DΨ may only occur in

couples (see [1]). In the latter case we use the following counting rule: we attribute one

divisor point to the first oval and the second divisor point to the other oval.

Theorem 3.2. (The Baker-Akhiezer function on Γ and the Krichever divisor D [1])

Under the hypotheses of Theorem 3.1, let D be the dressing transformation associated to

the soliton data ([A],K) and defined in (4). Then Ψ̃(P ;x, y, t) =
DΨ(P ;x, y, t)

DΨ(P, 0, 0, 0)
, P ∈ Γ,

is the normalized Baker-Akhiezer function on Γ associated to ([A],K), and it has the

following properties:

(1) it is meromorphic for P ∈ Γ\{P0} and regular for all x, y, t;

(2) it is real for P ∈ ΓR and real x, y, t;

(3) its divisor of poles is D = {γ(0)
j , j = 1, . . . , N}∪{γ(r)

n , n = 1, . . . ,M−N−1, r =

1, . . . , N} and it is independent of x, y, t.

Moreover, for any fixed x, y, t, Ψ̃ has the following properties:

(1) P0 ∈ Γ0, is an essential singularity and Ψ̃(0)(λ;x, y, t) =
N∏
j=1

λ−γ(0)j (x,y,t)

λ−γ(0)j

eθ(λ,x,y,t);

(2) Ψ̃(1)(λ
(1)
j , x, y, t) = Ψ̃(0)(kN+j−1, x, y, t), for all j ∈ {1, . . . ,M −N + 1};

(3) For r = 2, . . . , N , Ψ̃(r)(λ
(r)
1 , x, y, t) = Ψ̃(0)(kN−r+1, x, y, t);

(4) For r = 2, . . . , N , and j = 2, . . . ,M−N+1, Ψ̃(r)(λ
(r)
j , x, y, t) = Ψ̃(r−1)(α

(r−1)
j , x, y, t).

The Krichever divisor D has the following properties:

(1) The component Γ0 contains exactly N divisor points γ
(0)
1 , . . . , γ

(0)
N ;

(2) For any r ∈ {1, . . . , N}, Γr contains exactly M − N − 1 divisor points γ
(r)
1 , . . . ,

γ
(r)
M−N−1;
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(3) For any r ∈ {0, . . . , N}, all divisor points lying in Γr are pairwise different;

(4) D ∩ Ω0 = ∅, that is no divisor point occurs in the infinite oval;

(5) D ⊂
⋃
r,j

Ωr,j, that is each divisor point is real and lies in some finite oval;

(6) Each finite oval Ωr,j contains exactly one divisor point according to the counting

rule.

In [1] we also give explicit estimates of the divisor points in D for ξ >> 1.

4. Degenerations of Hyperelliptic M–curves associated to points in

GrTP(1,M) and GrTP(M − 1,M)

It is a relevant open question to classify which (M − N,N)–soliton solutions may be

associated to Krichever data on rational degenerations of a given class of M–curves. In this

section, for any fixed soliton data ([A],K) with [A] either in GrTP(1,M) or GrTP(M −

1,M) and K = {k1 < k2 < · · · < kM}, we show how to assign the Krichever data on

(Γ̃, P−, ζ), where Γ̃ = Γ+ t Γ− is the rational degeneration of a hyperelliptic curve of

genus g = M − 1, with affine part

(12) Γ̃ : {(ζ, µ) ∈ C2 : µ2 =
M∏
j=1

(ζ − kj)2},

Γ+ = {(ζ, µ(ζ) ; ζ ∈ C}, Γ− = {(ζ,−µ(ζ) ; ζ ∈ C}, and P± ∈ Γ± are such that

ζ−1(P±) = 0. Moreover let σ be the hyperelliptic involution which exchanges Γ+ with Γ−,

i.e. σ(ζ, µ(ζ)) = (ζ,−µ(ζ)). In the following we use the same notation for the points in

Γ̃ and their ζ–coordinates.

Lemma 4.1. Let [a] ∈ GrTP(1,M), with a = [a1, . . . , aM ], aj > 0, j = 1, . . . ,M , let

k1 < k2 < · · · < kM , and define

(13)

Ψ1,M(ζ;x, y, t) =


Ψ(0)(ζ;x, y, t), if ζ ∈ Γ−,

Ψ+(ζ;x, y, t) ≡
M∑
j=1

aj
M∑
n=1

am

∏
s 6=j(ζ − ks)∏M−N

l=1 (ζ − b(1)
l )

Ψ(0)(kj;x, y, t), if ζ ∈ Γ+,
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Figure 1. Γ̃ for a point in GrTP(1, 5); the Krichever divisor is in generic

position since γ(0) does non coincide with any double point.

where the poles b
(1)
l are defined imposing Ψ+(kj;x, y, t) = Ψ(0)(kj;x, y, t), for all j =

, . . . ,M and, for all x, y, t ∈ R. Then Ψ is meromorphic on Γ̃\{P−} and b
(1)
l ∈]kl, kl+1[∩Γ+,

l = 1, . . . ,M − 1.

The proof is straightforward and we omit it. We remark that, for any ξ >> 1, the

curves Γ̃ and Γ = Γ(ξ) as in Theorem 3.1, are not topologically equivalent if M ≥ 2. In

the following Corollary we list the properties of the Krichever divisor on Γ̃.

Corollary 4.1. Let the Darboux transformation be D(1) = ∂x−w1(x, y, t), where w1(x, y, t) =

∂x log(f(x, y, t)) and f(x, y, t) =
M∑
j=1

ajEj(x, y, t). Then Ψ̃1,M(ζ;x, y, t) =
D(1)Ψ1,M(ζ;x, y, t)

D(1)Ψ1,M(ζ; 0, 0, 0)
,

is the Baker–Akhiezer function of ([a],K) on (Γ̃, P−, ζ). The pole divisor of Ψ̃1,M(ζ;x, y, t)

is D1,M = {γ(0)} ∪ D+, where γ(0) =

M∑
j=1

kjaj

M∑
j=1

aj

∈ Γ− and D+ = {γ(1)
1 , . . . γ

(1)
M−2} ⊂ Γ+.

Moreover, there exists s ∈ {1, . . . ,M − 1} such that γ(0) ∈ [ks, ks+1[ ∩ Γ−, and D+ ⊂

( ]k1, kM [ \ ]ks, ks+1[ ) ∩ Γ+.

In particular, if γ(0) 6= ks, then D+ ∩ ( ]kl, kl+1[ ∩ Γ+ ) 6= ∅, for any l = 1, . . . ,M − 1,

l 6= s. Otherwise, if γ(0) = ks ∈ Γ−, then s ∈ {2, . . . ,M − 1}, and there exists l̄ ∈

{1, . . . ,M − 2} such that γ
(1)

l̄
= ks ∈ Γ+ and D+ ∩ ( ]ks−1, ks+1[ \ {ks}) = ∅.



152 SIMONETTA ABENDA

k
1

2 4 5

X

X

X

kk k

Γ

Γ

-

+

γ
γγ

γ(0)

(1)

(1)

(1)
1

2

3

Ω ΩΩ

Ω

Ω1,1 1,2 1,3 1,4

P

0

-

P+

X

Figure 2. The same as in Figure 1 with a Krichever divisor in special

position: the poles γ(0) and γ
(1)
2 coincide with the double point k3.

In Figures 1 and 2 we show two possible positions of the divisor for a soliton solu-

tion ([a],K) when [a] ∈ GrTP(1, 5) and Γ̃ is the rational degeneration of a genus g = 4

hyperelliptic curve.

Let xi > 0, i = 1, . . . ,M − 1, xM = 1, and define

(14) Ci
j =


1 if j = i,
xi
xi+1

if j = i+ 1,

0 otherwise.

Then [C] ∈ GrTP(M − 1,M). The double points (9) on Γr, r = 1, . . . ,M − 1, are just

(15) λ
(r)
1 = 0, λ

(r)
2 = −1, α

(r)
2 = ξ−1,

and the Darboux transformation for ([C],K) is D(M−1) = ∂M−1
x − w1(x, y, t)∂M−2

x −

· · · − wM−1(x, y, t), with f (r)(x, y, t) = xM−r+1EM−r(x, y, t) + xM−rEM−r+1(x, y, t), r =

1, . . . ,M − 1. Let the rational curve Γ and the vacuum wavefunction Ψ(P ;x, y, t) be as

in Theorem 3.1 and define Ψ̃M−1,M(P ;x, y, t) :=
D(M−1)Ψ(P ;x, y, t)

D(M−1)Ψ(P ; 0, 0, 0)
, P ∈ Γ\{P0}. Then

the following Corollary holds true.

Corollary 4.2. Ψ̃M−1,M restricted to Γ1 t Γ2 t · · · t ΓM−1 is constant w.r.t. the spectral

parameter λ, and the Krichever divisor DM−1,M = {γ(0)
1 , . . . , γ

(0)
M−1} satisfies

(16) xi+1

M∏
l=1

(ki − γ(0)
l ) + xi

M∏
l=1

(ki+1 − γ(0)
l ) = 0, i = 1, . . . ,M − 1,



ON KP MULTI–SOLITON SOLUTIONS 153

k1
2 3

4
5

X X
XX

αλλλ αα

k k k
k

(1)
2

(2) (2)
22222

(3)(3)(4)

Γ

Γ4

0

1ΓΓΓ 3 2

Ω ΩΩΩ

γ γ
γγ(0) (0) (0)

(0)
1 2 3

4

4,1 3,1 2,1 1,1 Ω0

Figure 3. According to Theorem 3.1, for any point in GrTP(4, 5), Γ =

Γ0tΓ̂+, with Γ̂+ = Γ1t· · ·tΓ4, is the rational degeneration of a hyperelliptic

M–curve of genus g = 4. The red and green points are the marked double

points.

with γ
(0)
l ∈]kl, kl+1[∩Γ0, for l = 1, . . . ,M − 1.

Identities (16) are easily deduced from the equations D(M−1)f (r) = 0, r = 1, . . . ,M .

On each Γr, r = 1, . . . ,M − 1, let us perform the linear substitution

ζ = c
(r)
0 λ+ c

(r)
1 ,

where c
(r)
1 = kM−r, and c

(r)
0 are recursively defined

c
(1)
0 = kM−1 − kM , c

(r)
0 =

c
(r−1)
0

ξ
+ kM−r − kM−r+1, r = 2, . . . ,M − 1.

In the new local coordinate the double points are

λ
(r)
j =


kM−r, if j = 1, r = 1, . . . ,M − 1,

kM , if j = 2, r = 1,

α
(r−1)
2 =

c
(r−1)
0

ξ
+ kM−r+1 ∈]kM−r, kM−r+1], if j = 2, r = 2, . . . ,M − 1.

Let us notice that

lim
ξ→∞

c
(r)
0 = kM−r − kM−r+1, lim

ξ→∞
λ

(r)
2 = kM−r+1, r = 2, . . . ,M − 1.

Then the following Corollary to Theorem 3.1 holds true

Corollary 4.3. Let k1 < k2 < · · · < kM , ξ >> 1 and [C] ∈ GrTP(M − 1,M). Then the

curve Γ constructed in Theorem 3.1 is the rational degeneration of a regular hyperelliptic
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Figure 4. The same point in GrTP(4, 5) as in Figure 3: Γ− = Γ0, while

Γ+ is the desingularization of Γ1 t Γ2 t Γ3 t Γ4. Each finite oval Ω1,j is the

desingularization of the corresponding oval Ωj,1, j = 1, . . . ,M − 1 of Figure

3 and coincides with the ovals defined for points in GrTP(1, 5) in Figures 1

and 2. The Krichever divisor is the same as in Figure 3, since D ⊂ Γ0 and

Γ0 = Γ−.

curve of genus g = M − 1, Γ = Γ− t Γ̂+ such that Γ̂+ = Γ1 t . . .tΓM−1 is Γ+ with M − 2

extra double points λ
(r)
2 = α

(r−1)
2 , r = 2, . . . ,M − 1.

The double points λ
(r)
2 , α

(r−1)
2 , r = 2, . . . ,M − 1, are due to the construction and may

be eliminated since the Baker–Akhiezer function Ψ̃M−1,M restricted to Γ̂+ is constant with

respect to the spectral parameter.

For any [C] ∈ GrTP(M−1,M), we now desingularize explicitly Γ to Γ̃ using the duality

property between points in GrTP(1,M) and in GrTP(M − 1,M). The duality between

Grassmann cells is naturally linked to the space–time transformation of soliton solutions

and it has been used to classify the asymptotic behavior of soliton solutions (see [2, 26]

and references therein).

Let f(x, y, t) =
M∑
j=1

ajEj(x, y, t) be the τ–function (3) of ([a],K), with [a] ∈ GrTP(1,M)

and define f̃(x, y, t) = f(x,y,t)
M∏
j=1

Ej(x,y,t)

. Then f̃(x, y, t) is equivalent to f(x, y, t), since u(x, y, t) =
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2∂2
x log(f(x, y, t)) = 2∂2

x log(f̃(x, y, t)), while

τ(x, y, t) = f̃(−x,−y,−t) =
M∑
j=1

aj
∏
l 6=j

El(x, y, t),

is the τ–function of the soliton solution ([C],K), with [C] ∈ GrTP(M − 1,M) defined by

the dual transformation

(17) aj = ∆[ĵ](C)
∏

1≤i<l≤M ;i,l 6=j

(kl − ki), j = 1, . . . ,M.

Here ∆[ĵ](C) is the minor obtained eliminating the j–th column from C. Let us notice

that if we apply the space–time transformation twice we go back to the initial soliton

([a],K).

The space–time transformation preserves the rational curve Γ̃ defined in (12) and asso-

ciated to [a], and it moves the Krichever divisor points inside its finite ovals. Indeed, let C

be as in (14). Then ∆[ĵ](C) = xj, j = 1, . . . ,M , and (17) define a point [a] ∈ GrTP(1,M).

Theorem 4.1. Let ([C],K), with K = {k1 < k2 < · · · < kM} and [C] ∈ GrTP(M − 1,M)

with C as in (14). Let Γ̃ be as in (12) and let Ψ1,M(ζ;x, y, t) be the vacuum wavefunction

defined in (13) for the soliton solution ([a],K), [a] ∈ GrTP(1,M), with aj defined by (17).

Then Ψ1,M(ζ;x, y, t) is also the vacuum wavefunction for ([C],K)on Γ̃, and

Ψ̃(P ;x, y, t) =
D(M−1)Ψ1,M(P ;x, y, t)

D(M−1)Ψ1,M(P ; 0, 0, 0)
, P ∈ Γ̃\{P−}, (x, y, t) ∈ C3,

is the normalized Baker–Akhiezer function on (Γ̃, P−, ζ) for the soliton solution ([C],K).

Finally the divisor DM−1,M is obtained from the vacuum divisor {b(1)
1 , . . . , b

(1)
M−1} by the

hyperelliptic involution σ,

γ
(0)
l = σ(b

(1)
l ), l = 1, . . . ,M − 1.

Proof. By construction Ψ̃(ζ;x, y, t) = Ψ̃M−1,M(ζ;x, y, t), on Γ−. On Γ+, Ψ̃(ζ;x, y, t) is

meromorphic of degree M − 1 in ζ and, forall j, s = 1, . . . ,M , and forall x, y, t, it satisfies

Ψ̃(kj;x, y, t) = Ψ̃(ks;x, y, t) =

(
M∏
i=1

Ei(x, y, t)

)(
M∑
j=1

xj

[ ∏
1≤n<m<M,n,m6=j

(km − kn)
])

M∑
j=1

xj

[ ∏
1≤n<m<M,n,m6=j

(km − kn)
M∏
i 6=j

Ei(x, y, t)

] .
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Then Ψ̃(kj;x, y, t) is constant with respect to the spectral parameter on Γ+. Finally

Ψ(kj;x, y, t) = Ej(x, y, t), j = 1, . . . ,M is equivalent to

xi+1

M∏
l=1

(ki − b(1)
l ) + xi

M∏
l=1

(ki+1 − b(1)
l ) = 0, i = 1, . . . ,M − 1.

The equations above are just (16). Then clearly the divisors {b(1)
1 , . . . , b

(1)
M−1} and DM−1,M

are related by the hyperelliptic involution σ. �

References

[1] S. Abenda, P.G. Grinevich Rational degenerations of M -curves, totally positive Grassmannians and

KP–solitons, arXiv:1506.00563 submitted.

[2] S. Chakravarty, Y. Kodama. Classification of the line-soliton solutions of KPII. J. Phys. A 41

(2008), 275209, 33 pp.

[3] S. Chakravarty, Y. Kodama. Soliton solutions of the KP equation and application to shallow water

waves. Stud. Appl. Math. 123 (2009) 83-151.

[4] L.A, Dickey. Soliton equations and Hamiltonian systems. Second edition. Advanced Series in Math-

ematical Physics, 26. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. xii+408 pp.

[5] B.A. Dubrovin.Theta-functions and nonlinear equations. (Russian) With an appendix by I. M.

Krichever. Uspekhi Mat. Nauk. 36 (1981), 1180.

[6] B.A. Dubrovin, I.M. Krichever, S.P. Novikov. Integrable systems. Dynamical systems, IV, 177-332,

Encyclopaedia Math. Sci., 4, Springer, Berlin, 2001.

[7] B. A.Dubrovin, S.M. Natanzon. Real theta-function solutions of the Kadomtsev-Petviashvili equa-

tion. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988) 267-286.

[8] S. Fomin, A. Zelevinsky. Double Bruhat cells and total positivity. J. Amer. Math. Soc. 12 (1999)

335-380.

[9] S. Fomin, A. Zelevinsky. Cluster algebras I: foundations. J. Am. Math. Soc. 15 (2002) 497-529.

[10] F.R. Gantmacher, M.G. Krein. Sur les matrices oscillatoires. C.R.Acad.Sci.Paris 201 (1935) 577-

579.

[11] D.A. Gudkov. The topology of real projective algebraic varieties. Russ. Math. Surv. 29 (1974) 1-79.

[12] A. Harnack. Über die Vieltheiligkeit der ebenen algebraischen Curven. Math. Ann. 10 (1876) 189-

199.

[13] R. Hirota. The direct method in soliton theory. Cambridge Tracts in Mathematics, 155. Cambridge

University Press, Cambridge, 2004. xii+200 pp.



ON KP MULTI–SOLITON SOLUTIONS 157

[14] B.B. Kadomtsev, V.I. Petviashvili. On the stability of solitary waves in weakly dispersive media.,

Sov. Phys. Dokl. 15 (1970) 539-541.

[15] Y. Kodama,L.K. Williams. The Deodhar decomposition of the Grassmannian and the regularity of

KP solitons. Adv. Math. 244 (2013) 979-1032.

[16] Y. Kodama,L.K. Williams. KP solitons and total positivity for the Grassmannian. Invent. Math.

198 (2014) 637-699.

[17] I. M. Krichever. An algebraic-geometric construction of the Zakharov-Shabat equations and their

periodic solutions. (Russian) Dokl. Akad. Nauk SSSR 227 (1976) 291-294.

[18] I. M. Krichever. Integration of nonlinear equations by the methods of algebraic geometry. (Russian)

Funkcional. Anal. i Priloen. 11 (1977) 15-31, 96.

[19] G. Lusztig. A survey of total positivity. Milan J. Math. 76 (2008) 125-134.

[20] V. B. Matveev, M.A. Salle. Darboux transformations and solitons. Springer Series in Nonlinear

Dynamics. Springer-Verlag, Berlin, 1991.

[21] T. Miwa, M. Jimbo, E. Date. Solitons. Differential equations, symmetries and infinite-dimensional

algebras. Cambridge Tracts in Mathematics, 135. Cambridge University Press, Cambridge, 2000.

x+108 pp.

[22] A. Pinkus. Totally positive matrices. Cambridge Tracts in Mathematics, 181. Cambridge University

Press, Cambridge, 2010. xii+182 pp.

[23] A. Postnikov. Total positivity, Grassmannians, and networks., arXiv:math/0609764 [math.CO]

[24] M. Sato. Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. in:

Nonlinear PDEs in Applied Sciences (US-Japan Seminar, Tokyo), P. Lax and H. Fujita eds., North-

Holland, Amsterdam (1982) 259-271.
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